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This paper describes a new approach to analyze and explore space-improvements in the concurrent
and functional process-calculus CHF. Space-improvements are defined as a generalization from a
deterministic pure functional language. The main part of the paper is a polynomial algorithm for
space optimizations of parallel independent processes. Applications of this algorithm are: (i) af-
firmation of space improving transformations for particular classes of program transformations; (ii)
support of an interpreter-based method for refuting space-improvements; and (iii) as a stand-alone
offline-optimizer for space (or similar ressources) of parallel processes.

1 Introduction

The main motivation for this research is to investigate the space optimization and space improvements
in concurrent languages. Our model is the functional process calculus CHF (Concurrent Haskell with
Futures, see [1, 5, 6]) that permits pure functional modelling in combination with monadic execution
of processes with synchronization. It provides mutable storage using one-place buffers (MVars) and it
also permits starting subprocess as threads that return a value which is referenced by so-called futures.
CHF is related to concurrent Haskell. We will employ a variant that also includes garbage collection,
hence our analyses of space consumption, optimization and improvement assume that garbage is already
removed. Related work on space improvements in deterministic call-by-need functional languages is
[4, 3, 8], where concepts of space measurements and improvement are defined and many transformations
are proven to be space improvements. The long-term goal is to transfer and extend the methods to
parallel evaluated processes. Since this appears too ambitious, we first analyse parallel threads which are
independent or have only rare interactions by a controllable form of synchronization.

The space behavior of threads that are evaluated in parallel can be described as follows. We assume
that there is a shared memory, where the state of every process is stored. The space that a single thread
may potentially use, or is relevant for the thread, subdivides into space that is only used by the thread
and other data or functions that are used by several threads. Clearly, both kinds of storage are relevant
for space analyses and for checking space improvements.

In the following we concentrate on the thread-only space and algorithms for optimizing it and leave
the common storage for future analyses. One motivation for such an optimization analysis is to make a
search for potential counterexamples to conjectures for space-improvements feasible. Even in the case
of only two independent threads the computation of the minimally necessary (thread-local) space to run
the threads leads to an exponential number of different schedules.

As we will see below, a deeper analysis shows that for independent processes (without communica-
tion), this minimum can be computed with an offline-algorithm in polynomial time (Theorem 4.27).

The model for processes is rather abstract insofar as it only models the thread-local space as a se-
quence of numbers. This simplicity invites applications of the space-optimization algorithm also for
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2 Space Improvements and Equivalences in a Functional Core Language

P ∈ Proc ::= (P1|P2) | x⇐e | νx.P | xme | xm− | x = e | /0
e ∈ Expr ::= x | m | λx.e | (e1 e2) | seq e1 e2 | c e1 . . .ear(c) | letrec x1 = e1, . . . ,xn = en in e

| caseT eof (cT,1 x1 . . .xar(cT,1)→ e1) . . .(cT,|T | x1 . . .xar(cT,|T |)→ e|T |)
m ∈MExpr ::= returne | e >>= e′ | futuree | takeMVare | newMVare | putMVaree′

τ ∈ Typ ::= IO τ | (T τ1 . . .τn) | MVar τ | τ1→ τ2

Figure 1: Syntax of expressions, processes, and types

size(x) = 0
size(λx.e) = 1+size(e)
size(P1|P2) = ∑size(Pi)
size(x op e) = 1+size(e)
size(xm−) = 1
size(νx.P) = 1+size(P)

size(e1 e2) = 1+size(e1)+size(e2)
size(case e of alt1 . . .altn) = 1+size(e) +∑

n
i=1size(alti)

size((c x1 . . .xn) -> e) = 1+size(e)
size(letrec {xi = ei}n

i=1 in e) = size(e)+∑size(ei)
size( f e1 . . .en) = 1+∑size(ei)

for constructors and operators f

Figure 2: Definition of size of expressions

imperative concurrent threads and industrial processes where the number of machines can be optimized
since it is similar to required space.

