
New in CoCoA-5.2.4 and CoCoALib-0.99570
for SC-Square

John Abbott1, Anna M. Bigatti1, and Elisa Palezzato2

1 Dipartimento di Matematica, Università degli Studi di Genova, Italy
2 Department of Mathematics, Hokkaido University

Abstract. CoCoALib is a C++ software library offering operations on
polynomials, ideals of polynomials, and related objects. The principal
developers of CoCoALib are members of the SC2 project. We give an
overview of the latest developments of the library, especially those relat-
ing to the project SC2.

The CoCoA software suite includes also the programmable, interactive
system CoCoA-5. Most of the operations in CoCoALib are also acces-
sible via CoCoA-5. The programmability of CoCoA-5 together with its
interactivity help in fast prototyping and testing conjectures.

1 Introduction

We briefly recall what is described in [2] and [3]. The CoCoA project dates
back to 1987, with the first public release of its interactive system in 1989.
The main purpose of the project has always been to offer a convenient software
laboratory for studying Computational Commutative Algebra, especially ideals
of multivariate polynomials (e.g. Gröbner bases).

The CoCoA software has a modular design: its “mathematical expertise”
resides in the C++ software library [4], while the interactive system [7] uses
an interpreter which grants easy access to CoCoALib’s capabilities (without
requiring any knowledge of C++). All code is free and open source (under licence
GPL-3).

We give an overview of the latest developments of the library and of the
system (for the summer 2018 release). There are some new aspects of particular
interest to the project SC2. One feature is an implementation in CoCoALib of
a new efficient algorithm for computing the minimal polynomial ([5, 3]), and its
application to many operations on 0-dimensional ideals — a prototype imple-
mentation in CoCoA-5 was mentioned in [3]. In particular, in view of applications
to Cylindrical Algebraic Decomposition (CAD), we focus on factoring polyno-
mials over algebraic field extensions, and on evaluating good approximations for
their roots.

Another feature of interest to SC2 is the prototype interface for communica-
tion between CoCoALib and MathSAT (Section 4.1).

2 Improving usability of CoCoA for SC2

2.1 Timeout mechanism

A flexible “timeout” mechanism has been added to CoCoALib. It has a sim-
ple user interface, and can be used with several function calls to CoCoALib.
The exact behaviour of the timeout depends on the specific function: e.g. some
functions either return the correct and complete answer within the requested
time limit, or throw an exception to say that the result could not be computed
quickly enough; other functions, which compute approximations to some exact
value, return the best approximation which could be obtained within the given
time limit.

One purpose of the timeout mechanism is to allow a “speculative” approach
to solving: i.e. a potentially costly algorithm may be called with a time limit,
and in fortunate cases the answer is returned, but in the worst case of a vain
attempt only the specified amount of time has been consumed. For example,
one may attempt to find all real solutions to a 0-dimensional polynomial sys-
tem (internally this computes a Gröbner basis); if successful then the result is
valuable, but in some unlucky cases the Gröbner basis computation may be un-
reasonably slow, so we use the timeout mechanism to avoid the “black hole”, and
must then proceed without knowing what the solutions to the system are — this
technique has already been successfully employed inside CoCoALib itself: for
example, in testing primality of zero-dimensional ideals (which is called during
the factorization of polynomials over algebraic extensions, Section 3.1).

2.2 Towards Real Solving

We have implemented a prototype for GBasisRealSolveCore which removes
some non-real components during Gröbner basis computation. The critical in-
ternal operation is a quick function for “approximating” the real radical of a
polynomial. In this context “approximating” means applying quick heuristics
for determining whether a polynomial admits any real solutions; the heuristic
may respond true, false or uncertain. Factors which surely have no real roots
are removed, whereas those which do have or may have real roots are retained.

The heuristic employs two other ideas mentioned here: real root counting (via
Sturm Sequences), and timeout. First tests show the prototype working well.
Further studies are needed: there is a considerable body of work on real radicals,
where however the emphasis was on returning a complete answer (regardless of
overall computational cost) rather than an obtaining a quick “approximation”.

