
Backwards and Forwards with Separation Logic

Callum Bannister1,2, Peter Höfner1,2, and Gerwin Klein1,2

1 Data61, CSIRO, Sydney, Australia
2 Comp. Sci. and Engineering, University of New South Wales, Sydney, Australia

Abstract. The use of Hoare logic in combination with weakest pre-
conditions and strongest postconditions is a standard tool for program
verification, known as backward and forward reasoning. In this paper
we extend these techniques to allow backward and forward reasoning for
separation logic. While the former is derived directly from the standard
operators of separation logic, the latter uses a new one. We implement
our framework in the interactive proof assistant Isabelle/HOL, and en-
able automation with several interactive proof tactics.

1 Introduction

The use of Hoare logic [21,19] in combination with weakest preconditions [16]
and strongest postconditions [19] is a standard tool for program verification,
known as backward and forward reasoning. These techniques are supported by
numerous tools, e.g. [37,36,6,1,33].

Although backward reasoning with weakest preconditions is more common
in practice, there are several applications where forward reasoning is more con-
venient, for example, for programs where the precondition is ‘trivial’, and the
postcondition either too complex or unknown. Moreover, “calculating strongest
postconditions by symbolic execution provides a smooth transition from test-
ing to full verification: by weakening the initial precondition one can make the
verification cover more initial states”. [20]

Hoare logic lacks expressiveness for mutable heap data structures. To over-
come this deficiency, based on work of Burstall [8], Reynolds, O’Hearn and others
developed separation logic for reasoning about mutable data structures [38,40].
Separation logic allows for local reasoning by splitting memory into two halves:
the part the program interacts with, and the part which remains untouched,
called the frame.

The contribution of this paper is two-fold:
(i) Generic techniques for backward and forward reasoning in separation logic.

A kind of backward reasoning was already established by Reynolds [40]. Al-
though he states that for each command rules for backward reasoning “can
be given”, he only lists rules for the assignment of variables (called mutation
in [40]), and for the deallocation of memory. Reynolds does not present a
general framework that can transform any given Hoare triple specification –
enriched with a frame – into a rule that is ready to be used for backward rea-
soning. We present such a general framework. Since it is based on separation

2 Callum Bannister, Peter Höfner, and Gerwin Klein

algebras [10] it not only applies to the standard heap model of separation
logic, but to all instances of this algebra.
Using similar algebraic techniques we also derive a generic technique for
forward reasoning in separation logic. To achieve this we introduce a new
operator, separating coimplication, which algebraically completes the set of
the standard operators of separating conjunction, separating implication,
and septraction. To the best of our knowledge, we are the first who provide
a technique for strongest postconditions in separation logic.

(ii) Proof tactics for the developed techniques in Isabelle/HOL [37].
To increase automation for both backward and forward reasoning we mecha-
nise this framework in the interactive proof assistant Isabelle/HOL and pro-
vide automated proof tactics. In particular, we provide tactics that make it
manageable to interactively reason about the separating implication, which
is widely considered unwieldy [5,32].

To show feasibility of our techniques we not only present standard examples such
as list reversal, but also look at a larger case study: a formally verified initialiser
for component-based systems built on the formally verified seL4 microkernel [28].
A proof of this initialiser using ‘standard’ manual separation logic reasoning can
be found in the literature [7]. Redoing parts of this proof illustrates the strength
of our tactics, gives an indication of how much automation they achieve, and
shows by how much they reduce manual proof effort.

2 Notation

In this section we present the notation of Isabelle/HOL [37] that deviate from
standard mathematical notation.

We denote the space of total functions by ⇒, and write type variables as ’a,
’b, etc. The option type

datatype ’a option = None | Some ’a

adjoins a new element None to type ’a. Hence ’a option models partial functions.
Separation logic assertions typically are functions from the state to bool, i.e.,

’s ⇒ bool. We lift the standard logical connectives ∧, ∨, ¬, and −→ point-wise
to the function space in the spirit of standard separation logic, e.g. (P =⇒ Q) =

(∀ s. P s −→ Q s).
For the example programs in this paper, we use a deterministic state monad.

Since we are interested in distinguishing failed executions we add a flag in the
style of other monadic Hoare logic frameworks [14]. This means, a program
execution has the type ’s ⇒ ’r × ’s × bool, i.e., a function that takes a state
and returns as result a new state, and a flag indicating whether the execution
was successful (true) or not (false). Sequential composition, denoted by >>=, is
defined as

f >>= g ≡
λs. let (r’, s’, c) = f s; (r’’, s’’, c’) = g r’ s’

in (r’’, s’’, c ∧ c’)

Backwards and Forwards with Separation Logic 3

Since our theory is based on abstract separation algebra (see below), we can
change the underlying monad without problems. In particular we use both a
nondeterministic state monad and an error monad for our case study.
For larger programs we use do-notation for sequential composition, e.g.

do { x ← f; g x; h x }

3 Hoare Logic and Separation Logic

Hoare logic or Floyd-Hoare logic [21,19] is the standard logic for program anal-
ysis, based on the eponymous Hoare triple: {|P|} m {|Q|} (originally denoted by
P {m} Q), where P and Q are assertions, called pre- and postcondition respec-
tively, and m is a program or command.

Initially, Hoare logic considered partial correctness only [21], ignoring termi-
nation. In our monadic context, where we identify non-termination and failed
execution, this translates to

{|P|} m {|Q|} ≡ ∀ h. P h −→ (let (r’, h’, c) = m h in c −→ Q r’ h’)

If the precondition P holds before the execution of m, and m terminates success-
fully (the flag c is true) then the postcondition Q holds afterwards. Successful
termination needs to be proven separately. If m fails to terminate successfully un-
der P, i.e., by non-termination or other program failure, then any postcondition
forms a valid Hoare triple.

Total correctness combines termination with correctness.

{|P|} m {|Q|}t ≡ ∀ h. P h −→ (let (r’, h’, c) = m h in Q r’ h’ ∧ c)

For total correctness, whenever P holds, m will terminate successfully, and the
result satisfies Q.

Example 1. Assume the function delete_ptr p, which clears the allocated mem-
ory pointed to by p, and fails if p does not point to any location at all or to an
address outside the current heap.

Let emp be the empty heap. Then the triple {|p 7→ |} delete_ptr p {|emp|} de-
scribes the situation where the heap has a single location p, and is otherwise
empty.3 After succesful termination the heap is empty.

