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Abstract. Coq provides linear arithmetic tactics such as omega or lia.
Currently, these tactics either fully prove the current goal in progress, or
fail. We propose to improve this behavior: when the goal is not provable in
linear arithmetic, we strengthen the hypotheses with new equalities dis-
covered from the linear inequalities. These equalities may help other Coq
tactics to discharge the goal. In other words, we apply – in interactive
proofs – a seminal idea of SMT-solving: combining tactics by exchanging
equalities. The paper describes how we have implemented equality learn-
ing in a new Coq tactic, dealing with linear arithmetic over rationals. It
also illustrates how this tactic interacts with other Coq tactics.

1 Introduction

Several Coq tactics solve goals containing linear inequalities: omega and lia
on integers; fourier or lra on reals and rationals [22,4]. This paper provides
yet another tactic for proving such goals on rationals. This tactic – called vpl5

– is built on the top of the Verified Polyhedra Library (VPL), a Coq-certified
abstract domain of convex polyhedra [14,15]. Its main feature appears when
it cannot prove the goal. In this case, whereas above tactics fail, our tactic
“simplifies” the goal. In particular, it injects as hypotheses a complete set of
linear equalities that are deduced from the linear inequalities in the context.
Then, many Coq tactics – like congruence, field or even auto – can exploit
these equalities, even if they cannot deduce them from the initial context by
themselves. By simplifying the goal, our tactic both improves the user experience
and proof automation.

Let us illustrate this feature on the following – almost trivial – Coq goal,
where Qc is the type of rationals on which our tactic applies.

Lemma ex1 (x:Qc) (f:Qc → Qc): x≤1 → (f x)<(f 1) → x <1.
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This goal is valid on Qc and Z, but both omega and lia fail on the Z instance
without providing any help to the user. Indeed, since this goal contains an un-
interpreted function f, it does not fit into the pure linear arithmetic fragment.
On the contrary, this goal is proved by two successive calls to the vpl tactic. As
detailed below, equality learning plays a crucial role in this proof: the rewrit-
ing of a learned equality inside a non-linear term (because under symbol f) is
interleaved between deduction steps in linear arithmetic. Of course, such a goal
is also provable in Z by SMT-solving tactics: the verit tactic of SMTCoq [2],
the hammer tactic of CoqHammer [11], or the one of Besson et al. [5]. However,
such SMT-tactics are also “prove-or-fail”: they do not simplify the goal when
they cannot prove it. On the contrary, our tactic may help users in their inter-
active proofs, by simplifying goals that do not fully fit into the scope of existing
SMT-solving procedures. Note that our tactic does not intend to compete in
speed and power with SMT-based procedures. It mainly aims to ease interactive
proofs which involve linear arithmetic.

In short, this paper provides three contributions. First, we provide a Coq
tactic with equality learning, which seems a new idea in the Coq community.
Second, we provide a simple and efficient algorithm which learns these equali-
ties from conflicts between strict inequalities detected by a linear programming
solver. On most cases, it is strictly more efficient than the naive equality learning
algorithm previously implemented in the VPL [14]. In particular, our algorithm
is cheap when there is no equality to learn. At last, we have implemented this
algorithm in an Ocaml oracle, able to produce proof witnesses for these equal-
ities. The paper partially details this process, and in particular, how the proof
of the learned equalities is computed in Coq by reflection from these witnesses.
Actually, we believe that our tactic could be easily adapted to other interactive
provers, and, in particular, our oracle could be directly reused.

The paper follows a “top-down” presentation. Section 2 describes the spec-
ification of the vpl tactic. It also introduces a high-level specification of its
underlying oracle. Section 3 illustrates our tactic on a non-trivial example and
in particular how it collaborates with other tactics through equality learning.
Section 4 details the certificate format produced by our oracle, and how it is
applied in our Coq tactic. At last, Section 5 details the algorithm we developed
to produce such certificates.

2 Specification of the VPL Tactic
Let us now introduce the specification of the vpl tactic. As mentioned above, the
core of the tactic is performed by an oracle programmed in Ocaml, and called
reduce. This oracle takes as input a convex polyhedron P and outputs a reduced
polyhedron P ′ such that P ′ ⇔ P and such that the number of constraints in P ′

is lower or equal to that of P.
Definition 1 (Polyhedron). A (convex) polyhedron6 on Q is a conjunction
of linear (in)equalities of the form

∑
i aixi ./ b where ai, b are constants in Q,

6 Dealing only with convex polyhedra on Q, we often omit the adjective “convex”.



where xi are variables ranging over Q, and where ./ represents a binary relation
on Q among ≥, > or =.

A polyhedron may be suboptimally written. In particular, one of its constraints
may be implied by the others: it is said redundant and can be discarded. More-
over, a set of inequalities can imply implicit equalities, such as x = 0 that can be
deduced from x ≥ 0∧−x ≥ 0. This notion of implicit equalities is standard and
defined for instance in [19]. Definition 2 characterizes polyhedra without implicit
equalities.

