
HCVS 2018

Towards Coinductive Theory Exploration in Horn
Clause Logic: Extended Abstract
Ekaterina Komendantskayaa,1,3 Yue Lia,2,3
a School of Mathematical and Computer Sciences Heriot-Watt University UK

Coinductive proof methods have seen major developments in the last decade, and are
reaching the point of maturity when coinductive proofs are used and implemented on par
with inductive proofs. This step-change is facilitated by results from several research ar-
eas: coalgebra, fixed point theory, type theory, proof theory, automated deduction. In this
abstract, we discuss a new coinductive approach to Horn clause logic.

A Horn clause fragment of FOL, named fohc, is given by the following syntax:

D ::= A | G⊃ D | D∧D | ∀Var D
G ::=> | G∧G | G∨G | ∃Var G

where A stands for the set of atomic first-order formulae of a given signature, and D and G
– for sets of definite Horn clauses and definite Horn goals, respectively. A theory Γ is a set
of D-formulae.

First coinductive interpretation to Horn clause logic was given by Apt and van Emden
in the 80s: The greatest complete Herbrand model for a theory Γ is the largest set of finite
and infinite ground terms coinductively entailed by Γ’s clauses.

Example 0.1 Consider the three Horn clause theories Γ1, Γ2 and Γ3 in Table 1, None of
them has a meaningful inductive interpretation. However, they all have greatest (complete)
Herbrand models, as Table 1 shows. These models define their coinductive interpretation.
Notice how, depending on the clause structure, the models will differ: they may be given by
finite sets of finite atomic formulae (for Γ1), or infinite sets of finite and infinite formulae
(Γ2), or finite sets of infinite formulae (Γ3). Note that Γ3 is a prototypical example of
a productive stream definition [2]: just substitute f by a stream constructor cons(a,) to
obatin a definition of the infinite stream of a’s. Only one infinite term satisfies Γ3.

It has always been problematic to match the greatest complete Herbrand models with
equally rich operational semantics. Infinite (SLD)-resolution derivations correspond to

1 Email: ek19@hw.ac.uk
2 Email: yl55@hw.ac.uk
3 This Abstract reports the work in progress. The work is supported by EPSRC grant EP/N014758/1.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ek19@hw.ac.uk
mailto:yl55@hw.ac.uk

Komendantskaya, Li

hohc theory: Γ1 : Γ2 : Γ3 :
1. ∀x, p(x)⊃ p(x) 2. ∀x, p(f x)⊃ p(x) 3. ∀x, p(x)⊃ p(f x)

model: {p(a)} {p(a), p(f(a)),p(f(f(a)), . . . ,p(f(f . . .)} {p(f(f . . .)}

Table 1
Examples of greatest (complete) Herbrand models for fohc theories Γ1, Γ2, Γ3. We add an arbitrary constant symbol a

to the signature, in order to have ground instances of formulae in the models.

coinductive models. They may be terminated if a loop invariant (also known as coinductive
invariant) is found. The problem is then to automate the discovery of coinductive invari-
ants. To illustrate how difficult this may prove to be, consider the following example. Given
our three theories Γ1, Γ2 and Γ3, suppose we want to prove a property p(a) by coinduction.

Example 0.2 For Γ1, we will observe the following resolution steps:

p(a)
apply 1−→ p(a)

apply CI1−→ X

Clearly, p(a) is the coinductive invariant (denoted as CI1 = p(a)), the derivation is cyclic,
and we can terminate soundly by noting this fact. (Note how Γ1’s model in Table 1 agrees
with this conclusion).

However, it is entirely possible that an environment Γ entails p(a), yet p(a) does not
occur as an invariant in its infinite derivation.

Example 0.3 Consider Γ2. Trying to replicate the coinductive proof of Example 0.2 with
coinductive invariant p(a) would not work, as the coinductive invariant will not apply at
any stage (the derivation does not have cycles):

p(a)
apply 2−→ p(f a)

apply 2−→ p(f f a)−→ . . .

A valid (as well as useful) coinductive invariant in this proof is CI2 = ∀x, p(x). So,
given a suitable calculus, we can first coinductively prove Γ2 ` ∀x, p(x), and then obtain
Γ2 ` p(a) as a corollary. Note, however, that the formula ∀x, p(x) does not satisfy the
syntax of a goal formula in fohc.