However, this specification is limiting since it only allows one particular heap
configuration as precondition. Consider two further scenarios, namely heap con-
figurations where p does not point to any location in the heap (e.g. the empty
heap), and heap configurations with additional memory.

In the first scenario, delete_ptr p fails. Hence {|emp|} delete_ptr p {|Q|} would
hold under partial correctness for any Q, but not under total correctness. In
the second scenario, with additional memory, that additional memory remains
unchanged during the execution of delete_ptr p. This is the case separation
logic deals with. ⊓⊔

3 We will explain the heap model in detail later in this section.

4 Callum Bannister, Peter Höfner, and Gerwin Klein

Separation logic (SL) (e.g. [40]) extends Hoare logic by assertions to express
separation between memory regions, which allows reasoning about mutable data
structures. It is built around separating conjunction _*_, which asserts that a
heap can be split into two disjoint parts where its two argument predicates hold.

The usual convention in SL is to require that even in partial correctness
the program is abort -free, in particular for pointer access. The semantics of our
slightly more traditional setting does not distinguish between non-termination
and failure. Hence partial correctness will not guarantee pointer safety, while
total correctness will.

A standard ingredient of SL is the frame rule

{|P|} m {|Q|}

{|P * R|} m {|Q * R|}

The rule asserts that a program m that executes correctly in a state with a
small heap satisfying its precondition P, with postcondition Q, can also execute
in any state with a larger heap (satisfying P * R) and that the execution will not
affect the additional part of the state. Traditionally, it requires as side condition
that no variable occurring free in R is modified by m. In our shallow monadic
setting, no such variables exist and hence no side condition is required. We differ
from tradition by proving that the frame rule holds for particular specifications
rather than over the program syntax as a whole. This allows us to talk about
programs that are not strictly local, but may be local with regards to a particular
precondition. When local specifications are given for the primitive operations of
a program, it is easy to compose them to show the locality of larger programs.

SL can be built upon separation algebras, which are commutative partial
monoids [10]. Such algebras offer a binary operation + and a neutral element 0,
such that whenever x + y is defined, + is commutative and associative, and
x + 0 = x. Our automation framework is built upon an existing Isabelle/HOL
framework [29,30], which uses a total function + together with another com-
mutative operation ## that weakly distributes over + [29], and expresses the
aforementioned disjointness.

Using these operations, separating conjunction is defined as

P * Q ≡ λh. ∃ h1 h2. h1 ## h2 ∧ h = h1 + h2 ∧ P h1 ∧ Q h2 (1)

which implies associativity and commutativity of *.
The standard model of SL, and separation algebra, uses heaps. The term

(p 7→ v) h indicates that the pointer p on heap h is allocated and points to
value v. The term p 7→ indicates an arbitrary value at location p.

A heap is a partial function from addresses (pointers) to values. The operation
h1 ## h2 checks whether the domains of h1 and h2 are disjoint. When h1 ## h2

evaluates to true, h1 + h2 ‘merges’ the heaps by forming their union. The formal
definitions are straightforward and omitted here.

In separation algebras, the operations ## and + define a partial order, which
formalises subheaps:

h1 � h ≡ ∃ h2. h1 ## h2 ∧ h1 + h2 = h

Backwards and Forwards with Separation Logic 5

SL usually leads to simple proofs of pointer manipulation for data structures.
Classical examples of such data structures are singly- and doubly-linked lists,
trees, as well as directed acyclic graphs (DAGs) [39,22].

Separating implication P −→* Q, also called magic wand, is another operator
of SL. When applied to a heap h it asserts that extending h by a disjoint heap,
satisfying P, guarantees that Q holds on the combined heap:

P −→* Q ≡ λh. ∀ h1. h ## h1 ∧ P h1 −→ Q (h + h1) (2)

Ishtiaq andO’Hearn use this operator for reasoning in the presence ofsharing [25].
The operations * and −→* are lower and upper adjoints of a Galois connection,

e.g. [15]. This relationship implies useful rules, like currying (P * Q =⇒ R) =⇒

(P =⇒ Q −→* R), decurrying (P =⇒ Q −→* R) =⇒ (P * Q =⇒ R), and modus
ponens Q * (Q −→* P) =⇒ P. As we will see, separating implication is useful for
backward reasoning.

The literature uses another ‘basic’ operator of SL, septraction [43]:

P −� Q ≡ λh. ∃ h1. h1 ## h ∧ P h1 ∧ Q (h1 + h) (3)

It is the dual of separating implication, i.e., P −� Q = ¬(P −→* ¬Q), and ex-
presses that the heap can be extended with a state satisfying P, so that the
extended state satisfies Q. Septraction plays a role in combining SL with rely-
guarantee reasoning [43], and for shared data structures such as DAGs [22].

4 Separating Coimplication

While separating conjunction, separating implication, and septraction, as well as
their relationships to each other are well studied and understood, one operation
is missing in SL.

We define separating coimplication, denoted by ❀*, as

P ❀* Q ≡ λh. ∀ h1 h2. h1 ## h2 ∧ h = h1 + h2 ∧ P h1 −→ Q h2 (4)

It states that whenever there is a subheap h1 satisfying P then the remaining
heap satisfies Q. To the best of our knowledge, we are the first to define this
operator and explore its properties.

It is the dual of separating conjunction, i.e., P ❀* Q = ¬(P * ¬Q), which is
the same relationship as the one between separating implication and septraction.

Special instances of ❀* (in the form of doubly negated conjunction) appear
in the literature: the dangling operator of Vafeiadis and Parkinson [43] uses
subterms of the form ¬(p 7→ * True), which equals p 7→ ❀* False, and the
subtraction operator by Calcagno et al. [9], used for comparing bi-abduction
solutions, uses terms of the form P ❀* emp. These occurrences indicate that
separating coimplication is an important, yet unexplored operator for SL. As we
will show, it is also the crucial ingredient to set up forward reasoning for SL.