Definition 2 (Complete set of linear equalities). Let E be a set of lin-
ear equalities and I be a set of linear inequalities. E is said complete w.r.t. I
if any linear equality deduced from the conjunction E ∧ I can also be deduced
from E alone, meaning that I contains no equality, neither implicit nor explicit.
Formally, E is complete iff for all linear terms t1 t2,

(E ∧ I ⇒ t1 = t2) implies (E ⇒ t1 = t2) (1)

Definition 3 (Reduced Polyhedron). A polyhedron P is reduced iff it sat-
isfies the following conditions.

– If P is unsatisfiable, then P is a single constant constraint like 0 > 0 or 0 ≥ 1.
In other words, its unsatisfiability is checked by one comparison on Q.

– Otherwise, P contains no redundant constraint and is syntactically given as
a conjunction E ∧ I where polyhedron I contains only inequalities and where
polyhedron E is a complete set of equalities w.r.t. I.

Having a reduced polyhedron ensures that any provable linear equality admits
a pure equational proof which ignores the remaining inequalities.

2.1 The Three Steps of the Tactic

Roughly speaking, a Coq goal corresponds to a sequent Γ ` T where context
Γ represents a conjunction of hypotheses and T a conclusion. In other words,
this goal is logically interpreted as the meta-implication Γ ⇒ T . The tactic
transforms the current goal Γ ` T through three successive steps.

1. First, constraints are retrieved from the goal: it is equivalently rewritten
into Γ ′, JPK (m) ` T ′ where P is a polyhedron and m an assignment of P
variables. For example, the ex1 goal is rewritten as JP1K (m1) ` False, where

P1 := x1 ≤ 1 ∧ x2 < x3 ∧ x1 ≥ 1

m1 := { x1 7→ x; x2 7→ (f x); x3 7→ (f 1) }
Here, constraint x1 ≥ 1 in P1 comes from the negation of the initial ex1 goal
x<1. Hence, JPK (m) corresponds to a conjunction of inequalities on Q that
are not necessarily linear, because m may assign variables of P to arbitrary
Coq terms on Q. Actually, JPK (m) contains at least all (in)equalities on Q
that appear as hypotheses of Γ . Moreover, if T is an inequality on Q, then an



inequality equivalent to ¬T appears in JPK (m) and T ′ is proposition False.7
This step is traditionally called reification in Coq tactics.

2. Second, polyhedron P is reduced. In other words, the goal is equivalently
rewritten into Γ ′, JP ′K (m) ` T ′ where P ′ is the reduced polyhedron computed
from P by our reduce oracle. For instance, polyhedron P1 found above is
reduced into

P ′
1 := x1 = 1 ∧ x2 < x3

3. At last, if P ′ is unsatisfiable, then so is JP ′K (m), and the goal is finally
discharged. Otherwise, given E the complete set of equalities in P ′, equali-
ties of JEK (m) are rewritten in the goal. For example, on the ex1 goal, our
tactic rewrites the learned equality “x=1” into the remaining hypothesis. In
summary, a first call to the vpl tactic transforms the ex1 goal into

x=1, ( f 1)<(f 1) ` False
A second call to vpl detects that hypothesis ( f 1)<(f 1) is unsatisfiable
and finally proves the goal.

In the description above, we claim that our transformations on the goals are
equivalences. This provides a guarantee to the user: the tactic can always be
applied on the goal, without loss of information. However, in order to make the
Coq proof checker accept our transformations, we only need to prove implica-
tions, as detailed in the next paragraph.

2.2 The Proof Built by the Tactic

The tactic mainly proves the following two implications which are verified by
the Coq kernel:

Γ ′, JPK (m) ` T ′ ⇒ Γ ` T (2)
∀m, JPK (m) ⇒ JP ′K (m) (3)

Semantics of polyhedron J.K is encoded as a Coq function, using binary integers
to encode variables of polyhedra. After simple propositional rewritings in the
initial goal Γ ` T , an Ocaml oracle provides m and P to the Coq kernel, which
simply computes JPK (m) and checks that it is syntactically equal to the expected
part of the context. Hence, verifying implication (2) is mainly syntactical.

For implication (3), our reduce oracle actually produces a Coq AST, that
represents a proof witness allowing to build each constraint of P ′ as a nonnegative
linear combination of P constraints. Indeed, such a combination is necessarily
a logical consequence of P. In practice, this proof witness is a value of a Coq
inductive type. A Coq function called reduceRun takes as input a polyhedron P
and its associated witness, and computes P ′. A Coq theorem ensures that any
result of reduceRun satisfies implication (3). Thus, this implication is ensured
by construction, while – for the last step of the tactic described above – the Coq
kernel computes P ′ by applying reduceRun.
7 Here, T ⇔ (¬T ⇒ False) because comparisons on Q are decidable.



