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1 Introduction

LogicBlox [1] is a commercial system unifying the programming model for enterprise software development
that combines transactions with analytics by using a flavor of Datalog called LogiQL. LogiQL is a strongly-
typed, extended form of Datalog that allows coding of entire enterprise applications, including business logic,
workflows, user interfaces, statistical modeling, and optimization tasks.

The programming challenge for the Logic and Practice of Programming workshop is based on Role-Based
Access Control (RBAC) [2], and provides various problems whose solutions require the handling of (1) rules,
(2) queries, (3) updates, (4) type constraints, (5) other constraints, (6) optimization, (7) planning. In this
paper, we show that problems related to the first five can be completely handled, one case of optimization
can be handled with some caveats, and another can be written but does not run in the latest implementation;
and planning cannot be handled in LogiQL.

As an overview, LogicBlox is a state-based system with a persistent database that can be manipulated,
where one can add facts to the database, and rules and constraints to the state, and query the database
at any point in time. Rules and queries are readily handled by a logic programming system as expected.
Type constraints are also intrinsic to LogiQL as every predicate is typed. Constraints that are not type
constraints in this challenge can also be intuitively expressed. All of these are maintained in the presence of
updates. Optimization problems can also be handled, although we show that it requires a rewrite to fit in the
optimization framework, and has some restrictions. There is no capability for planning in LogiQL, however
we propose a syntax similar to optimization that requires an implementation. However, since LogicBlox is a
closed-source system, we do not expect that this would be implemented.

2 Implementation

We briefly introduce how LogicBlox works, and how it evaluates LogiQL. In LogicBlox, the system starts
with an empty state, where a state contains the fact database, rules and constraints. The state can be
manipulated by adding facts, rules or constraints, where more facts can be added automatically by the
rules due to the addition of facts, or the manipulation can be rejected due to the added facts not satisfying
constraints.

The programming system can be separated into three components: (1) installed blocks, (2) updates,
(3) queries. Installed blocks contain entity and predicate declarations, rules, and constraints. Updates are
inserts, updates or deletes to entities or predicates. Queries retrieve data from predicates or may introduce
a temporary rule to retrieve data. A sketch of how LogicBlox evaluates LogiQL as follows: (1) when a new
block is installed, all declarations in the block are installed, all rules in the block are evaluated bottom-up
with respect to the current state of the database, and all constraints are checked; if a constraint fails, the
installation of the block is rolled back; (2) for an update: all rules in all installed blocks are evaluated
bottom-up (incrementally whenever possible), then all type constraints are enforced by deleting facts of
a predicate related to an entity if that entity is deleted in an update, then if any other constraint is not
satisfied after the evaluation of the rules, the update is rolled back; (3) for a query, the results of the query
are retrieved as expected.



Next, we dig in to the components of RBAC, where we talk about only new concepts needed for each
component in order. The code for each component can be found in the appendix.

2.1 Core RBAC

Entity declarations and updates. This component first defines some types: Users, roles, and permis-
sions. Types are called entities in LogiQL, and entities can be implemented via entity and refmode (reference
mode) declarations. A user can then be added using update statements. All of the update functions for these
entities (AddUser, DeleteUser, AddRole, DeleteRole, AddPerm, DeletePerm) can be implemented us-
ing the entity declarations and update statements.

Relation declarations and updates. Next, user-role pairs, and permission-role pairs are introduced with
the constraint that each set of pairs is a subset of the cross-product of the entities. This is trivially satisfied
in LogiQL by the nature of the declaration of the set of pairs, where each argument’s type is provided by
a constraint. Therefore, e.g., any insert to a predicate verifies that the types of its arguments matches the
declaration, or else the update fails. If an entity of a type is removed, all predicate facts related to that
particular entity is removed as well. All of the update functions for these relations (AddUR, DeleteUR,
AddPR, DeletePR) can be implemented using these declarations.

Queries. All three queries in this component are easily implemented via logical queries.

2.2 Hierarchical RBAC

Rules. Reflexive-transitive closure of the role hierarchy can be defined via rules.