3 Algebraic extensions

CoCoALib has had for some time the capability to compute with polynomials
whose coefficients lie in an algebraic extension. The extension may be specified by
any maximal ideal, and does not require that a primitive element be furnished.

One important step for CAD is the computation of isolating intervals for the real
roots of a polynomial with coefficients in a (real) algebraic extension. CoCoALib
is not yet able to do this last operation, but we are developing the various
components necessary to reach this goal.

3.1 Factorization over algebraic extensions

In this section we describe an effective method for factorizing univariate poly-
nomials over finite field extensions. This method, based on the computation of
primary decompositions of zero-dimensional ideals, is described in the PhD the-
sis [10] of the third author, and took inspiration from [11] and [9]; this work
included a full implementation in CoCoA-5 language. It has now been stream-
lined and ported into CoCoALib-0.99570 (together with all functions derived
from the computation of the minimal polynomial — see [5]).

Example 1. Let L = F2[a]/M ∼= F8 be the base field, where M = 〈a3 + a + 1〉
is a maximal ideal, and consider f(x) = x5 + x+ 1 ∈ L[x], the polynomial to be
factorized.

/**/ FF_2 ::= ZZ/(2);

/**/ use S ::= FF_2[a];

/**/ M := ideal(a^3+a+1);

/**/ L := S/M;

/**/ use Lx ::= L[x];

/**/ f := x^5+x+1;

/**/ factor(f);

record[

RemainingFactor := (1),

factors := [x+(a^2+a+1), x+(a^2+1), x+(a+1), x^2+x+(1)],

multiplicities := [1, 1, 1, 1]

]

This is the algorithm implemented in CoCoALib. Let S = K[a1, . . . , am] be
a polynomial ring over a perfect field K, let M be a maximal ideal in S, let
L = S/M, and let f(x) ∈ L[x] be a univariate polynomial. The factorization of
f(x) is obtained by computing the primary decomposition of the idealM+〈f(x)〉
in the polynomial ring K[a1, . . . , am, x]; for the proof of correctness see [10].

Algorithm for Factorization over Algebraic Extension
Notation: let S = K[a1, . . . , am], M a maximal ideal in S, L = S/M
Input f(x) polynomial in L[x]

1 create the ring P = K[a1, . . . , am, x]
let φ : S −→ P , defined by ai 7→ ai
let ψ : P −→ L[x], defined by ai 7→ āi and x 7→ x

2 let MP = 〈φ(g) | g ∈ gens(M)〉 ⊆ P
let fP ∈ ψ−1(f), a representative of f in P
let J =MP + 〈fP 〉 ideal in P

3 compute the primary decomposition of J −→ Q1 ∩ · · · ∩Qs

4 compute gi, the monic generator of ψ(Qi) in L[x] — note: L[x] is PID

5 compute hi = rad(gi) and let mi = deg(gi)
deg(hi)

Output LC(f) ·
∏s

j=1 h
mi
i , the factorization of f in L[x]

Example 2. The internal computation for Example 1, following the algorithm
above, actually performs these steps:

/**/ use P ::= FF_2[a, x];

/**/ phi := PolyAlgebraHom(S, P, [a]);

/**/ psi := PolyRingHom(P, Lx, CanonicalHom(FF_2 , L),

[RingElem(Lx ,"a"), RingElem(Lx ,"x")]);

/**/ J := ideal(a^3+a+1) + ideal(x^5+x+1);

/**/ PrDec := PrimaryDecomposition(J); PrDec;

[ideal(a^3 +a +1, x^5 +x +1, x^2 +x +1),

ideal(x^3 +x^2 +1, a^3 +a +1, a^2*x +a*x^2 +a^2 +a),

ideal(x^3 +x^2 +1, a^2 +a*x +x^2 +a, a*x^2 +x +1),

ideal(x^3 +x^2 +1, a^2 +a*x +x^2 +a, a*x^2 +x)]