The prerequisite is that the complete run of the processes is already given, insofar the optimization
can be classified as offline. It can also be used in variants of job-shop-scheduling problems, where the
number of machines has to be minimized and where the time is not relevant, e.g. [2].

The model is also extended to synchronization constraints in the form of a Boolean combination
of conditions on simultaneous time points of two threads. The results for the space optimization for
synchronization-free processes can be transferred to processes with synchronization and permits polyno-
mial algorithms for fixed number of synchronization constructs (see Theorem 4.29) and therefore allows
further analyses of space in more concrete scenarios.

The space-optimization of parallel processes can sometimes be also applied to the whole evaluation
of a program in CHF. For example for processes that are deterministically parallel, there are no MVars
and where the computation terminates.

The structure of the paper is first to introduce CHF∗GC and a definition of a space improvement in
section 2. and 3. A process-model, schedules and their space optimization is analyzed in section 4.

2 The Process Calculus CHF

In this section we give an informal presentation of the program calculus CHF which models a core
language of Concurrent Haskell extended by futures, where more details can be found in [6, 7, 9]. Given a
partitioned set of data constructors c such that each family represents a type T , then the data constructors
of T are cT,1, . . . ,cT,|T | where each cT,i has an arity ar(cT,i) ≥ 0. For example, we assume that there is a
type Bool with data constructors True, False and a type List with constructors Nil and : (written infix
as in Haskell). The two-layered syntax of the calculus CHF, originally introduced in [6] has processes
on the top-layer which may have expressions (the second layer) as subterms. Processes and expressions
are defined by the grammars in Fig. 1 where Var is a countably-infinite set of variables, denoted with x.

Parallel processes are formed by parallel composition “|”, a binary operator that is commutative
and associative. ν-binders restrict the scope of variables and a concurrent thread x⇐e evaluates the
expression e and binds the result of the evaluation to the variable x. The variable x is also called the
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future x. In a process there is (at most one) unique distinguished thread, called the main thread written
as x main⇐== e. MVars are mutable variables which are empty or filled. If a thread wants to fill an already
filled MVar xme or empty an already empty MVar xm−, then the thread blocks. The variable x is called
the name of the MVar. Bindings x = e are part of the global heap of shared expressions, where x is called
a binding variable. A process is well-formed, if all introduced variables are pairwise distinct and there
exists at most one main thread x main⇐== e.

Expressions Expr consist of a call-by-need lambda calculus and monadic expressions MExpr which
model IO-operations. Functional expressions are built from variables, abstractions λx.e, applications
(e1 e2), constructor applications (c e1 . . . ear(c)), letrec-expressions (letrec x1 = e1, . . . ,xn = en in e),
caseT -expressions for every type T , and seq-expressions (seq e1 e2). We abbreviate case-expressions
as caseT e of Alts where Alts are the case-alternatives. The case-alternatives must have exactly one
alternative (cT,i x1 . . .xar(cT,i)→ ei) for every constructor cT,i of type T , where the variables x1, . . . ,xar(cT,i)

(occurring in the pattern cT,i x1 . . .xar(cT,i)) are pairwise distinct and become bound with scope ei. In
(letrec x1 = e1, . . . , xn = en in e) the variables x1, . . . ,xn are pairwise distinct and the bindings xi = ei

are recursive, i.e. the scope of xi is e1, . . . ,en and e. We use {xg(i) = s f (i)}m
i= j for xg( j) = s f ( j), . . . ,xg(m) =

s f (m) and we abbreviate (parts of) letrec-environments as Env and thus e.g. write letrec Env in e.
Monadic operators newMVar, takeMVar, and putMVar are used to create and access MVars, the

“bind”-operator >>= implements the sequential composition of IO-operations, the future-operator is
used for thread creation, and the return-operator lifts expressions to monadic expressions.