Generally, discovering a suitable coinductive invariant may be a difficult task. Consider
the following example, inspired by a similar example in [1].

Example 0.4 Suppose we want to prove p(a) given the theory Γ4 :
4.1. ∀x, p(f x)∧q(x)⊃ p(x)
4.2. q(a)
4.3. ∀x,q(x)⊃ q(f x)

It will give the following resolution trace:

p(a)
apply 4.1−→ p(f a)∧q(a)

apply 4.2−→ p(f a)
apply 4.1−→ p(f f a)∧q(f a)

apply 4.3−→ . . .

The coinductive invariant CI1 = p(a) will not apply here, despite p(a) being in the model of
Γ4. Actually, neither CI1 = p(a) nor CI2 = ∀x, p(x) would work as a suitable coinductive
invariant. However, given a suitable calculus, we would be able to coinductively prove
Γ4 ` ∀x,q(x)⊃ p(x), from which Γ4 ` p(a) can be proven as a corollary. Again, note that
CI3 = ∀x,q(x)⊃ p(x) cannot be a goal formula in fohc, so we will need a different language
for reasoning about coinductive invariant of the proof of Γ4 ` p(a).

2

Komendantskaya, Li

hohh: Higher-order
Hereditary Harrop Logic

fohh: First-order
Hereditary Harrop Logic

hohc: Higher-order
Horn Clause Logic

fohc: First-order
Horn clause logic

99 eeOO

ff 88

co-hohh: Coinductive
Higher-order

Hereditary Harrop Logic

co-fohh: Coinductive
First-order

Hereditary Harrop Logic

co-hohc: Coinductive
Higher-order

Horn Clause Logic

co-fohc: Coinductive
First-order

Horn clause logic

77 ggOO

gg 77

Fig. 1. Left: uniform proof diamond by Miller et al. Right: coinductive uniform proof diamond proposed in this
paper. The arrows show syntactic extensions from first-order to higher-order, from Horn to hereditary Harrop clauses.

Finding a suitable coinductive invariant in a goal-directed proof search is actually a
difficult task, which may require coming up with recursive terms on top of finding a suitable
shape for the coinductive invariant, as the next example shows:

Example 0.5 Given a theory Γ3 from Table 1 the goal-directed search by resolution will
result in a derivation:

p(x)
apply 3,[x 7→ f (x1)]−→ p(x1)

apply 3,[x1 7→ f (x2)]−→ p(x2)−→ . . .

None of the sub-goals can serve as a suitable coinductive invariant. The correct coinductive
invariant in this derivation is p(fix λx. f x), where the fixpoint term fix λx. f x should be
intuitively understood as a recursive definition for an infinite term (f (f . . .)). Compare also
with Γ3’s model in Table 1, and its only inhabitant p(f(f . . .).

Thus, we would like to coinductively prove Γ3 ` p(fix λx. f x) in a suitable logic, and
then get Γ3 ` ∃x, p(x) as a corollary. Yet again, p(fix λx. f x) is not a formula of fohc,
because of the syntax of fix λx. f x.

Taking the assumption that a theory Γ and a formula F are expressed in the Horn clause
fragment of first-order logic, we can show that there are four different classes of coinduc-
tive proofs for Γ ` F , and they are all characterised by the logic in which the coinductive
invariant of the goal-directed derivation of F can be expressed and proven. We take the uni-
form proofs of Miller, Nadathur et. al [3], and in particular the four uniform proof logics
fohc, fohh, hohc, hohh (see Figure 1), as a basis for our classification of the expressivity of
the coinductive invariants. For example, coinductive invariant of Example 0.2 belongs to
fohc, coinductive invariants of Examples 0.3 and 0.4 – to fohh, and the coinductive invari-
ant of Example 0.5 – to fohc enriched with fixpoint terms. Horn clauses defining irregular
streams will require the syntax of hohh with fixpoint terms. This classification provides
foundations for automated exploration of coinductive invariants for proofs with coinduc-
tive theories expressed in Horn clause logic.

References
[1] P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond. Proof relevant corecursive resolution. In FLOPS’16, pages

126–143. Springer, 2016.

[2] E. Komendantskaya and Y. Li. Productive corecursion in logic programming. J. TPLP (ICLP’17 post-proc.), 17(5-
6):906–923, 2017.

[3] Dale Miller and Gopalan Nadathur. Programming with Higher-order logic. Cambridge University Press, 2012.

3

	References

