
Heuristic-Based GR(1) Assumptions Refinement

Davide G. Cavezza

Imperial College London, United Kingdom
d.cavezza15@imperial.ac.uk

Abstract. In order to synthesize automatically a controller satisfying
a specification given in GR(1) (a subset of linear temporal logic), the
environment, where the controller is expected to operate, needs to be
characterized by a sufficient set of GR(1) assumptions. Assumptions re-
finement procedures identify alternative sets of assumptions that make
controller synthesis possible. However, since assumptions spaces are in-
tractably large, techniques to explore a subset of them in a guided fashion
are needed. In particular, it is important to identify weakest assumptions
refinements to avoid overconstraining the environments and hence deem-
ing the controller to be inadequate.
The objective of my research is to devise a heuristic search approach that
uses estimates of goodness of explored assumptions to direct the search
towards better solutions. The work involves defining computable metrics
that capture quality features of assumptions (such as their weakness),
and automated ways to select a good subset of refinements in the search
procedure.

Background

Generalized reactivity of rank 1 (GR(1) for short) is a subset of linear tempo-
ral logic (LTL) largely used in specifying software systems, allowing to describe
safety and liveness properties of autonomous systems [8] and on-chip commu-
nication protocols [2]. Specifications in this subset are of particular interest in
the reactive synthesis community for the feasibility of automated controller syn-
thesis: given a GR(1) specification, it is possible to produce automatically an
implementation that satisfies it [2].

A model of a GR(1) specification consists of two interacting agents, an en-
vironment and a controller, playing an adversarial game: the controller acts
so as to satisfy a set of guarantees, and the environment aims at violating
one of the guarantees whilst satisfying a set of assumptions. Both guarantees
and assumptions are conjunctions of initial conditions (pure Boolean formulae,
like ¬grant, where grant is a Boolean variable), invariants (LTL formulae like
G(request→ Xgrant)), and fairness conditions (e.g. GFvalid). Automated con-
troller synthesis consists in computing a winning strategy for the controller.

In order to make synthesis possible, a winning controller strategy must ex-
ist; if not, the GR(1) specification is said to be unrealizable. Unrealizability is
generally related with an insufficient characterization of environment assump-
tions. Assumption refinement [5,7,1] consists in computing one or more sets



of assumptions that constitute a sufficient restriction to the environment’s al-
lowed strategies: this restriction aims at excluding those behaviors that make
the game unwinnable by the controller, called counterstrategies. A simple coun-
terstrategy of the specification with assumption GF¬req and guarantees G(cl →
¬val) ∧ GF(gr ∧ val) is given in Fig. 1.

s0
[cl → ¬val]
req = true
cl = true

s1
[req ∧ cl ∧ ¬val]

req = false
cl = true

s2
[¬req ∧ cl ∧ ¬val]

req = true
cl = true

Fig. 1. A counterstrategy. The top half of the circle contains the state’s name and a
Boolean expression representing a condition being true at that state; the bottom half
contains the valuations chosen by the environment at the next step of the computation.

Existing refinement approaches rely on automated counterstrategy computa-
tion [6] for guiding the search towards assumptions that make the specification
realizable. Given an unrealizable specification, a counterstrategy is computed
and a set of alternative assumptions that rule out such counterstrategy is gen-
erated; for each new assumption, realizability is checked again and in case the
specification is still unrealizable, a new counterstrategy is computed in an it-
erative fashion. The process is iterated until one or more alternative realizable
refinements are computed, or some computation budget is exhausted. The goal
is to obtain a set of weakest (that is, most permissive) refinements that ensure
the realizability of a specification [10].

Motivation

One of the most challenging problems in this field is dealing with the size of
the assumptions space. Given a GR(1) specification over n Boolean variables,
there are O(22

n

) different assumptions (modulo logical equivalence) that may
need to be searched in order to find the weakest ones. Since a full exploration of
this space is infeasible, only a subset of it is explored. In general, this is tackled
by requesting the user to provide one or more assumption templates, which are
then instantiated and only those instances get explored.

The main problem with these templates is that they rely on the user’s prior
knowledge of what causes unrealizability in a specification. A user-defined tem-
plate may force the procedure to overconstrain the environment by missing
weaker solutions, or the procedure may fail to find solutions at all. Hence there
is need for automated approaches that explore the search space in an intelligent
fashion, by leveraging additional information besides counterstrategies.

Contribution

Our goal is to devise a search strategy that learns upon which regions of the
search space should focus while looking for a solution. The work proceeds along



these three directions: (i) devising refinement techniques that select candidate
assumptions in a fully automated fashion, relieving users from the need of prior
knowledge; (ii) defining domain-independent quality metrics for assumption re-
finements, so as to allow a fair comparison between alternative assumptions gen-
erated by some technique or between techniques themselves; (iii) using quality
metrics to redefine the GR(1) assumptions refinement problem as a heuristic-
based search of the assumption space.