Functional values are defined as abstractions and constructor applications. Moreover the monadic
expressions (return e), (e1>>= e2), (future e), (takeMVar e), (newMVar e), and (putMVar e1 e2)
are called monadic values. A value is either a functional value or a monadic value. For typing we use
a monomorphic type system and a small-step reduction relation is used for the execution of programs,
where more information can be found in [7].

Informally, a standard reduction is an application of a reduction rule at a needed position, which
is defined in [6, 7, 9], using L-contexts: Every thread x⇐e needs the evaluation of its expressions e,
and a usual call-by-need strategy is used to find the corresponding redex. (Note that several threads
may need the evaluation of the same redex.) Successful processes are the successful outcomes of the
standard reduction (see [6, 7, 9]). They capture the behavior that termination of the main-thread implies
termination of the whole program. A well-formed process P is successful and the standard reduction
stops, if the main-thread returns return e where e is an expression.

We briefly recall the notion of contextual equivalence with may- and should-convergence as ob-
servations (see [6]). The concept is to equate processes P1,P2 whenever their observable behavior is
indistinguishable if P1 and P2 are plugged into any process context. The process contexts D ∈ PCtxt are
defined using the grammar D := [·] | P|D | νx.D. As observations we use may- and should-convergence:

Definition 2.1. A process P may-converges (written as P↓P′), iff it is well-formed and reduces to a
successful process P′. If we do not need P′ then we may write P↓. If P↓ does not hold, then P must-
diverges written as P⇑.

A process P should-converges (written as P⇓), iff it is well-formed and remains may-convergent after
reductions. If P is not should-convergent then we say P may-diverges written as P↑.

Definition 2.2. Contextual approximation ≤c is defined as ≤c :=≤↓∩≤⇓, contextual may-equivalence
∼↓,c is defined as∼↓,c:=≤↓∩≥↓, and contextual equivalence∼c on processes is defined as∼c:=≤c∩≥c

where for ξ ∈ {↓,⇓}: P1 ≤ξ P2 iff ∀D ∈ PCtxt : D[P1]ξ ⇒ D[P2]ξ .

A program transformation γ on processes is a binary relation on processes. It is correct iff γ ⊆∼c.
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Remark 2.3. We added an empty process /0 which is not in the syntax of CHF (see [6, 7]). This addition is
without problems, since /0⇑ and thus it is contextually equivalent to any other process that must-diverges.

2.1 Garbage Collection

The calculus CHF (see [6, 7]) and the variant CHF∗ in [9] that has a slightly modified operational
semantics for the case-construct both omit an explicit treatment of garbage collection. Ignoring garbage
collection is not an option, if we want to analyze space improvements, hence we add a formalism for
eager garbage collection analogous to the one in [8]. We explicity add a rule to CHF∗ obtaining a
calculus CHF∗GC. We assume that processes are in ν-prefix form and the variable convention holds
before (gc) is applied.

Definition 2.4. CHF∗GC is the calculus CHF∗ with the additional rule (gc): P1
gc−→ P2, where P2 is

generated from P1, such that a maximal set M of the following components and bindings is removed:
x = e, x⇐e if this is not the main thread, xme, xm−, and letrec-bindings x = e, such that the following
conditions hold:

1. The variables x in top-level sharing, threads, and MVars are ν-bound or let-bound.

2. The variables x do not occur as ν-bound or free variables in P2.

3. There is no variable y that occurs in P2 and which is also free in M.

After this operation also empty letrec-environments and νx-binding operators that do not bind any x are
removed. The standard reduction is modified, such that (gc) has priority, whenever it is possible to apply
it and if something is removed. We say a process is garbage-free iff (gc) does not change the process.

It is not hard to see that two consecutive (gc)-standard reductions are not possible. It is also not hard
to see that (gc) commutes with other standard reductions and hence that may-and must-convergence are
not modified after an application of (gc). Hence CHF∗ and CHF∗GC are equivalent.