6 Callum Bannister, Peter Höfner, and Gerwin Klein

P * Q P −→* Q

P ❀* Q P−� Q

dual

Galois

dual

Galois

Fig. 1. Relationship between operators of separation logic

Separating coimplication forms a Galois connection with septraction. There-
fore, many useful theorems follow from abstract algebraic reasoning. For exam-
ple, similar to the rules stated above for * and −→*, we get rules for currying,
decurrying and cancellation:

P −� Q =⇒ R

Q =⇒ P ❀* R
(curry)

Q =⇒ P ❀* R

P −� Q =⇒ R
(decurry)

Q −� (Q ❀* P)

P
(canc)

It follows that separating coimplication is isotone in one, and antitone in the
other argument:

P’ =⇒ P

P ❀* Q =⇒ P’ ❀* Q

Q =⇒ Q’

P ❀* Q =⇒ P ❀* Q’

Separating coimplication is not only interesting because it completes the set
of ‘nicely’ connected operators for SL (see Fig. 1), it is also useful to charac-
terise specific heap configurations. For example, (P ❀* False) h states that no
subheap of h satisfies P: P ❀* False = λh. ∀ h1. h1 � h −→ ¬ P h1.

While properties concerning ❀* and −� mostly follow from the Galois con-
nection, some need to be derived ‘manually’:

P ❀* Q P * R

P * (Q ∧ R)

P −→* (R ∧ (P ❀* False))

¬P * (P −→* ¬R)

The first rule states that whenever a heap satisfies P ❀* Q, and can be split
into two subheaps satisfying P and R, respectively, then the subheap satisfying
R has to satisfy Q as well. The second rule connects separating implication and
coimplication directly and states that if adding a heap satisfying P yields a heap
with no subheap containing P, then the underlying heap cannot satisfy P.

SL considers different classes of assertions [40]; each of them plays an impor-
tant role in SL, and usually gives additional information about the heap. For
example, a precise assertion characterises a unique heap portion (when such a
portion exists), i.e.,

precise P ≡ ∀ h h1 h2. h1 � h ∧ P h1 ∧ h2 � h ∧ P h2 −→ h1 = h2

P is precise iff the distributivity ∀ Q R. ((Q ∧ R) * P) = (Q * P ∧ R * P) holds.
[15] Separating coimplication yields a nicer characterisation:

precise P = ∀ R. P * R =⇒ (P ❀* R) (5)

Backwards and Forwards with Separation Logic 7

On the one hand this equivalence eliminates one of the ∀ -quantifiers, which
simplifies reasoning; on the other hand it directly relates separating conjunction
with coimplication, stating that if P and R hold on a heap, and one pulls out
an arbitrary subheap satisfying P, the remaining heap must satisfy R. Obviously,
this relationship between * and ❀* does not hold in general since separating
coimplication may pull out the ‘wrong’ subheap satisfying P.

As a consequence, using (canc), we immediately get

precise P

P −� (P * R) =⇒ R
(6)

Our Isabelle files [3] contain many more properties of separating coimplication.
The most important use of separating coimplication, however, is its application
in forward reasoning, as we will demonstrate in Sect. 6.

Example 2. Using separating coimplication we can fully specify delete_ptr p in
a way that matches intuition: {|p 7→ ❀* R|} delete_ptr p {|R|}. This rule states
that the final state should satisfy R, when the pointer is deleted, and the pointer
existed in the first place. ⊓⊔

5 Walking Backwards

Backward reasoning [16] or reasoning in weakest-precondition style proceeds
backwards from a given postcondition Q and a given program m by determining
the weakest precondition wp(m,Q) such that {|wp(m,Q)|} m {|Q|} is a valid Hoare triple.

Backward reasoning is well established for formal programming languages,
using classical logics. For example the weakest precondition wp(m1;m2,Q) for a
sequential program equals wp(m1,wp(m2,Q)); the full set goes back to Dijkstra [16].
Using these equations, backward reasoning in Hoare logic is straightforward.

Avoiding Frame Calculations. In SL, however, it comes at a price, since
reasoning has to work on Hoare triples of the form {|P * R|} m {|Q * R|} and has
to consider the frame. Whenever an arbitrary postcondition X is given, one needs
to split it up into the actual postcondition Q needed for reasoning about m, and the
(untouched) frame R. That means for given X and Q one has to calculate the frame
R such that X = Q * R. Frame calculations are often challenging in applications
since X can be arbitrary complex. The same holds for a given precondition.

Example 3. Let copy_ptr p p’ = do { x ← get_ptr p; set_ptr p’ x } be the
program that copies the value at pointer p to the value at pointer p’. Its natural
specification is {|p 7→ x * p’ 7→ |} copy_ptr p p’ {|p 7→ x * p’ 7→ x|}. The speci-
fication we use is

∀ R. {|p 7→ x * p’ 7→ * R|} copy_ptr p p’ {|p 7→ x * p’ 7→ x * R|} (7)

In a larger program, the postcondition at the call site of copy_ptr will be more
complex than Q = p 7→ x * p’ 7→ x. Say it is {|p’ 7→ v * a 7→ * p 7→ v * R’|}, for
some heap R’. To determine the precondition, using Rule (7), the postcondition
needs to be in the form Q * R. One has to calculate the frame R = a 7→ * R’. ⊓⊔

8 Callum Bannister, Peter Höfner, and Gerwin Klein

Phrasing specifications in the form {|P * R|} m {|Q * R|} (similar to Rule (7))
state that the frame rule holds for program m, i.e., that m only consists of local
actions with respect to P. In the monadic setting, where not all programs are
necessarily local, we find this form more convenient than a predicate on the
programs and a separate frame rule. That also means that our Isabelle/HOL
framework does not rely on the frame rule.

In the previous example the frame calculation uses only associativity and
commutativity of *, but in general such calculations can be arbitrarily com-
plex. A solution to this problem follows directly from the Galois connection and
‘rewrites’ the pre- and postcondition.

(∀ R. {|P * R|} m {|Q * R|}) = (∀ X. {|P * (Q −→* X)|} m {|X|}) (8)

The left-hand side coincides with the form we use to specify our programs. The
right-hand side has the advantage that it works for any postcondition X; no ex-
plicit calculation of the frame is needed for the postcondition. Since Q −→* X is
the weakest [9] choice of frame, the calculation happens implicitly and automat-
ically in the precondition. This is a generalisation of what occurs in Reynolds’
work [40] for specific operations.

Since Rule (8) generates Hoare triples that can be applied to arbitrary post-
conditions, we can use these rules directly to perform backward reasoning in
the sense of Dijkstra [16]. That means that our calculations are similar to the
classical ones for reasoning with weakest preconditions, e.g. wp(m1,wp(m2,Q)). As
a consequence our framework can generate preconditions fully automatically. As
in the classical setting, applying the rules of Hoare logic is now separated from
reasoning about the content of the program and the proof engineer can focus
their effort on the part that requires creativity.