3 Using the vpl Tactic

Combining solvers by exchanging equalities is one of the basis of modern SMT-
solving, as pioneered by approaches of Nelson-Oppen [17,18] and Shostak [20].
This section illustrates how equality learning in an interactive prover mimics
such equality exchange, in order to combine independent tactics. While much
less automatic than standard SMT-solving, our approach provides opportunities
for the user to compensate by “hand” for the weaknesses of a given tactic.

The main aspects of the vpl tactic are illustrated on the following single goal.
This goal contains two uninterpreted functions f and g such that f domain and
g codomain are the same uninterpreted type A. As we will see below, in order to
prove this goal, we need to use its last hypothesis – of the form “g (. . .) <> g (13)”
– by combining equational reasoning on g and on Qc field. Of course, we also
need linear arithmetic on Qc order.

Lemma ex2 (A:Type) (f:A → Qc) (g:Qc → A) (v1 v2 v3 v4:Qc) :
6*v1 - v2 - 10* v3 + 7*(f(g v1 )+1) ≤ -1
→ 3*(f(g v1)-2*v3 )+4 ≥ v2 -4* v1
→ 8*v1 - 3*v2 - 4*v3 - f(g v1) ≤ 2
→ 11* v1 - 4*v2 > 3
→ v3 > -1
→ v4 ≥ 0
→ g((11 - v2 +13* v4 )/( v3+v4)) <> g(13)
→ 3 + 4*v2 + 5*v3 + f(g v1) > 11* v1.

The vpl tactic reduces this goal to the equivalent one given below (where typing
of variables is omitted).

H5: g((11 -(11 -13* v3 )+13* v4 )/( v3+v4 ))=(g 13) → False
vpl: v1 = 4-4*v3
vpl0: v2 = 11 -13* v3
vpl1: f(g(4 -4* v3)) = -3+3* v3
______________________________________ (1/1)
0 ≤ v4 → (3#8) < v3 → False

Here, three equations vpl, vpl0 and vpl1 have been learned from the goal.
Two irredundant inequalities remain in the hypotheses of the conclusion – where
(3#8) is the Coq notation for 3

8 . The bound v3 > −1 has disappeared because
it is implied by (3#8) < v3. By taking v3 = 1, we can build a model satisfying
all the hypotheses of the goal – including (3#8) < v3 – except H5. Thus, using
H5 is necessary to prove False.

Actually, we provide another tactic which automatically proves the remaining
goal. This tactic (called vpl_post) combines equational reasoning on Qc field
with a bit of congruence.8 Let us detail how it works on this example. First,
in backward reasoning, hypothesis H5 is applied to eliminate False from the
conclusion. We get the following conclusion (where previous hypotheses have
been omitted).
8 It is currently implemented on the top of auto with a dedicated basis of lemmas.



______________________________________ (1/1)
g((11 -(11 -13* v3 )+13* v4 )/( v3+v4 ))=(g 13)

Here, backward congruence reasoning reduces this conclusion to

______________________________________ (1/1)
(11 -(11 -13* v3 )+13* v4 )/( v3+v4 )=13

Now, the field tactic reduces the conclusion to

______________________________________ (1/1)
v3+v4 <> 0

Indeed, the field tactic mainly applies ring rewritings on Qc while generating
subgoals for checking that denominators are not zero. Here, because we have a
linear denominator, we discharge the remaining goal using the vpl tactic again.
Indeed, it gets the following polyhedron in hypotheses – which is unsatisfiable.

v4 ≥ 0 ∧ v3 >
3

8
∧ v3+ v4 = 0

Let us remark that lemma ex2 is also valid when the codomain of f and
types of variables v1 . . . v4 are restricted to Z and operator “/” means the
Euclidean division. However, both omega and lia fail on this goal without pro-
viding any help to the user. This is also the case of the verit tactic of SMTCoq
because it deals with “/” as a non-interpreted symbol and can only deal with
uninterpreted types A providing a decidable equality. By assuming a decidable
equality on type A and by turning the hypothesis involving “/” into “g((11-
v2+13*v4)) <> g(13*(v3+v4))”, we get a slightly weaker version of ex2 goal
which is proved by verit. CoqHammer is currently not designed to solve such
a complex arithmetic goal [11].

This illustrates that our approach is complementary to SMT-solving: it pro-
vides less automation than SMT-solving, but it may still help to progress in an
interactive proof when SMT-solvers fail.

4 The Witness Format in the Tactic

Section 4.3 below presents our proof witness format in Coq to build a reduced
polyhedron P ′ as a logical consequence of P . It also details the implementation
of reduceRun and its correctness property, formalizing property (3) given in
Section 2.2. In preliminaries, Section 4.1 recalls the Farkas operations of the
VPL, at the basis of our proof witness format, itself illustrated in Section 4.2.