3 Space Improvements in CHF∗

As space measure we use a generalization of the space measure of [8], that does not count variables
to achieve compatibility with abstract machines. Since we want to build a theory about space and not
garbage, we use CHF∗GC and interpret the space usage of reduction rules (r) from CHF∗ as follows. Let
P1 be a garbage-free process and P1

r−→ P2 or P1
r−→ P′2

gc−→ P2 be a standard reduction sequence where P2

is garbage-free. Then the space effect of r−→ is only compared on P1,P2 when these are garbage-free.

Definition 3.1. The size size(e) of an expression e and the size of a process P are defined in Fig. 2.

Definition 3.2. The space measure spmax(Red) of the successful standard reduction Red of a process P
is the maximum of all sizes size(Pi) during the whole standard reduction sequence, Red where only sizes
of the garbage-free processes are counted. The space measure of a process P is defined as spmax(P) =
min{spmax(Red) | Red is a successful standard reduction of P}.

The reason for not counting the sizes directly before a garbage collection is that the calculus and
abstract machines may create bindings that may be garbage and would be immediately garbage collected
after the reduction step. Taking this garbage into account would distort the reasoning about measurement
in particular if these bindings have a large size (more information about this can be found in [8]). This
principle of measuring space in a small-step calculus is also used in [4].
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Definition 3.3. Let P1 and P2 be two well-formed processes such that one of the following holds.

1. P1↑ and P2↑, or

2. P1↓,P2↓, P1 ∼c P2; and ∀D ∈ PCtxt : spmax(D[P1])≤ spmax(D[P2])

Then P1 space-improves P2, written P1 ≤spmax P2. A program transformation PT−→ is a space-improvement

if for all processes P1,P2: P1
PT−→ P2 implies that P2 space-improves P1

Proposition 3.4. An example for a transformation that is a space-improvement is the following rule, if
executed as standard reduction (L are contexts that define the positions where a standard reduction can
be applied): (lbeta) : L[((λx.e1) e2)]→ νx.(L[e1]|x = e2),

4 Schedules

In the following we analyze the local space requirement of processes by considering an abstract model.
The assumptions underlying the abstraction is that the processes use shared memory for their local data
structures, that they may pause, start or stop at certain times, and that synchronization and communication
are actions that occur at certain time points between two processes.
Every process is abstractly modeled by its space requirements, given as a list of integers. In addition we
later add constraints expressing simultaneous occurrence of time points of different processes as well as
start-points and end-points of processes.

4.1 Schedules for Space

Definition 4.1. A (space-)process is a non-empty list of non-negative integers.
Let p1, . . . , pn be n processes. Then an index-schedule is a list of n-tuples, starting with (1, . . . ,1), ending
with (m1, . . . ,mn), where mi is the length of list pi for i = 1, . . . ,n, and if (a1, . . . ,an), (b1, . . . ,bn) are two
consecutive tuples in the index-schedule, then for all i: ai = bi, or ai +1 = bi.

An index-schedule I generates a usual schedule of n space-processes, which is a list of n-tuples
{(p1(a1), . . . , pn(an)) | (a1, . . . ,an) is a tuple from I}.

Definition 4.2. The space usage sp(S) of a schedule S is the maximum of the sums of the elements in the
tuples in S, i.e. sp(S) =max{∑m

i=1 ai | (a1, . . . ,am)∈ S}. The maximal necessary space spmax(p1, . . . , pn)
for n processes p1, . . . , pn is the minimum of the space usages of all schedules of p1, . . . , pn, i.e. min{sp(S)) |
S is a schedule for p1, . . . , pn}.

Example 4.3. For two processes [1,7,3], [2,10,4] the value spmax(.) is 11, by first running the second
one and then running the first. I.e. such a space-optimal schedule is [(1,2), (1,10), (1,4), (7,4), (3,4)].