Complex constraints. So far we have only seen type constraints. More complex constraints can be
similarly implemented via the right arrow notation. For example, the acyclicity of the role hierarchy can be
enforced by constraints.

2.3 Static Separation of Duty (SSD)

SSD can be implemented using the concepts introduced above, and the hieararchical version only needs to
change the predicate to use the Hierarchical RBAC version rather than the Core.

2.4 Administrative RBAC

There are two types of new challenges in this component: optimization and planning. There is no planning
functionality in LogiQL, and optimization has restrictions. We show how to solve the MinRoleAssignments
and MinRoleAssignmentsWithHierarchy optimization problems with caveats, and suggest a syntax for
planning.

Optimization. In LogiQL, optimization is performed by translating the rules and variables into a math-
ematical program. Therefore, the variables and the predicate to solve for need to be defined, and there
are various restrictions on what the rules and constraints can look like. Then, the mathematical problem
is solved via an invocation of a solver using the facts of the current state. Note that this is significantly
different than how the system normally operates.

For the hierarchical version of the problem, the definition of rules needs to be recursive. However,
the preprocessor fails at translating the rules written this way, although a mapping seems obvious for this
example.

Planning. Planning problems in Administrative RBAC cannot be specified in LogiQL, but the lack of an
implementation (and the possibility of it being implemented being close to zero) notwithstanding, it is not
difficult to imagine that directives such as the ones used in optimization could be used to construct action
variables based on each action that can be taken, and a solver variable for the objective.
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A Core RBAC

e Definition of Users, Roles, Permissions (types):

User(u), UserName(u:n) -> string(n).
Role(r), RoleName(r:n) -> string(n).
Permission(p), PermissionName(p:n) -> string(n).

e Addition/removal of a user (update):

+UserName[_] = "tuncay".
-UserName[_] = "tuncay".

e Definition of user-role, permission-role pairs (relations):

UR(u,r) -> User(u), Role(r).
PR(p,r) -> Permission(p), Role(r).

e Addition/deletion of user-role, permission-role pairs (update):

+UR(u,r) <- UserName[u] = "tuncay", RoleName[r] = "admin".
-PR(p,r) <- PermissionName[u] = "write", RoleName[r] = "admin".

e AssignedRoles, UserPermissions, CheckAccess queries:

_(r) <- UserName[u] = "tuncay", UR(u,r).
_(p) <- UserName[u] = "tuncay", UR(u,r), PR(p,r).
_(true) <- UserName[u] = "tuncay", PermissionName[p] = "read", UR(u,r), PR(p,r).

B Hierarchical RBAC

e Role hierarchy definition:
RH(r1,r2) -> Role(rl), Role(r2).
e Definition of the reflexive-transitive closure of the role hierarchy, and AuthorizedRoles (rules):
Trans(rl,rl) <- Role(rl).
Trans(rl,r2) <- RH(r1,r2).
Trans(ril,r2) <- RH(r1,r3), Trans(r3,r2).
AuthorizedRoles(u,r1) <- UR(u,r), Trans(r,rl).

e Enforcement of the acyclicity of the role hierarchy (constraint):

Trans(p,p2), Trans(p2,p) -> p = p2.



C Static Separation of Duty

e Declarations of types and relations:

RoleSet(rs), RoleSetName(rs:n) -> string(n).
RoleSetRoles(rs,r) -> RoleSet(rs), Role(r).
SSDItem(s), SSDItemName(s:n) ->string(n).
SSDItemRoleSet[s] = rs -> SSDItem(s), RoleSet(rs).
SSDItemCardinality[s] = ¢ -> SSDItem(s), int(c).
SSDItem(s) —-> SSDItemRoleSet[s] = _

SSDItem(s) -> SSDItemCardinality([s] = _.

e Deletion of an SSDItem:
-SSDItem[s], -RoleSet(rs) <- SSDItemNameG@prev[s] = "s1", SSDItemRoleSet@prev([s] = rs.