4.1 Certified Farkas Operations

The tactic uses the linear constraints defined in the VPL [13], that we re-
call here. Type var is the type of variables in polyhedra. Actually, it is simply



defined as type positive, the positive integers of Coq. Module Cstr provides
an efficient representation for linear constraints on Qc, the Coq type for Q.
Type Cstr . t handles constraints of the form “t ./ 0” where t is a linear term
and ./∈ {=,≥, >}. Hence, each input constraint “t1 ./ t2” will be encoded as
“t1− t2 ./ 0”. Linear terms are themselves encoded as radix trees over positive
with values in Qc.

The semantics of Cstr . t constraints is given by predicate ( Cstr . sat c m ) ,
expressing that model m of type var→ Qc satisfies constraint c. Module Cstr
provides also the following operations

Add: (t1 ./1 0) + (t2 ./2 0) , (t1 + t2) ./ 0 where ./, max(./1, ./2) for the
total increasing order induced by the sequence =, ≥, >;

Mul: n · (t ./ 0) , (n · t) ./ 0 assuming n ∈ Q and, if ./∈ {≥, >} then n ≥ 0;
Merge: (t ≥ 0) & (−t ≥ 0) , t = 0.

It is easy to prove that each of these operations returns a constraint that is
satisfied by the models of its inputs. For example, given constraints c1 and c2
and a model m such that ( sat c1 m ) and ( sat c2 m ) , then ( sat ( c1+c2 ) m )
holds. When invoked on a wrong precondition, these operations actually return
“0 = 0” which is satisfied by any model. Still, this precondition violation only
appears if there is a bug in the reduce oracle. These operations are called Farkas
operations, in reference to Farkas’ lemma recalled on page 11.

In the following, we actually handle each constraint with a proof that it
satisfies a given set s of models (encoded here by its characteristic function).
The type of such a constraint is ( wcstr s ) , as defined below.

Record wcstr (s: (var → Qc) → Prop) := {
rep: Cstr.t;
rep_sat : ∀ m, s m → Cstr.sat rep m

}.

Hence, all the Farkas operations are actually lifted to type ( wcstr s ) , for all s.

4.2 Example of Proof Witness

We introduce our syntax for proof witnesses on Figure 1. Our oracle detects
that P is satisfiable, and thus returns the “proof script” of Figure 1. This script
instructs reduceRun to produce P ′ from P . By construction, we have P ⇒ P ′.

This script has three parts. In the first part – from line 1 to 5 – the script
considers each constraint of P and binds it to a name, or skips it. For instance,
x1 ≥ −10 is skipped because it is redundant: it is implied by P ′ and thus not
necessary to build P ′ from P . In the second part – from line 6 to 9 – the script
builds intermediate constraints: their value is detailed on the right hand-side of
the figure. Each of these constraints is bound to a name. Hence, when a constraint
– like H4 – is used several times, we avoid a duplication of its computation.

In the last part – from line 10 to 14 – the script returns the constraints of P ′.
As further detailed in Section 5, each equation defines one variable in terms of



P :=


x1 + x2 ≥ x3

x1 ≥ −10
3x1 ≥ x2

2x3 ≥ x2

− 1
2
x2 ≥ x1−−−−−−−−→
r
e
d
u
c
e
R
u
n

P ′ :=


x1 = −x3

x2 = 2x3

x3 ≤ 0

Script Computations
1 BindHyp H0 x1 + x2 − x3 ≥ 0
2 SkipHyp
3 BindHyp H1 3x1 − x2 ≥ 0
4 BindHyp H2 2x3 − x2 ≥ 0
5 BindHyp H3 −x1 − 1

2
x2 ≥ 0

6 Bind H4 ← (H0 +
1
2
·H2) & H3 x1 +

1
2
x2 = 0

7 Bind H5 ← ( 1
2
·H2 +H3) & H0 −x1 − x2 + x3 = 0

8 Bind H6 ← H5 +H4 − 1
2
x2 + x3 = 0

9 Bind H7 ← H6 +H4 x1 + x3 = 0
10 Return {
11 [x1] H7 x1 + x3 = 0
12 [x2] − 2 ·H6 x2 − 2x3 = 0
13 1

5
· (H1 +−3 ·H7 +−2 ·H6) −x3 ≥ 0

14 }

Fig. 1. Example of a Proof Script and its Interpretation by reduceRun

Definition pedra := list Cstr.t.
Definition JlK m := List. Forall (fun c ⇒ Cstr.sat c m) l.
Definition answ (o: option pedra) m :=

match o with
| Some l ⇒ JlK m
| None ⇒ False
end.

Definition reduceRun (l:pedra )(p:∀ v, script v): option pedra
:= scriptEval (s:=JlK) (p _) l (* . . . *).

Lemma reduceRun_correct l m p:JlK m → answ ( reduceRun l p) m.