4.2 Reduction of Schedules of Two Processes

We first consider optimization of the space of two processes since arguments are easier to grasp. The
idea is to first compute a standard form of processes and to define the optimization only on the standard
forms. First we define the standardization of processes using patterns. We argue that certain patterns in
processes permit to compute spmax from smaller processes.
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Definition 4.4. The trivial pattern M0 is ai = ai+1. There are two nontrivial patterns: The first pattern
M1 is ai ≤ ai+1 ≤ ai+2 and the second pattern M2 is ai ≥ ai+1 ≥ ai+2.
A pattern matches a process at index i, if for index i the conditions are satisfied.
If pattern M0 matches a process, then ai+1 can be removed from the process. If the pattern M1 or M2
match a process, then ai+1 can be removed.

Proposition 4.5. Let P1,P2 be two processes. If pattern M0 matches one of the processes, then let P′1,P
′
2

be the processes after removal of subsequent equal space entries. Then spmax(P1,P2) = spmax(P′1,P
′
2).

In the following we use (a:l) for adding a at the front of list l and l1++l2 for appending two lists.

Proposition 4.6. Let P1,P2 be two processes. If pattern M1 or pattern M2 matches one of the two pro-
cesses, then let P′1,P

′
2 be the processes P1,P2 modified as follows: If there are three consecutive numbers

a1,a2,a3 in P1 that match M1 or M2, then remove a2 from P1. The same for P2. Then spmax(P1,P2) =
spmax(P′1,P

′
2).

By exhaustive application we can assume that the pattern M0,M1 and M2 above do not occur in
processes which means that the processes are like a zig-zag:

Definition 4.7. If in a process P every strict increase is followed by a strict decrease and every strict
decrease is followed by a strict increase, then the process P is called a zig-zag process.

Now we show that there are more complex patterns that can also be used to reduce the processes
before computing spmax.

Definition 4.8. The following patterns M3,M4 are like stepping upstairs and downstairs, respectively.
M3 consists of a1,a2,a3,a4, with a1 > a2 < a3 > a4 and a1 ≥ a3,a2 ≥ a4. M4 consists of a1,a2,a3,a4,
with a1 < a2 > a3 < a4 and a1 ≤ a3,a2 ≤ a4. If M3 or M4 matches then eliminate a2,a3.

M3 : a1
a3

a2
a4

M4 : a4
a2

a3
a1

We show that the patterns can be used to restrict the search to special space-processes:

Lemma 4.9. Let P1,P2 be two space-processes, where patterns M0, M1, M2 are not applicable. If one of
the patterns M3,M4 matches one of the processes, then it is sufficient to check the shortened P′1,P

′
2 for the

space-minimum.

We show that it is sufficient to analyze processes where the first and last elements are valleys.

4.3 Standard Form of Processes

If the goal is to compute the optimal space, then there are several reduction operations on processes that
ease the computation and concentrate on the hard case. First we show that one-element processes can be
excluded, second that processes with start- or end-valleys can be reduced by omitting elements. Then we
show that through the use of 5 patterns M0 . . . ,M4 for reductions we can concentrate on special forms of
zig-zag-processes, so-called midzz.

Proposition 4.10. If P1 = [a1] and P2 = [b1, . . . ,bn], then spmax(P1,P2) = a1 + spmax(P2).

Proposition 4.11. Let P1 = [a1, . . . ,an], P2 = [b1 . . . ,bm] be two processes. If a1 is not a valley, then let
P′1 = [a2, . . . ,an]. Then for m′ = spmax(P′1,P2), we obtain spmax(P1,P2) = max(a1 +b1,m′).

The same holds (symmetrically) if P1 does not end with a valley.
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Lemma 4.12. We can assume that processes P1,P2 are both of length at least 3 for computing the optimal
space.

Definition 4.13. A process [a1,b1, . . . ,an,bn] or [a1,b1, . . . ,an] is a monotone-decreasing zig-zag (mdzz),
iff ai < b j for all i, j, and a1,a2, . . . is monotone increasing, and b1,b2, . . . is monotone decreasing.