Note here the use of @prev on the right hand side of the rule. For an update of a predicate that depends
on a fact of that predicate before the update starts, this annotation is utilized to avoid recursion. So
this rule says if there is an SSD item with the name s1 before the update is started, then delete that
SSD item.

e Adding/deleting role sets, updating cardinality:

+RoleSetRoles(rs,r) <- SSDItemName[s] = "s1", SSDItemRoleSet[s] = rs.
-RoleSetRoles(rs,r) <- SSDItemName[s] = "s1", SSDItemRoleSet[s] rs, RoleName[r] = "ri".
“SSDItemCardinality[s] = ¢ <- SSDItemName[s] = "s1".

The = symbol indicates an update of an existing functional value. We need to define the number of
items in a role set to support the constraints as follows.

e Constraints for the role count and cardinality relations:

RoleCount [s]
RoleCount [s]

rc -> SSDItem(s), int(rc).
rc <- agg<<rc = count()>>
SSDItemRoleSet[s] = rs, RoleSetRoles(rs,_).

SSDItemCardinality[s] c ->c >0, ¢ < RoleCount[s].
UserSSDRoleCount [u,s] = rc -> User(u), SSDItem(s), int(rc).
UserSSDRoleCount [u,s] = rc <- agg<<rc = count()>>
UR(u,r), SSDItemRoleSet[s] = rs, RoleSetRoles(rs,r).
UserSSDRoleCount [_,s] < SSDItemCardinalityl[s].

e Queries:

_(name) <- SSDItemName[_] = name.
_(r) <- SSDItemName[s] = "s1", SSDItemRoleSet[s] = rs, RoleSetRoles(rs,r).
_(c) <- SSDItemName[s] = "s1", SSDItemCardinalityl[s] = c.

e For Hierarchical RBAC, the only necessity is to change the rule defining UserSSDRoleCount to use
AuthorizedRoles instead of UR.



D Administrative RBAC

For the first problem, MinRoleAssignments, the total size of new UR’ and PR’ need to be minimized; however
ROLES’ can also contain new roles. There is no way to invent new values during optimization in LogiQL.
Therefore, we restrict the question so that ROLES’=ROLES. Then, we first define two predicates which define
whether a role subsumes another and the original permissions.

Subsume[r1,r2]
Subsume [r1,r2]
OrigPerms[u,p] =
OrigPerms[u,p] =

-> Role(rl), Role(r2), int(b).

<- Trans(ril,r2).

User(u), Permission(p), int(b).
<- AuthorizedRoles(u,r), PR(r,p).
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Then, we define the new variables and constraints for the optimization problem as follows, where NewPerms
are the user-permissions based on the NewUR and NewPR sets which are self-explanatory:

NewUR[u,r] = b -> User(u), Role(r), int(b), b >= 0, b <=1
NewPR[p,r] b -> Permission(p), Role(r), int(b), b >= 0, b <= 1.
lang:solver:variable(‘NewUR) .

lang:solver:variable(‘NewPR) .

NewPerms[u,p] = b -> User(u), Permission(p), int(b), b >= 0, b <= 1.
NewPerms[u,p] = bl, OrigPerms[u,p] = b2 -> bl = b2.
NewPerms[u,p] = bl, !OrigPerms[u,p] = _ -> bl = 0.

NewPerms [u, p] v, NewUR[u,rl1] = v1, Subsume[rl,r2] = v2, NewPR[p,r2] = v3 -> v >= vl * v2 * v3.

The directive lang:solver:variable defines the variables of the optimization problem. Finally, we define
the optimization function as follows:

NewURSize[] = nus <- agg<<nus=total(v)>>
v = NewUR[_,_].

NewPRSize[] = nps <- agg<<nps=total(v)>>
v = NewPR[_,_].

TotalSize[] = tc -> int(tc).

TotalSize[] = NewURSize[] + NewPRSize[].

lang:solver:minimal (‘TotalSize).

The directive lang:solver:minimal defines the predicate to solve for (by way of minimization).