Example 4. Using Equivalence (8), the specification for copy_ptr (7) becomes

{|∃ x. p 7→ x * p’ 7→ * (p 7→ x * p’ 7→ x −→* X)|} copy_ptr p p’ {|X|} ⊓⊔

Simplifying Preconditions. As mentioned above, Equivalence (8) allows us
to perform backward reasoning and to generate preconditions. However, the
generated formulas will often be large and hence automation for simplifying
generated preconditions is necessary. We provide such simplification tactics.

Both the right-hand side of (8) and the previous example show that generated
preconditions contain interleavings of * and −→*. A simplifier suitable for our
framework has to deal with such interleavings, in particular it should be able to
handle formulas of the type P * (Q −→* R), for any P, Q and R. Two rules that
are indispensable here are cancellation and currying, as introduced in Sect. 3:

R =⇒ R’

P * R =⇒ P * R’

P * Q =⇒ R

P =⇒ Q −→* R
(9)

Currently, not many solvers support the separating implication operator [5,32].
Some automatic solvers for separating implication exist for formulas over a re-
stricted set of predicates [23]. Since we are aiming at a general framework for
arbitrary specifications, we do not want to restrict the expressiveness of pre-

Backwards and Forwards with Separation Logic 9

and postconditions, and hence we cannot restrict our framework to such subsets.
Moreover, we cannot hope to develop fully automatic solvers for the problem at
hand at all, since it is undecidable for arbitrary pre- and postconditions [11].

We provide proof tactics for Isabelle/HOL that can simplify formulas of the
form P * (Q −→* R), for any P, Q and R, and hence can be used in the setting
of backward reasoning. Although we cannot expect full automation, the simpli-
fication achieved by the tactics is significant, as we will show. Our tactics can
make partial progress without fully solving the goal. As experience shows for
standard proof methods in Isabelle, this is the most useful kind, e.g. the method
simp, which rewrites the current goal and leaves a normal form, is much more
frequently used than methods such as blast or force that either have to fully
solve the goal or fail, but cannot make intermediate progress available to the
user. What we provide is a simplifier, not an entailment solver or semi-solver.

Our framework [3] offers support for backward reasoning in SL, and builds
on top of an existing library [30], which is based on separation algebras. This
brings the advantage that abstract rules, such as Q * (Q −→* P) =⇒ P, which
are indispensable for handling interleaving of * and −→* are immediately avail-
able. Since the framework is independent of the concrete heap model, we can
apply the tool to a wide range of problem domains. As usual, the tactics enable
the user to give guidance to complete proofs where other methods fail, and to
substantially reduce proof effort.

– The tactic sep_wp performs weakest-precondition reasoning on monads and
automatically transforms specification Hoare triples provided as arguments
into weakest-precondition format, using Equivalence (8). In addition to the
transformations already described, it can also handle further combinations,
e.g. with classical Hoare logic, or instances where the separation logic only
operates on parts of the monad state. We integrate sep_wp into the exist-
ing tactic wp [14] of the seL4 proofs, which implements classical weakest-
precondition reasoning with additional features such as structured decom-
position of postconditions. The user sees a tactic that can handle both, SL
and non-SL goals, gracefully.

– We develop the tactic sep_mp to support reasoning about separating impli-
cation, and sep_lift to support the currying rule of Sect. 3, eliminating sepa-
rating implication. These are both integrated into the existing sep_cancel [30]
method, for reducing formulas by means of cancellation rules.

Detailed Example. To illustrate backward reasoning in SL in more detail, we
show the correctness of the program swap_ptr p p’ that swaps the values p and
p’ point. Pointer programs are built from four basic operations that manipulate
the heap: new_ptr allocates memory for a pointer, delete_ptr removes a pointer
from the heap, set_ptr assigns a value, and get_ptr reads a value, respectively.
Their specifications are as follows:

{|R|} new_ptr {|λrv. rv 7→ * R|}

{|p 7→ * R|} delete_ptr p {|R|}

{|p 7→ * R|} set_ptr p v {|p 7→ v * R|}

{|∃ x. p 7→ x * R x|} get_ptr p {|λrv. p 7→ rv * R rv|}

10 Callum Bannister, Peter Höfner, and Gerwin Klein

p 7→ v * p’ 7→ v’ * R =⇒
∀ x. x 7→ −→*

(∃ pv. p 7→ pv *

(p 7→ pv −→* x 7→ *

(x 7→ pv −→*

(∃ pv’. p’ 7→ pv’ *

(p’ 7→ pv’ −→* p 7→ *

(p 7→ pv’ −→*

(∃ y. x 7→ y *

(x 7→ y −→* p’ 7→ *

(p’ 7→ y −→* x 7→ * p 7→ v’ * p’ 7→ v * R)))))))))

Fig. 2. Backward reasoning: generated proof goal for swap_ptr

As before we use specifications with frames, avoiding the use of the frame rule.
Recall that in our monadic setting the postcondition R is a predicate over two

parameters: the return value rv of the function, and the state s after termination.
When there is no return value (e.g. for set_ptr) we omit the first parameter.

Using Rule (8), or the tactic wp (which includes sep_wp), we transform these
specifications into a form to be used in backward reasoning (for partial and total
correctness), except delete_ptr, which already has the appropriate form.

{|∀ x. x 7→ −→* X x|} new_ptr {|X|}

{|p 7→ * (p 7→ v −→* X)|} set_ptr p v {|X|}

{|∃ x. p 7→ x * (p 7→ x −→* X x)|} get_ptr p {|X|}

The program swap_ptr, which involves all heap operations, is given as

swap_ptr p p’ = do {

np ← new_ptr;

copy_ptr p np;

copy_ptr p’ p;

copy_ptr np p’;

delete_ptr np

}

where copy_ptr p p’ = do { x ← get_ptr p; set_ptr p’ x }, as before. We use
the specifications of the basic operations to prove the specification

{|p 7→ v * p’ 7→ v’ * R|} swap_ptr p p’ {|p 7→ v’ * p’ 7→ v * R|}

Using equational reasoning of the form wp(m1;m2,Q) = wp(m1,wp(m2,Q)), and
starting from the (given) postcondition our framework automatically derives a
precondition pre. In case the given precondition p 7→ v * p’ 7→ v’ * R implies
pre, the specification of swap_ptr holds. The proof goal is depicted in Fig. 2.