Fig. 2. Definition of reduceRun and its Correctness

the others. For each equation, this variable is explicitly given between brackets
“[.]” in the script of Figure 1, such as x1 at line 11 and x2 at line 12. This
instructs reduceRun to rewrite equations in the form “x = t”.

4.3 The HOAS of Proof Witnesses

Our reduceRun function and its correctness are defined in Coq, as shown on
Figure 2. The input polyhedron is given as a list of constraints l of type pedra.
The output is given as type ( option pedra ) where a None value corresponds
to the case where l is unsatisfiable.

Given a value l : pedra, its semantics – noted JlK – is a predicate of type
( var→ Qc )→ Prop which is defined from Cstr . sat. This semantics is extended
to type ( option pedra ) by the predicate answ. Property (3) of page 4 is hence



Inductive fexp (v: Type ): Type :=
| Var: v → fexp v (* name bound to [Bind] or [ BindHyp ] *)
| Add: fexp v → fexp v → fexp v
| Mul: Qc → fexp v → fexp v
| Merge: fexp v → fexp v → fexp v.

Fixpoint fexpEval {s} (c:fexp (wcstr s)): wcstr s :=
match c with
| Var c ⇒ c
| Add c1 c2 ⇒ ( fexpEval c1)+( fexpEval c2)
| Mul n c ⇒ n·( fexpEval c)
| Merge c1 c2 ⇒ ( fexpEval c1)&( fexpEval c2)
end.

Fig. 3. Farkas Expressions and their Interpreter

formalized by lemma reduceRun_correct with a minor improvement: when
the input polyhedron is unsatisfiable, a proof of False is directly generated.

The proof witness in input of reduceRun is a value of type ∀ v , script v.
Here, script – defined at Figure 5 page 10 – is the type of a Higher-Order
Abstract Syntax (HOAS) parameterized by the type v of variables [9]. A HOAS
avoids the need to handle explicit variable substitutions when interpreting bind-
ers: those are encoded as functions, and variable substitution is delegated to the
Coq engine.9 The universal quantification over v avoids exposing the represen-
tation of v – used by reduceRun – in the proof witness p.

The bottom level of our HOAS syntax is given by type fexp defined at
Figure 3 and representing “Farkas expressions”. Each constructor in this type
corresponds to a Farkas operation, except constructor Var that represents a
constraint name which is bound to a Bind or a BindHyp binder (see Figure 1).
The function fexpEval computes any such Farkas expression c into a constraint
of type ( wcstr s ) – for some given s – where type v is itself identified with
type ( wcstr s ) .

Farkas expressions are combined in order to compute polyhedra. This is ex-
pressed through “polyhedral expressions” of type pexp on Figure 4 which are
computed by pexpEval into ( option pedra ) values. Type pexp has 3 con-
structors. First, constructor ( Bind c ( fun H ⇒ p ) ) is a higher-order binder

9 For a prototype like our tactic, such a HOAS has mainly the advantage of simplicity:
it avoids formalizing in Coq the use of a substitution mechanism. The impact on
the efficiency at runtime remains unclear. On one side, typechecking a higher-order
term is more expensive than typechecking a first-order term. On the other side,
implementing an efficient substitution mechanism in Coq is currently not straight-
forward: purely functional data-structures induce a non-negligible logarithmic factor
over imperative ones. Imperative arrays with a purely functional API have precisely
been introduced by [3] in an experimental version of Coq with this motivation. But
this extension is not yet integrated into the stable release of Coq.



Inductive pexp (v: Type ): Type :=
| Bind: fexp v → (v → pexp v) → pexp v
| Contrad : (fexp v) → pexp v
| Return : list (( option var )*( fexp v)) → pexp v.

Fixpoint pexpEval {s} (p:pexp (wcstr s)): option pedra :=
match p with
| Bind c bp ⇒ pexpEval (bp ( fexpEval c))
| Contrad c ⇒ contrad c
| Return l ⇒ Some (ret l nil)
end.

Lemma pexpEval_correct s (p:pexp (wcstr s)) m:
s m → answ ( pexpEval p) m.

Fig. 4. Polyhedral Computations and their Interpreter

Inductive script (v: Type ): Type :=
| SkipHyp : script v → script v
| BindHyp : (v → script v) → script v
| Run: (pexp v) → script v.

Fixpoint scriptEval {s} (p: script (wcstr s)) (l: pedra ):
(∀ m, s m → JlK m) → option pedra := (* . . . *)

Lemma scriptEval_correct s (p: script (wcstr s)) l m:
(∀ m, s m → JlK m) → s m → answ ( scriptEval p l) m.