A process [a1,b1, . . . ,an,bn] or [a1,b1, . . . ,an] is a monotone-increasing zig-zag (mizz), iff ai < b j for
all i, j, and a1,a2, . . . is monotone decreasing, and b1,b2, . . . is monotone increasing.

A process is midzz, if it is an mizz followed by an mdzz.

Typical graphical representations of an mizz and mdzz are:
b3

b2
b1

a1
a2

a3
a4

b1
b2

b3
a4

a3
a2

a1

Proposition 4.14. A process such that none of the patterns M0, M1, M2, M3, M4 matches, is a midzz.

Note that the definition of midzz permits the simplified case that the process is a mizz or mdzz.

Lemma 4.15. Let P be a process that starts and ends with peaks. Then the application of the patterns
M0, . . . ,M4 with subsequent reduction always produces a process that also starts and ends with peaks.

Lemma 4.16. Let P be a midzz-process, where no pattern M0, M1, M2, M3,M4 applies and which is of
length at least 3 and does not start nor end with a local peak: Then a midzz-process has one or two
global peaks, it has one or two global valleys, but not two global peaks and two global valleys at the
same time.

We show that the optimal space for 2 midzz schedules can be computed in polynomial time.

Algorithm 4.17. Algorithm for Left-Scan We describe an algorithm for 2 processes that makes a left-
scan until a valley is reached. This contributes to the computation of the optimal space of 2 midzz
processes P1,P2. In Pi, i = 1,2, the following indices are fixed:

Iends,i, which is the index in Pi of the global valley, if it is unique and the rightmost valley if there
are two minimal valleys.

Note that these two indices are neighbors for every i and for this algorithm we assume that both processes
P1,P2 are non-exceptional: They have at least three elements each and there are at least the peak and the
two valleys left and right of the peaks. The algorithm starts from left and proceeds to the right. Let a j be
the list for P1 and b j be the process-list of P2.

1. It starts at the left and initializes Max with a1 +b1. There are two indices I1, I2, which indicate the
current valley-positions in P1,P2, respectively during the run. Initially, I1 = 1, I2 = 1.

2. The step of the algorithm which is applied iteratively is as follows:

(a) If aI1+1 +bI2 ≤Max and I1 +2≤ Iends,1 then step forward: I1 is set to I1 +2. Goto (2).
(b) If aI1 +bI2+1 ≤Max and I2 +2≤ Iends,2, then step forward: I2 is set to I2 +2. Goto (2)

3. If none of the previous steps is possible, then there are several cases:

(a) I1 6= Iends,1 and I2 6= Iends,2, then Max has to be strictly increased: The new Max is Max :=
min{aI1+1+bI2 ,aI1 +bI2+1}. Due to the conditions, this new value is strictly greater than the
previous Max. Goto (2).
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(b) I1 = Iends,1 and I2 6= Iends,2, then strictly increase Max: Max = aI1 +bI2+1. Goto (2).
(c) I1 6= Iends,1 and I2 = Iends,2, then strictly increase Max: Max = aI1+1 +bI2 . Goto (2).
(d) If I1 = Iends,1 and I2 = Iends,2, then the stop condition is reached and Max is returned.

The right-to-left algorithm is the symmetric version and yields also a maximum value for the right part.

Algorithm 4.18. Computation of spmax for two processes First compute Maxle f t and Maxright using
the left-to-right scan and right-to-left scan and finally compute the maximum of Maxle f t and Maxright .

Remark 4.19. Note that the maximum usage of space may occur in indices that do not correspond to the
peaks. Intuitively, this happens, if the valleys close to the peaks are very deep.

Theorem 4.20. For two midzzs p1, p2, a space-optimal schedule can be constructed in polynomial time.
In addition the maximally necessary space can be computed in polynomial time.

Remark 4.21. The algorithm is presumably quadratic due to the pattern match. The other steps only
contribute a linear component to the complexity.