User-independent refinement techniques. Our work in [3] aims at mak-
ing the refinement procedure independent of user knowledge. It exploits Craig
interpolation to bypass the template selection step.

Craig interpolation [9] is an automated procedure that, given two logical ex-
pressions φ1 and φ2 unsatisfiable together, returns a third expression φi, called
interpolant, that is implied by φ1, implies ¬φ2, and only uses Boolean variables
that are common between φ1 and φ2. An interpolant is usually interpreted as
a logical expression explaining the reason why φ1 causes the violation of φ2. In
our approach, φ1 is a description of a counterstrategy leading to a guarantee vi-
olation, and φ2 describes the violated guarantee; interpolants between them are
used as a basis to generate assumption refinements that eliminate undesired en-
vironment behaviors. As an example, for the counterstrategy in Fig. 1 a Boolean
description of it is interpolated with the negation of the guarantees given above,
yielding the interpolant cl(s1)∧ cl(s2); this says that the cause of unrealizability
lies in keeping the cl variable always true in the looping states; a way to prevent
that is assuming GF¬cl, which is the inferred refinement.

Domain-independent quality metrics. The state of the art lacks metrics to
quantify the quality of produced specifications. This hinders a fair comparison
between approaches when their output differs with each other. Therefore, part of
our work has been focused on identifying reasonable domain-independent quality
metrics for GR(1) assumptions.

Since the weakness of assumptions is a common concern in assumptions re-
finement, we looked into ways for measuring this feature. In general, weakness is
defined as a non-quantitative feature connected to whether or not some formula
implies another: that is, φ1 is weaker than φ2 if φ2 implies φ1; no weakness notion
can be defined when the two formulae do not imply each other. Despite that,
there are cases in which a formula can be considered less restrictive than another
even if implication does not hold. To justify that, we consider the relationship
between linear temporal logic and infinite-word automata [12]: an infinite-word
automaton summarizes all behaviors that satisfy a given LTL assumption; in
some sense, the more paths in the automaton, the weaker the LTL assumption.

In recent work [4], we give theoretical ground to a new weakness measure
based on Hausdorff dimension [11]. We study the relationship between impli-
cation and Hausdorff dimension, and identify cases when Hausdorff dimension
is more or less discriminative than implication for comparing assumptions. We
observe on a benchmark that our measure discriminates more than implication,
providing a ranking of alternative assumptions even when implication does not
hold.



We are investigating other features for comparing assumptions, such as their
readability. For this we are considering metrics such as formula length and max-
imum logical operator nesting.
Heuristic search. Existing refinement procedures are incremental [7,1,3]: given
an initial unrealizable specification, containing an initial set of assumptions (pos-
sibly empty) and a set of guarantees, it first finds a set of alternative assumptions
that refine the initial ones, and then for each refinement it checks whether real-
izability is achieved; if not, the new assumption is further refined. In this way,
a refinement tree is built, which contains partial refinements as internal nodes
and realizable refinements as leaves.

Our investigation is focused on finding a good heuristic for internal nodes of
the tree, in order to explore them in decreasing order of goodness. The heuristic
needs to take into account the tradeoff between the final goal (finding weakest
assumptions that achieve realizability) and the expected number of further steps
needed to achieve a realizable solution: in general, the weaker a partial refine-
ment, the higher this number. In order to account for weakness, the heuristic
may embed the weakness measure defined as above. We are investigating ways
to estimate distance from realizability accurately.

Acknowledgments The support of the EPSRC HiPEDS CDT (EP/L016796/1)
is gratefully acknowledged.

References

1. Alur, R., Moarref, S., Topcu, U.: Counter-Strategy Guided Refinement of GR(1)
Temporal Logic Specifications. In: FMCAD. pp. 26–33. No. 1, IEEE (2013)

2. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’Ar, Y.: Synthesis of Reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

3. Cavezza, D.G., Alrajeh, D.: Interpolation-Based GR(1) Assumptions Refinement.
In: TACAS. pp. 281–297. Springer Berlin Heidelberg (2017)

4. Cavezza, D.G., Alrajeh, D., György, A.: A weakness measure for gr(1) formulae
To appear in FM 2018

5. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment Assumptions for
Synthesis. In: CONCUR, pp. 147–161. Springer Berlin Heidelberg (2008)

6. Konighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using
simple counterstrategies. In: FMCAD. pp. 152–159. IEEE (2009)

7. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE. pp. 43–50. ACM/IEEE (2011)

8. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for Human-in-the-Loop
Control Systems. In: TACAS. pp. 470–484. Springer Berlin Heidelberg (2014)

9. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV. pp. 1–13
(2003)

10. Seshia, S.A.: Combining Induction, Deduction, and Structure for Verification and
Synthesis. Proceedings of the IEEE 103(11), 2036–2051 (2015)

11. Staiger, L.: On the Hausdorff measure of regular omega-languages in Cantor space.
Tech. Rep. 1 (2015)

12. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. Logics for
concurrency pp. 238–266 (1996)


	Heuristic-Based GR(1) Assumptions Refinement