Our tactics simplify this lengthy, unreadable formula, where major simplifi-
cations are based on the aforementioned rules (Eqs. (9)).

The tactic sep_cancel is able to simplify the generated goal automatically,
but gets stuck at existential quantifiers. Although resolving existential quantifiers
cannot be fully automated in general, our framework handles many common
situations. The left-hand side of Fig. 3 shows an intermediate step illustrating
the state before resolving the last existential quantifier. One of the assumptions

Backwards and Forwards with Separation Logic 11

p 7→ v’ * p’ 7→ v’ * x 7→ v * R =⇒
∃ y. x 7→ y *

(x 7→ y −→* p’ 7→ *

(p’ 7→ y −→* x 7→ * p 7→ v’ *

p’ 7→ v * R))

x 7→ v * p 7→ v’ * p’ 7→ v * R =⇒
x 7→ * p 7→ v’ * p’ 7→ v * R

Fig. 3. Matching existential quantifier and eliminating −→* for swap_ptr

is x 7→ v and hence the obvious choice for y is v. Here, Isabelle’s simple existential
introduction rule is sufficient to allow sep_cancel to perform the match without
input. The tactic sep_cancel can then solve the proof goal fully automatically; for
completeness we show a state where all occurrences of −→* have been eliminated.

Case Study: System Initialisation. Boyton et al. [7] present a formally veri-
fied initialiser for component-based systems built on the seL4 kernel. The safety
and security of software systems depends heavily on their initialisation; if ini-
tialisation is broken all bets are off with regards to the system’s behaviour. The
previous proofs (about 15, 000 lines of proof script) were brittle, often man-
ual, and involved frequent specification of the frame. Despite an early form of
sep_cancel the authors note that “higher-level automation such as frame com-
putation/matching would have improved productivity” [7].

In contrast to our earlier examples, the initialiser proofs operate on a non-
deterministic state monad, as well as the non-deterministic error state monad.
Our tactics required only the addition of two trivial interface lemmas to adapt
to this change of computation model, illustrating the genericity of our approach.

Substituting the previous mechanisation with our framework4 we substan-
tially reduce the proof effort: for commands specified in SL, the calculation
of the weakest precondition is automatic, without any significant user interac-
tion. Additionally, we find that calculating the frame indirectly via resolution
of separating implications is significantly easier to automate, as the separating
implication is the weakest choice of solution for in-place frame calculation. The
general undecidability of separating implication did not pose a problem.

Figure 4 presents a sample of the entire proof script for an seL4 API function
to give an indication of the improvements. For brevity Fig. 4 shortens some of
the names in the proof. The separation algebra in this statement lets * be used
inside larger heap objects, such as specifying the capabilities stored inside a
Thread Control Block (TCB) object using 7→c. The lemma models which seL4
capabilities are available to the user after a restart operation.

The left-hand side of Fig. 4 shows the original proof. Each application of an
SL specification rule required first a weakening of the postcondition to bring it
into the expected form, and often a manual specification of the frame. Not only
is this cumbersome and laborious for the proof engineer, it was highly brittle –
any change of the functionality or specification requires a new proof.

The right-hand side shows the simplified proof. It shortens eighteen lines of
proof script to three, without noticeable increase in prover time. By removing

4 Updated proofs at https://github.com/seL4/l4v/tree/seL4-7.0.0/sys-init.

https://github.com/seL4/l4v/tree/seL4-7.0.0/sys-init

12 Callum Bannister, Peter Höfner, and Gerwin Klein

lemma restart_null_wp:

{|(tcb, pop_slot) 7→c NullCap * (tcb, reply_slot) 7→c _ * R|}
restart tcb

{|(tcb, reply_slot) 7→c (MRCap tcb) * (tcb, pop_slot) 7→c RCap * R|}

apply (clarsimp simp:restart_def)

apply (wp)

apply (rule hoare_strengthen_post)

apply (rule set_cap_wp[where R=

(tcb, reply_slot) 7→c MRCap tcb * R])

apply (sep_cancel)+

apply (rule hoare_strengthen_post)

apply (rule set_cap_wp[where

R=(tcb, pop_slot) 7→c _ * R])

apply (sep_cancel)+

apply (rule hoare_strengthen_post)

apply (rule ipc_cancel_ret[where

R=(tcb, reply_slot) 7→c _ * R])

apply (sep_cancel)+

apply (wp)

apply (clarsimp)

apply (intro conjI impI)

apply (drule opt_cap_sep_imp)

apply (clarsimp)

apply (drule opt_cap_sep_imp)

apply (clarsimp)

done

apply (clarsimp simp:restart_def)

apply (wp sep_wp:set_cap_wp ipc_cancel_ret)

apply (sep_cancel | simp | safe)+

done

Fig. 4. Reducing user steps by a factor of 6 in system initialisation proofs

the manual term specification, the tactics also make the proof more robust to
changes – we can rewrite parts of the code, while leaving the proof unchanged.

Another strength is that our tactics are incremental, i.e., we can use them
alongside others. In our example we use safe and simp. This design allows us to
attack arbitrary formulas of SL.

6 Walking Forwards

Forward reasoning uses strongest postconditions [19]. It proceeds forwards from
a given precondition P and a given program m by calculating the strongest post-
condition sp(m,P). Although backward reasoning with weakest preconditions is
more common in practice, there are several applications where forward reasoning
is more convenient, for example, for programs where the precondition is ‘trivial’,
and the postcondition either too complex or unknown.

Usually forward reasoning focuses on partial correctness. Recall that we ad-
mit memory failures in partial correctness. In larger proofs it is convenient to
show absence of failure separately, e.g. during a refinement proof [14], and assume
it in multiple partial-correctness proofs, thereby avoiding proof duplication.

Backwards and Forwards with Separation Logic 13

To enable forward reasoning for SL it is desirable to transform a Hoare triple
{|P * R|} m {|Q * R|} into the form {|X|} m {|post|}, similar to Equivalence (8).