4.4 Calculation for Space Processes

Our interpreter CHFi calculates all possible reduction paths that may be caused by the nondeterminism
introduced by access-conflicts on MVars together with the complete space-profile for each path, which
may be helpful in analyzing and understanding space-behavior of CHF-programs. The program can be
downloaded here: www.ki.cs.uni-frankfurt.de/research/chfi .

Let us assume that we apply this only in the case that processes use disjoint sets of MVars, then their
use is deterministic and can be modeled without MVars. Hence our interpreter calculates only a single
reduction path per process. This enables us to immediately have space processes which can be optimized
using the algorithm that computes the optimal space. Now CHFi and our algorithm can be used together
in the following cases, where P1 and P2 are space processes that can be directly calculated using the CHFi
using the given corresponding CHF-programs:

1. Since CHFi computes the possible parallel executions using an eager strategy, not every possi-
ble parallel evaluation is considered in the interpreter. Using the single processes and the space
optimization algorithm, it is possible to compare the optimum with the (probably larger) CHFi-
computed space usage and so we propose to extend CHFi by an implementation of the space
optimization algorithm.

2. Let t be a transformation that is applied to processes P1 and P2, yielding P′1 and P′2. Let S be the
result of using the algorithm with P1 and P2 and S′ with P′1 and P′2 respectively.
If spmax(P1,P2)< spmax(P′1,P

′
2) then t is not a space improvement. If spmax(P1,P2)≥ spmax(P′1,P

′
2)

then t is a space improvement under conditions on the use of P1,P2 in the concurrent program.

4.5 Many Independent Processes

Let us assume in this section that there are n processes P1, . . . ,Pn for n≥ 2. We generalize the reduction
method for processes from 2 to n processes.

Proposition 4.22. For n processes P1, . . . ,Pn, the patterns M0,M1 . . . ,M4 can be applied to reduce pro-
cesses without changing the minimal space for scheduling the processes.

Proposition 4.23. For n processes P1, . . . ,Pn, we can assume that the processes do not start or end with
local peaks.

www.ki.cs.uni-frankfurt.de/research/chfi
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We describe an algorithm to compute the optimal space for a schedule of n midzz processes P1, . . . ,Pn,
that do not have peaks at the start or at the end and have at least 3 elements. For i = 1, . . . ,n there is a
unique peak peaki of Pi, which is of length at least 3. There are also two unique valleys: valleyi,le f t and
valleyi,right . These are the left and right neighbors of the corresponding peaks. Since we assumed that
the processes Pi are non-exceptional, every process has at least three elements each and there are at least
the peak and the two valleys left and right of the peak.

Algorithm 4.24. Algorithm for Left-Scan of n processes We describe an algorithm for n≥ 2 processes
that makes a left-scan until a valley is reached. This contributes to the computation of the optimal space
of n midzz processes P1, . . . ,Pn. The following indices in Pi are fixed:

Ii,ends, which is the index in Pi of the global valley, if it is unique and of the rightmost global valley
if there are two minimal valleys. global peak if there are two maximal peaks.

Note that for every i, these two indices are neighbors and for this algorithm we assume that all processes
Pi are non-exceptional: They are midzzs, have at least three elements each and they do not start or end
with a local peak.

1. It starts at the left and initializes Max with ∑i pi,1 There are indices Ii for i = 1, . . . ,m, which
indicate the current valley-positions in P1,P2, respectively, during the run. Initially, Ii = 1 for all i.

2. The step of the algorithm which is applied iteratively is as follows:
(Nondeterministically) select some j ∈ {1, . . . ,n} with p j,I j+1 + ∑k 6= j pk,Ik ≤ Max and I j + 2 ≤
I j,ends. If such an index j is selected, then the algorithm steps forward: I j is set to I j + 2 and
proceeds at (2). If there is no such j then go on to the next item.

3. If for all i, Ii = Iends,i, then the algorithm stops and returns the current Max.

4. We have to increase Max: For k = 1, ..n, if Ik = Iends,k, then Mk := ∞. If Ik < Iends,k then let
Mk := pIk+1 +∑h6=k ph,Ih . Let m be one of the indices such that Mm is minimal among all Mk. Then
Max := Mm and Im := Im +2. The other indices Ik are unchanged. Goto (2).