/**/ [ReducedGBasis(ideal(apply(psi ,gens(Q)))) | Q in PrDec];

[[x^2 +x +(1)], [x +(a^2+a+1)], [x +(a^2+1)] , [x +(a+1)]]

and these are indeed the (square-free) factors of f .
Next we see a call to factor in an algebraic extension which is given by a

non-principal, maximal ideal, L = Q[a, b]/〈a2 − 3, b2 − ab− 4〉,

/**/ use S ::= QQ[a, b];

/**/ M := ideal(a^2-3, b^2-a*b-4);

/**/ IsMaximal(M); // check that M is a maximal ideal

true

/**/ L := S/M;

/**/ use Lx ::= L[x];

/**/ factor(x^6 +(b^2)*x^4 +(-55*b^2+80)*x^2 +(315*b^2 -528));

record[

RemainingFactor := (1),

factors := [x^2 +(3*b^2), x +(-b), x +(b)],

multiplicities := [1, 2, 2]

]

3.2 Counting real roots

We have implemented a function for computing a primitive Sturm sequence of a
given (univariate) polynomial with rational coefficients. Sturm sequences enable
one to compute easily the number of real roots a given (univariate) polynomial
has in a given real interval; in particular, they can be used to tell whether a
given (univariate) polynomial has any real roots. CoCoA also offers a function
to count the number of real roots:

/**/ W := product ([x-k | k in 1..20]); //Wilkinson ’s polynomial

/**/ W2 := W + (1/7402570310)*x^19;

/**/ NumRealRoots(W2);

18

/**/ W3 := W + (1/7402570311)*x^19;

/**/ NumRealRoots(W3);

20

The interactive CoCoA-5 system offers a suite of interpreted functions for
computing tight isolating intervals for real roots. This code is not yet available in
CoCoALib, but we are planning to port it (though this lengthy task will likely be
completed after the end of this first SC2 project). While a list of isolating intervals
gives more explicit information than a Sturm sequence, it is also generally more
costly to compute.

3.3 Bounds on roots of polynomials

CoCoA now also offers a collection of functions for obtaining a good upper bound
for the absolute value of every complex root of a given (univariate) polynomial.
The main function strikes an automatic balance between speed of computation
and tightness of the computed bound; an optional second argument lets the
caller choose a different balance. A root bound gives less information than a
Sturm sequence but can be computed faster, and may sometimes give enough
information to decide unsolvability. A root bound can be computed for any non-
constant (univariate) polynomial, but gives no indication whether any of the
roots is real.

/**/ H := HermitePoly (50, x); // largest real root is 9.18

/**/ RootBound(f); // fair compromise for speed/accuracy

295/32 // 9.22

/**/ RootBound(f,0); // fastest , 0 iterations

237/8 // 29.625 (quite loose)

/**/ RootBound(f,1); // still fast , 1 iteration

115/8 // 14.375 (better than 0 iters)

3.4 Interval arithmetic, and range of a polynomial

We have recently added to CoCoALib a prototype suite of functions for “interval
arithmetic” on closed real intervals with rational endpoints. The suite includes
a more advanced function for evaluating a given (univariate) polynomial with
rational coefficients (or interval coefficients) over a given interval. The result is
another interval, comprising effectively a lower bound for the minimum and an
upper bound for the maximum for the polynomial over the given interval. In
general, the result contains strictly the true interval of reachable values: in fact,
the true range interval may have irrational end points; e.g. if f = x3 − x then
its range over the interval [−1, 1] has both end points being irrational, namely

[− 2
√
3

9 , 2
√
3

9]. Consequently, when using intervals with rational end points only
an approximation to the correct answer can be produced.

We are still studying the compromise between speed of computation and
tightness of the resulting interval. Naturally, it can help answer some questions of
solvability where both the variable and the value of the polynomial are limited to
finite intervals. One future aim is to use this suite to allow isolation of real roots
of polynomials whose coefficients are real algebraic numbers (each represented
as a small isolating interval together with the minimal polynomial).