Avoiding Frame Calculations. In [22] Hobor and Villard present the rule
FWRamify:

∀ F. {|P * F|} m {|Q * F|} R =⇒ P * True Q * (P −� R) =⇒ R’

{|R|} m {|R’|}

At first glance this rule looks like the frame calculation could be avoided,
since the conclusion talks about arbitrary preconditions R. It is a ‘complification’
of what we can more simply write as (∀ F. {|P * F|} m {|Q * F|}) ∧ (R =⇒ P *

True) =⇒ {|R|} m {|Q * (P −� R)|}, which states that a terminating program m,
specified by P * F and Q * F, will end up in a state satisfying Q * (P −� R) if R
contains a subheap satisfying P, which is characterised by R =⇒ P * True.

The reason FWRamify cannot be used to avoid the frame calculation is the
subheap-test R =⇒ P * True, which includes a frame calculation itself, and is as
hard to check as reasoning via weakening of the precondition.

In general it seems impossible to transform triples {|P * R|} m {|Q * R|} into
strongest-postcondition form, without introducing additional proof burden, sim-
ilar to FWRamify. As discussed in Sect. 4, the term P ❀* R states that R holds,
whenever P is removed from the heap – removal is only feasible if P exists.

Separating coimplication implies an equivalence similar to (8):

(∀ R. {|P ❀* R|} m {|Q * R|}) = (∀ X. {|X|} m {|Q * (P −� X)|}) (10)

which we can use for forward reasoning. It is based on ‘reverse modus ponens’,
X =⇒ P ❀* (P −� X), which follows directly from the Galois connection. Intu-
itively, the postcondition is calculated from the heap satisfying X by subtracting
the part satisfying the precondition P and replacing it with a heap satisfying Q.

In practice, specifications {|P * R|} m {|Q * R|} can almost always be rewritten
into {|P ❀* R|} m {|Q * R|}, especially if P is precise.

For example, the precondition of {|p 7→ ❀* R|} set_ptr p v {|p 7→ v * R|} as-
sumes the hypothetical case that if we had the required resource (p 7→), we
would have a predicate R corresponding to the rest of the heap. In the postcon-
dition, the resource does exist and is assigned to the correct value v.

Example 5. Using the specifications of the heap operations and Equivalence (10)
yields the following Hoare triples (for partial correctness).

{|X|} new_ptr {|λrv. rv 7→ * X|}

{|X|} delete_ptr p {|p 7→ −� X|}

{|X|} set_ptr p v {|p 7→ v * (p 7→ −� X)|}

{|X|} get_ptr p {|λrv. p 7→ rv * (p 7→ rv −� X)|}
⊓⊔

Simplifying Postconditions. Since Equivalences (8) and (10) have the same
shape, we can develop a framework for forward reasoning following the lines
of backward reasoning. As for backward reasoning, forward reasoning generates

14 Callum Bannister, Peter Höfner, and Gerwin Klein

∃ np. np 7→ −�

(∃ x. p’ 7→ x *

(p’ 7→ −� np 7→ x *

(np 7→ x −�

(∃ x. p 7→ x *

(p 7→ −� p’ 7→ x *

(p’ 7→ x −�

(∃ x. np 7→ x *

(np 7→ −� p 7→ x *

(p 7→ x −� np 7→ * p 7→ v * p’ 7→ v’ * R)))))))))

=⇒ p 7→ v’ * p’ 7→ v * R

Fig. 5. Forward reasoning: generated proof goal for swap_ptr

lengthy postconditions that need simplification. This time we have to simplify
interleavings of * and−�.

Three laws are important for resolving interleavings of * and−�:

P =⇒ Q −→* R

P * Q =⇒ R

Q =⇒ P ❀* R

P −� Q =⇒ R

precise P

P * R =⇒ P ❀* R

The former two allow us to move subformulas from the antecedent to the con-
sequent, while the latter one is a cancellation law. Depending on which term is
precise different cancellation rules are needed.

We develop the following tactics for forward reasoning:
– sep_invert provides an ‘inversion’ simplification strategy, based on the afore-

mentioned laws. It transforms interleavings of * and−� into −→* and ❀*.
– septract_cancel simplifies ❀* by means of cancellation rules.
– sep_forward integrates septract_cancel and sep_cancel, alongside a few other

simple methods, to provide a simplification strategy for most formulas rea-
soning forwards.

– sep_forward_solve inverts, and then attempts to use sep_forward to fully
solve the goal.
Figure 5 depicts the generated proof goal for swap_ptr. The first ten lines show

the generated postcondition, whereas the last one is the given one. With the help
of the developed tactics, our framework proves swap_ptr. As before instantiation
of existential quantifiers is sometimes needed, and handled automatically for
common cases.

Benchmark. One of the standard SL benchmarks is in-place list reversal:
list_rev p = do {

(hd_ptr, rev) ← whileLoop (λ(hd_ptr, rev) s. hd_ptr 6= NULL)

(λ(hd_ptr, rev). do {

next_ptr ← get_ptr hd_ptr;

set_ptr hd_ptr rev;

return (next_ptr, hd_ptr)

})

(p, NULL);

return rev

}

Backwards and Forwards with Separation Logic 15

For this example, the predicate list that relates pointers to abstract lists is
defined in the standard, relational recursive way [35]. We used septract_cancel

to verify the Hoare triple

{|list p ps * R|} list_rev p {|λrv. list rv (rev ps) * R|}

We only had to interact with our framework in a non-trivial way by adding the
invariant that the list pointed to by the previous pointer is already reversed.

Case Study: System Initialisation. To investigate the robustness of our tac-
tics in a real-world proof scenario, we again turn to the proof of system initial-
isation showcased earlier. We completed a portion of the proof, comprising of
twenty function specifications, to demonstrate that a forward approach could
achieve the same gains as our backward one, providing a degree of assurance
that either approach could be taken without incurring costs.

As with weakest precondition, we are able to provide tactics enabling concise,
highly automatic proofs. We give an example using the error monad, where the
statement has a second postcondition {|P|} m {|Q|},{|E|}. When the code throws
an exception, E must hold. Leaving E free means no exception will occur. The
following lemma models the result of invoking the seL4 API call move on two
capabilities:

lemma invoke_cnode_move_cap:

{|dest 7→c _ * src 7→c cap * R|}

invoke_cnode (MoveCall cap’ src dest)

{|dest 7→c cap’ * src 7→c NullCap * R|},{|E|}

apply (simp add:validE_def)

apply (clarsimp simp:invoke_cnode_def liftE_bindE validE_def[symmetric])

apply (sp sp:move_cap_sp)

apply (sep_forward_solve)

done

Most of the effort was in constructing the strongest-postcondition framework
akin to wp. This is generic and can be used outside of our SL framework. The only
work required to adapt our tactics to the proof was specialising the strongest
postcondition Hoare triple transformation to the monads used, which was trivial.