The right-to-left algorithm is the symmetric version and yields also a maximum value for the right part.

Algorithm 4.25. Computation of spmax for n processes First compute Mle f t and Mright using the left-
to-right and right-to-left scan and finally compute the maximum of Mle f t and Maxright .

A process in standard form is a midzz of length at least 3 and does not start or end with a local peak.

Theorem 4.26. Algorithm 4.25 computes the optimal space for schedules of n processes in standard
form.

Theorem 4.27. If there are N processes P1, . . . ,PN , then the optimal space and an optimal schedule can
be computed in (asymptotic) time polynomial in n, where n is the size of input.

4.6 Processes with Synchronizations

Definition 4.28. There may be various forms of synchronization restrictions. We will only use those
forms of fundamental restrictions:

1. simul(P1,P2, i1, i2) for process P1,P2 there are two indices i1, i2 that must happen simultaneously.

2. starts(P1,P2, i) process P1 starts at index i of process P2.

3. ends(P1,P2, i) process P1 end at index i of process P2.
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For a set R of restrictions only schedules are permitted that obey all restrictions. This set is also called
a set of deterministic restrictions. We also permit Boolean formulas over such basic restrictions. In this
case the permitted schedules must obey the formula.

We show that for n processes and a Boolean restriction there is an algorithm for computing the
optimal space and an optimal schedule that has a exponential complexity, where the exponent is b · n
where b is the number of basic restrictions and N is the number of processes.

Theorem 4.29. Let there be N processes and a set B of boolean restrictions where b is the number of
basic restrictions in B and the size of the input is n. Then there is an algorithm to compute the optimal
space and schedule of worst case asymptotic complexity of O(p(n) ·nO(b·N)), where p is a polynomial.

Corollary 4.30. Let there be N processes and a set B of Boolean restrictions where b is the number of
basic restrictions in B and the size of the input is n. Assume that the number N of processes and the size
of B is fixed. Then there is a polynomial algorithm to compute the optimal space and schedule.

Theorem 4.31. In the general case of synchronization restrictions, the problem of finding the minimal
space is NP-hard.

4.7 Limitations and Extensions

Our space optimization algorithm in its current form is not applicable to schedules for CHF-threads that
use shared data structures. One problem is that the common use of data structures cannot be controlled
in a call-by-need evaluation, in particular since the optimization algorithm rearranges the execution se-
quences. An extension to shared data is future work.

If all restrictions are deterministic, then it is currently open whether the optimization algorithm can be
adapted or extended to a polynomial time algorithm. In this case the input schedules are like a directed
graph with space-labels. This prevents to use the simple schedule-modifications for standardizing the
schedules and reducing the problem to zig-zag schedules.

If there are only deterministic restrictions, then there may a polynomial algorithm for optimizing
space in special cases, for example, the case where all schedules are synchronized in a fixed number of
time points, and where the number of time points is not restricted. The idea is to apply the optimization
algorithm in the sequence of time intervals.

The addition of deterministic restrictions also leads to the question whether the set of all restrictions
is impossible or not. For example, the definition of deterministic restrictions also permits sets of such
restrictions that are incompatible with a linear order of time.

Restrictions as Boolean formulas are perhaps too general, since the problem of finding a space opti-
mal schedule in this case is NP-hard, as shown above. The particular question whether such a Boolean
formula of restrictions permits at least one schedule appears also to be NP-hard.

5 Conclusion and Future Research

We developed a polynomial offline-algorithm that optimizes a given set of processes w.r.t. space that
is applicable to concurrent lazy-evaluating languages and others because of the generality of the input.
We showed that with a fixed set of synchronization-requirements the algorithm remains polynomial and
the general case is NP-complete. Future work is the study of additional examples of synchronization-
restrictions and the extension of the theory to prove space improvements in all contexts.
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