Fig. 5. Script Expressions and their Interpreter

of our HOAS: it computes an intermediate Farkas expression c and stores the
result in a variable H bound in the polyhedral expression p. Second, construc-
tor ( Contrad c ) returns an a priori unsatisfiable constant constraint, which
is verified by function contrad in pexpEval. At last, constructor ( Return l )
returns an a priori satisfiable reduced polyhedron, which is encoded as a list of
Farkas expressions associated to an optional variable of type var (indicating a
variable defined by an equation, see example of Figure 1).

Finally, a witness of type script first starts by naming useful constraints of
the input (given as a value l : pedra) and then runs a polyhedral expression in
this naming context. This semantics is given by function scriptEval specified
at Figure 5. On a script ( SkipHyp p ’ ) , interpreter scriptEval simply skips
the first constraint by running recursively ( scriptEval p ’ ( List . tl l ) ) .
Similarly, on a script ( BindHyp ( fun H ⇒ p ’ ) ) , it pops the first constraint
of l in variable H and then runs itself on p ’ . Technically, function scriptEval
assumes the following precondition on polyhedron l: it must satisfy all models m



characterized by s. As shown on Figure 2, ( reduceRun l p ) is a simple instance
of ( scriptEval ( p ( wcstr s ) ) l ) where s :=JlK. Hence, this precondition is
trivially satisfied.

5 The Reduction Algorithm

The specification of the reduce oracle is given in introduction of the paper: it
transforms a polyhedron P into a reduced polyhedron P ′ with a smaller number
of constraints and such that P ′ ⇔ P. Sections 5.3 and 5.4 describe our im-
plementation. In preliminaries, Section 5.1 gives a sufficient condition, through
Lemma 2, for a polyhedron to be reduced. This condition lets us learn equalities
from conflicts between strict inequalities as detailed in Section 5.2. In our proofs
and algorithms, we only handle linear constraints in the restricted form “t ./ 0”.
But, for readability, our examples use the arbitrary form “t1 ./ t2”.

5.1 A Refined Specification of the Reduction

Definition 4 (Echelon Polyhedron). An echelon polyhedron is written as
a conjunction E ∧ I where polyhedron I contains only inequalities and where
polyhedron E is written “

∧
i∈{1,...,k} xi − ti = 0” such that each xi is a variable

and each ti is a linear term, and such that the following two conditions are
satisfied. First, no variable xi appears in polyhedron I. Second, for all integers
i, j ∈ {1, . . . , k} with i ≤ j then xi does not appear in tj.

Intuitively, in such a polyhedron, each equation “xi − ti = 0” actually defines
variable xi as ti. As a consequence, E ∧ I is satisfiable iff I is satisfiable.

We recall below the Farkas’ lemma [12,10] which reduces the unsatisfiability
of a polyhedron to the one of a constant constraint, like 0 > 0. The unsatisfia-
bility of such a constraint is checked by a simple comparison on Q.

Lemma 1 (Farkas). Let I be a polyhedron containing only inequalities. I is
unsatisfiable if and only if there is an unsatisfiable constraint −λ ./ 0, computable
from a nonnegative linear combination of constraints of I (i.e. using operators
“+” and “·” defined in Section 4.1), and such that ./∈ {≥, >} and λ ∈ Q+.

From Farkas’ lemma, we derive the following standard corollary which re-
duces the verification of an implication I ⇒ t ≥ 0 to the verification of a syn-
tactic equality between linear terms.

Corollary 1 (Implication Witness). Let t be a linear term and let I be a
satisfiable polyhedron written

∧
j∈{1,...,k} tj ./j 0 with ./j∈ {≥, >}.

If I ⇒ t ≥ 0 then there are k + 1 nonnegative rationals (λj)j∈{0,...,k} such
that t = λ0 +Σj∈{1,...,k}λjtj.

In the following, we say that the nonnegative coefficients (λj)j∈{0,...,k} define
a “Farkas combination of t in terms of I”.



Definition 5 (Strict Version of Inequalities). Let I be a polyhedron with
only inequalities. We note I> the polyhedron obtained from I by replacing each
non-strict inequality “t ≥ 0” by its strict version “t > 0”. Strict inequalities of I
remain unchanged in I>.

Geometrically, polyhedron I> is the interior of polyhedron I. Hence if I>

is satisfiable (i.e. the interior of I is non empty), then polyhedron I does not
fit inside a hyperplane. Lemma 2 formalizes this geometrical intuition as a con-
sequence of Farkas’ lemma. Its proof invokes the following corollary of Farkas’
lemma, which is really at the basis of our equality learning algorithm.

Corollary 2 (Witness of Empty Interior). Let us consider a satisfiable poly-
hedron I written

∧
j∈{1,...,k} tj ./j 0 with ./j∈ {≥, >}. Then, I> is unsatisfiable

if and only if there exists k nonnegative rationals (λj)j∈{1,...,k} ∈ Q+ such that
Σj∈{1,...,k}λjtj = 0 and ∃j ∈ {1, . . . , k} , λj > 0.