7 Related Work

Separata [24,23] is an Isabelle framework for separation logic based on a labelled
sequent calculus. It is a general reasoning tool for separation logic, and supports
separating conjunction, separating implication, and septraction. While it can
prove a number of formulas that our tactics cannot, none of these formulas
appear in our verification tasks using backward and forward reasoning, and they
are unlikely to show up in these styles, owing to the highly regular shape of the
generated formulas of our framework. Conversely, Separata was not able to solve
the weakest-precondition formulas produced in our proof body. Our framework

16 Callum Bannister, Peter Höfner, and Gerwin Klein

can integrate solvers such as Separata for the generated pre- and postconditions;
hence we see these tools as additional support for our framework.

Other frameworks for reasoning in separation logic in an interactive setting
such as the Coq-based VeriSmall [2] or CFML [12] stand in a similar relationship.
One of the main strengths of our framework is its generality, which should allow
it to be easily combined with other frameworks.

Many other tools such as Space Invader [18], Verifast [26], HOLfoot [42] offer
a framework for forward reasoning within separation logic, based on variations of
symbolic execution. Since they do not provide support for separating implication,
they also do not perform backward reasoning in weakest-precondition style as
presented. The few tools that do support separating implication are automatic
full solvers [34] and do not provide a user-guided interactive framework.

The only approach using strongest postcondition we are aware of is the rule
FWRamify by Hobor and Villard [22], which its authors find too difficult to
use in practice. Using separating coimplication, we do not find septraction to be
fundamentally more difficult than the existing well-known SL fragments.

Many existing interactive tools perform frame inference [4,41,13,1], which is
the way SL was presented by O’Hearn et al. [38]. We take a different approach,
and automatically divide logical reasoning from program text achieving the same
separation of concerns standard Hoare logic enjoys. Our form of frame calculation
is deferred to the purely logical part of the problem, where we can provide an
interactive proof tactic for calculating the frame incrementally as needed.

Iris Proof Mode was developed in Coq by Krebbers et al. [31], on top of
the Iris framework for Higher Order Concurrent Separation Logic [27]. They
provide support for separating conjunction and implication, and use separating
implication for performing weakest-precondition reasoning. As Iris is based on
affine separation logic, where resource leaks are not reasoned about, it is unclear
whether their tactics can be adopted in our linear setting.

Our framework operates entirely on the level of the abstract separation al-
gebra, leaving it to the user to provide facts about model-dependent predicates,
such as points-to predicates. This makes the tool highly adaptable. As we pre-
sented earlier, we have used it for ordinary heap models, for fine-grained ‘partial’
objects, as well as multiple different monad formalisations.

In the field of static analysis, bi-abduction is a promising technique in speci-
fication derivation, employed notably in the Infer tool [9], as well as in attempts
to detect memory leaks automatically in Java programs [17]. Since the frame
calculations happen in place, instead of separating logic from program as we do,
it would be interesting to employ our framework to this space.

8 Summary

We have presented a methodology for backward and forward reasoning in separa-
tion logic. To support proof automation we have implemented our theoretical re-
sults in a framework for automation-assisted interactive proofs in Isabelle/HOL.

Backwards and Forwards with Separation Logic 17

The more traditional backward reasoning works for both partial and total
correctness. It makes use of the standard separating implication rule for weak-
est preconditions, which often counts as unwieldy. We, however, provide an in-
teractive tactic that successfully resolves the separating implications we have
encountered in sizeable practical applications.

The forward reasoning framework makes use of a new operator, the separat-
ing coimplication, which forms a nice algebraic completion of the existing op-
erators of separating conjunction, separating implication, and septraction. The
framework relies on the fact that specifications can be (re)written into the form
{|P ❀* R|} m {|Q * R|}. This is always possible when P is precise. While we sus-
pect that this weaker specification will usually be true for partial correctness,
we leave the general case for future work.

We have demonstrated our new proof tactics in a case study for both forward
and backward reasoning. For backward reasoning, we have achieved substantial
improvements, reducing the number of user proof steps by a factor of up to six.
For forward reasoning, we have taken a portion of the same proof and completed
it with our strongest-postcondition framework, achieving similar gains. We be-
lieve this gives empirical grounds that users can decide which style of reasoning
is suitable for their problem domain, without incurring costs in mechanisation.

References

1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) European Sympo-
sium on Programming (ESOP’11). Lecture Notes in Computer Science, vol. 6602,
pp. 1–17. Springer (2011). https://doi.org/10.1007/978-3-642-19718-5 1

2. Appel, A.W.: VeriSmall: Verified smallfoot shape analysis. In: Jouannaud, J.P.,
Shao, Z. (eds.) Certified Programs and Proofs (CPP’11). Lecture Notes in Com-
puter Science, vol. 7086, pp. 231–246. Springer (2011).
https://doi.org/10.1007/978-3-642-25379-9 18

3. Bannister, C., Höfner, P., Klein, G.: Forward and backward reasoning in separation
logic. Isabelle theories (2018),
https://github.com/sel4proj/Jormungand/tree/ITP18

4. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! – A framework for higher-order
separation logic in Coq. In: Beringer, L., Felty, A.P. (eds.) Interactive Theorem
Proving (ITP’12). Lecture Notes in Computer Science, vol. 7406, pp. 315–331.
Springer (2012). https://doi.org/10.1007/978-3-642-32347-8 21

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) Programming Languages and Systems (APLAS’05). Lecture
Notes in Computer Science, vol. 3780, pp. 52–68. Springer (2005).
https://doi.org/10.1007/11575467 5

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5

7. Boyton, A., Andronick, J., Bannister, C., Fernandez, M., Gao, X., Greenaway, D.,
Klein, G., Lewis, C., Sewell, T.: Formally verified system initialisation. In: Groves,
L., Sun, J. (eds.) Formal Methods and Software Engineering (ICFEM’13). Lecture

https://github.com/sel4proj/Jormungand/tree/ITP18

18 Callum Bannister, Peter Höfner, and Gerwin Klein

Notes in Computer Science, vol. 8144, pp. 70–85. Springer (2013).
https://doi.org/10.1007/978-3-642-41202-8 6