As an example we can compute the range of values of the 10-th Chebyshev
polynomial evaluated on the interval I = [−1, 1]. From the theory we know that
the true answer is the interval [−1, 1]; our current prototype implementation
produces a fair approximation, being the wider interval from −1.15 to 1.12. The
Chebyshev polynomials are an interesting test case because they have many local
maximums and minimums, which become global maximums and minimums when
we restrict the domain to the interval I. We do not give an explicit example in
CoCoA-5 since the user interface is not yet settled.

4 Interface MatSAT↔CoCoA-5

In [3] we described the first steps in the communication between CoCoALib
and MathSAT. Some developments followed, in close collaboration with Alberto
Griggio.

The construction in CoCoALib of polynomial rings with user defined order-
ings (such as elimination orderings) has been reorganized so that it makes fewer
repeated checks on the admissibility of the term-ordering. This is not a problem
in the usual context of Commutative Algebra, where the cost of the computation
of a Gröbner basis exceeds by far the time spent in the preliminary construction
of the polynomial ring. But the first collection of examples arising from Math-
SAT computations, highlighted that this is indeed an issue when we deal with
many indeterminates and relatively simple Gröbner basis computations.

We are now designing an automatic conversion to CoCoA-5/CoCoALib of
these examples, providing a wide spectrum of cases to test and develop the new
functionality given by GBasisRealSolveCore (see Section 2.2).

The communication between CoCoALib and MathSAT has been improved,
so the overhead for the data conversions is now negligible.

We wrote a prototype CoCoA-5 package using MSatLinSolve, the first Math-
SAT function in CoCoA-5 (see [3]) for the computation of Gröbner fan as an
alternative to the call to GFanRelativeInteriorPoint (part of the communica-
tion between CoCoALib and Gfanlib [8]). This is an intriguing application, even
though it is not (yet) competitive, because the non-trivial code preparing the
input for MSatLinSolve is written in the interpreted language of CoCoA-5.

References

1. J. Abbott, Fault-Tolerant Modular Reconstruction of Rational Numbers,
J. Symb. Comp. 80P3, pp. 707–718, 2017.

2. J. Abbott, A.M. Bigatti, CoCoA and CoCoALib: Fast prototyping and flexible C++
library for Computations in Commutative Algebra Proc. 1st Workshop on Satisfi-
ability Checking and Symbolic Computation, SC-Square 2016, CEUR Workshop
Proceedings 1804, pp. 1–3, 2016.

3. J. Abbott, A.M. Bigatti, CoCoA and CoCoALib: Fast prototyping and flexible C++
library for Computations in Commutative Algebra Proc. 2nd Workshop on Satis-
fiability Checking and Symbolic Computation, SC-Square 2017, CEUR Workshop
Proceedings 1974, pp. 1–6, 2017.

4. J. Abbott, A.M. Bigatti, CoCoALib: a C++ library for doing Computations in
Commutative Algebra Available at http://cocoa.dima.unige.it/cocoalib

5. J. Abbott, A. Bigatti, E. Palezzato, L. Robbiano, Computing and Using Minimal
Polynomials, arXiv:1704.03680, 2017.

6. J. Abbott, A. Bigatti, L. Robbiano, Ideals modulo p, In preparation.
7. J. Abbott, A.M. Bigatti, L. Robbiano CoCoA: a system for doing Computations

in Commutative Algebra Available at http://cocoa.dima.unige.it/

8. A.N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties. Avail-
able from http://home.math.au.dk/jensen/software/gfan/gfan.html

9. M. Kreuzer and L. Robbiano, Computational Linear and Commutative Algebra,
Springer, Heidelberg 2016.

10. E. Palezzato, Minimal Polynomials, Sectional Matrices, and Applications; PhD.
thesis, Università degli Studi di Genova, 2017.

11. Sun Y. and Wang D., Efficient algorithm for factoring polynomials over algebraic
extension fields, Sci. China Math., 56, 1155-1168, 2013.