Proof.
⇐: Suppose k nonnegative rationals (λj)j∈{1,...,k} such that Σj∈{1,...,k}λjtj = 0
and some index j such that λj > 0. It means that there is a Farkas combination
of 0 > 0 in terms of I>. Thus by Farkas’ lemma, I> is unsatisfiable.
⇒: Let us assume that I> is unsatisfiable. By Farkas’ lemma, there exists an
unsatisfiable constant constraint −λ ./ 0, where −λ = Σj∈{1,...,k}λjtj , with all
λj ∈ Q+, and such that there exists some j with λj > 0. Let m be an assignment
of I variables such that JIKm. By definition, we have

q
Σj∈{1,...,k}λjtj

y
m = λ′

with λ′ ∈ Q+. Thus, −λ=λ′=0.

Lemma 2 (Completeness from Strict Satisfiability). Let us assume an
echelon polyhedron E ∧ I without redundant constraints, and such that I> is
satisfiable. Then, E ∧ I is a reduced polyhedron.

Proof. Let us prove property (1) of Definition 2, i.e. that E is complete w.r.t. I.
Because t1 = t2 ⇔ t1 − t2 = 0, without loss of generality, we only prove prop-
erty (1) in the case where t2 = 0 and t1 is an arbitrary linear term t. Let t be a
linear term such that E ∧ I ⇒ t = 0.

In particular, E ∧ I ⇒ t ≥ 0. By Corollary 1, there are k′ + 1 nonnegative
rationals (λj)j∈{0,...,k′} such that t = λ0 + Σj∈{1,...,k′}λjtj where E is written∧

j∈{1,...,k} tj = 0 and I is written
∧

j∈{k+1,...,k′} tj ./j 0. Suppose that there
exists j ∈ {k + 1, . . . , k′}, such that λj 6= 0. Since I> is satisfiable, by Corollary
2, we deduce that Σj∈{k+1,...,k′}λjtj 6= 0. Thus, we have E ∧ I> ⇒ t > 0 with
E ∧ I> satisfiable. This contradicts the initial hypothesis E ∧ I ⇒ t = 0. Thus,
t = λ0 +Σj∈{1,...,k}λjtj which proves E ⇒ t ≥ 0.

A similar reasoning from E ∧ I ⇒ −t ≥ 0 finishes the proof that E ⇒ t = 0.

Lemma 2 gives a strategy to implement the reduce oracle. If the input poly-
hedron P is satisfiable, then try to rewrite P as an echelon polyhedron E ∧ I
where I> is satisfiable. The next step is to see that from an echelon polyhedron
E ∧ I where I> is unsatisfiable, we can learn new equalities from a subset of I>



inequalities that is unsatisfiable. The inequalities in such a subset are said “in
conflict”. The Farkas witness proving the conflict is used to deduce new equali-
ties from I. This principle can be viewed as an instance of “conflict driven clause
learning” – at the heart of modern DPLL procedures [21].

5.2 Building Equality Witnesses from Conflicts

Consider a satisfiable set of inequalities I, from which we wish to extract implicit
equalities. First, let us build I> the strict version of I as described in Definition
5. Then, an oracle runs the simplex algorithm to decide whether I> is satisfiable.
If so, then we are done: there is no implicit equality to find in I. Otherwise, by
Corollary 2, the oracle finds that the unsatisfiable constraint 0 > 0 can be written
Σj∈Jλjtj > 0 where for all j ∈ J , λj > 0 and (tj > 0) ∈ I>. Since

∧
j∈J tj > 0

is unsatisfiable, we can learn that
∧

j∈J tj = 0. Indeed, since Σj∈Jλjtj = 0 (by
Corollary 2) and ∀j ∈ J, λj > 0, then each term tj of this sum must be 0. Thus,
∀j ∈ J, tj = 0.

Let us now detail our algorithm to compute equality witnesses. Let I be a
satisfiable inequality set such that I> is unsatisfiable. The oracle returns a wit-
ness combining n+ 1 constraints of I> (for n ≥ 1) that implies a contradiction:∑n+1

i=1 λi · I>i where λi > 0

By Corollary 2, this witness represents a contradictory constraint 0 > 0. More-
over, each inequality Ii is non-strict (otherwise, I would be unsatisfiable). We
can thus turn each inequality Ii into an equality written I=i – proved by

Ii &
1
λi

·
∑

j∈{1...n+1}
j 6=i

λj · Ij

Hence, each equality I=i is proved by combining n + 1 constraints. Proving
(I=i )i∈{1,...,n+1} in this naive approach combines Θ(n2) constraints.

We rather propose a more symmetric way to build equality witnesses which
leads to a simple linear algorithm. Actually, we build a system of n equalities
noted (Ei)i∈{1,...,n}, where – for i ∈ {1, . . . , n} – each Ei corresponds to the
unsatisfiability witness where the i-th “+” has been replaced by a “&”:(∑i

j=1 λj · Ij
)

&
(∑n+1

j=i+1 λj · Ij
)

This system of equations is proved equivalent to system (I=i )i∈{1,...,n+1} thanks
to the following correspondence.