8. Burstal, R.: Some techniques for proving correctness of programs which alter data
structures. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 7, pp. 23–50.
Edinburgh University Press (1972)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011).
https://doi.org/10.1145/2049697.2049700

10. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation
logic. In: Logic in Computer Science (LICS’07). pp. 366–378. IEEE (2007).
https://doi.org/10.1109/LICS.2007.30

11. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: Programming Languages and
Systems (APLAS’01). pp. 289–300 (2001)

12. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) International Conference
on Functional Programming (ICFP’11). pp. 418–430. ACM (2011).
https://doi.org/10.1145/2034773.2034828

13. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: Hall, M.W., Padua, D.A. (eds.) Programming Language Design
and Implementation (PLDI’11). pp. 234–245. ACM (2011).
https://doi.org/10.1145/1993498.1993526

14. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., A. Muñoz, C., Tahar, S. (eds.) Theorem Proving in
Higher Order Logics (TPHOLs’08). Lecture Notes in Computer Science, vol. 5170,
pp. 167–182. Springer (2008). https://doi.org/10.1007/978-3-540-71067-7 16

15. Dang, H.H., Höfner, P., Möller, B.: Algebraic separation logic. J. Logic & Algebraic
Programming 80(6), 221–247 (2011). https://doi.org/10.1016/j.jlap.2011.04.003

16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
17. Distefano, D., Filipovic, I.: Memory leaks detection in Java by bi-abductive infer-

ence. In: Rosenblum, D.S., Taentzer, G. (eds.) Fundamental Approaches to Soft-
ware Engineering (FASE’10). Lecture Notes in Computer Science, vol. 6013, pp.
278–292. Springer (2010). https://doi.org/10.1007/978-3-642-12029-9 20

18. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’06). Lecture Notes in Computer Science,
vol. 3920, pp. 287–302. Springer (2006). https://doi.org/10.1007/11691372 19

19. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer
Science 19, 19–32 (1967)

20. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare. pp. 101–121. Springer
(2010). https://doi.org/10.1007/978-1-84882-912-1 5

21. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

22. Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: Gia-
cobazzi, R., Cousot, R. (eds.) Principles of Programming Languages (POPL’13).
pp. 523–536. ACM (2013). https://doi.org/10.1145/2429069.2429131

23. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) Automated De-
duction (CADE’15). Lecture Notes in Computer Science, vol. 9195, pp. 501–516.
Springer (2015). https://doi.org/10.1007/978-3-319-21401-6 34

Backwards and Forwards with Separation Logic 19

24. Hóu, Z., Sanan, D., Tiu, A., Liu, Y.: Proof tactics for assertions in separation logic.
In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theorem Proving (ITP’17).
Lecture Notes in Computer Science, vol. 10499, pp. 285–303. Springer (2017).
https://doi.org/10.1007/978-3-319-66107-0 19

25. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Principles of Programming Languages (POPL’01). vol. 36, pp. 14–26.
ACM (2001). https://doi.org/10.1145/373243.375719

26. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) Programming Languages and Systems (APLAS’10). Lecture
Notes in Computer Science, vol. 6461, pp. 304–311. Springer (2010).
https://doi.org/10.1007/978-3-642-17164-2 21

27. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In: Principles of Programming Languages (POPL’15). pp. 637–650. ACM (2015).
https://doi.org/10.1145/2676726.2676980

28. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Transaction
of Computer Systems 32(1), 2:1–2:70 (2014).
https://doi.org/10.1145/2560537

29. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A.P. (eds.) Interactive Theorem Proving (ITP’12). Lecture Notes in Com-
puter Science, vol. 7406, pp. 332–337. Springer (2012).
https://doi.org/10.1007/978-3-642-32347-8 22

30. Klein, G., Kolanski, R., Boyton, A.: Separation algebra. Archive of Formal Proofs
(2012), http://isa-afp.org/entries/Separation_Algebra.shtml , Formal proof
development

31. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: Castagna, G., Gordon, A.D. (eds.) Principles of Program-
ming Languages (POPL’17). pp. 205–217. ACM (2017).
https://doi.org/10.1145/3009837.3009855

32. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: Ja-
gannathan, S., Sewell, P. (eds.) Principles of Programming Languages (POPL’14).
pp. 477–490. ACM (2014). https://doi.org/10.1145/2535838.2535871

33. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’10). Lecture Notes in Computer Science, vol. 6355, pp. 348–
370. Springer (2010). https://doi.org/10.1007/978-3-642-17511-4 20

34. Maclean, E., Ireland, A., Grov, G.: Proof automation for functional correctness in
separation logic. Journal of Logic and Computation 26(2), 641–675 (2016).
https://doi.org/10.1093/logcom/exu032

35. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: Baader,
F. (ed.) Automated Deduction (CADE’03). Lecture Notes in Computer Science,
vol. 2741, pp. 121–135. Springer (2003). https://doi.org/10.1007/978-3-540-45085-
6 10

36. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability. pp. 341–367. Springer (2002).
https://doi.org/10.1007/978-94-010-0413-8 11

37. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

http://isa-afp.org/entries/Separation_Algebra.shtml

20 Callum Bannister, Peter Höfner, and Gerwin Klein

38. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) Computer Science Logic (CSL’01).
Lecture Notes in Computer Science, vol. 2142, pp. 1–19. Springer (2001).
https://doi.org/10.1007/3-540-44802-0 1

39. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science (LICS’02). pp. 55–74 (2002).
https://doi.org/10.1109/LICS.2002.1029817

40. Reynolds, J.C.: An introduction to separation logic. In: Broy, M., Sitou, W., Hoare,
T. (eds.) Engineering Methods and Tools for Software Safety and Security, NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 22, pp. 285–310. IOS Press (2009). https://doi.org/10.3233/978-1-58603-
976-9-285

41. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: Grove, D., Blackburn, S. (eds.) Programming Language De-
sign and Implementation (PLDI’15). pp. 77–87. ACM (2015).
https://doi.org/10.1145/2737924.2737964

42. Tuerk, T.: A Separation Logic Framework for HOL. Ph.D. thesis, University of
Cambridge, UK (2011)

43. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic.
In: Caires, L., Vasconcelos, V.T. (eds.) Concurrency Theory (CONCUR’07). Lec-
ture Notes in Computer Science, vol. 4703, pp. 256–271. Springer (2007).
https://doi.org/10.1007/978-3-540-74407-8 18

	Backwards and Forwards with Separation Logic