I=1 = 1
λ1

· E1

I=n+1 = − 1
λn

· En

for i ∈ {2, . . . , n} , I=i = 1
λi

· (Ei − Ei−1)

This also shows that one equality I=i is redundant, because (I=i )i∈{1,...,n+1} con-
tains one more equality than (Ei)i∈{1,...,n}.

In order to use a linear number of combinations, we build (Ei)i∈{1,...,n} thanks
to two lists of intermediate constraints (Ai)i∈{1,...,n} and (Bi)i∈{2,...,n+1} de-



fined by{
A1 := λ1 · I1 for i from 2 up to n, Ai := Ai−1 + λi · Ii

Bn+1 := λn+1 · In+1 for i from n down to 2, Bi := Bi+1 + λi · Ii

Then, we build Ei := Ai & Bi+1 for i ∈ {1, . . . , n}.

5.3 Illustration on the Running Example

Let us detail how to compute the reduced form of polyhedron P from Figure 1.

P :=
{
I1 : x1 + x2 ≥ x3, I2 : x1 ≥ −10, I3 : 3x1 ≥ x2, I4 : 2x3 ≥ x2, I5 : −

1

2
x2 ≥ x1

}
P is a satisfiable set of inequalities. Thus, we first extract a complete set of
equalities E from constraints of P by applying the previous ideas. We ask a
Linear Programming (LP) solver for a point satisfying P>, the strict version of
P . Because there is no such point, the solver returns the unsatisfiability witness
I>1 + 1

2 · I>4 + I>5 (which reduces to 0 > 0). By building the two sequences (Ai)
and (Bi) defined previously, we obtain the two equalities

E1 : x1 + x2 = x3 proved by (x1 + x2 ≥ x3)︸ ︷︷ ︸
A1: I1

&(x3 ≥ x1 + x2)︸ ︷︷ ︸
B2:

1
2 ·I4+I5

E2 : x1 = − 1
2x2 proved by (x1 ≥ − 1

2x2)︸ ︷︷ ︸
A2: I1+

1
2 ·I4

&(− 1
2x2 ≥ x1)︸ ︷︷ ︸
B3: I5

Thus, P is rewritten into E ∧ I with

E :=

{
E1 : x1 + x2 = x3, E2 : x1 = −1

2
x2

}
, I :=

{
I2 : x1 ≥ 10, I3 : 3x1 ≥ x2

}
To be reduced, the polyhedron must be in echelon form, as explained in

Definition 4. This implies that each equality of E must have the form xi−ti = 0,
and each such xi must not appear in I. Here, let us consider that E1 defines x2:
we rewrite E1 into x2 − (x3 − x1) = 0. Then, x2 is eliminated from E2, leading
to E′

2 : x1 + x3 = 0. In practice, we go one step further by rewriting x1 (using
its definition in E′

2) into E1 to get a reduced echelon system E′ of equalities:
E′ := {E′

1 : x2 − 2 · x3 = 0, E′
2 : x1 + x3 = 0}

Moreover, the variables defined in E′ (i.e. x1 and x2) are eliminated from I,
which is rewritten into

I ′ := {I ′2 : −x3 ≥ −10, I ′3 : −x3 ≥ 0}
The last step is to detect that I ′2 is redundant w.r.t. I ′3 with a process which is
indicated in the next section.



function reduce(E∧I) =
(E,I) ← echelon(E,I)
match is_sat(I) with
| Unsat(λ) -> return Contrad(λT·I)
| Sat(_) ->

loop
match is_sat(I>) with
| Unsat(λ) ->

(E′,I ′) ← learn(I,λ)
(E,I) ← echelon(E∧E′,I ′)

| Sat(m) ->
I ← rm_redundancies(I,m)
return Reduced(E∧I)

Fig. 6. Pseudo-code of the reduce oracle

5.4 Description of the Algorithm

The pseudo-code of Figure 6 describes the reduce algorithm. For simplicity, the
construction of proof witnesses is omitted from the pseudo-code. To summarize,
the result of reduce is either “Contrad(c)” where c is a contradictory constraint
or “Reduced(P ′)” where P ′ is a satisfiable reduced polyhedron. The input poly-
hedron is assumed to be given in the form E∧I, where E contains only equalities
and I contains only inequalities. First, polyhedron E ∧ I is echeloned: function
echelon returns a new system E ∧ I where E is an echelon system of equali-
ties without redundancies (they have been detected as 0 = 0 during echeloning
and removed) and without contradiction (they have been detected as 1 = 0
during echeloning). Second, the satisfiability of I is tested by function is_sat.
If is_sat returns “Unsat (λ)”, then λ is a Farkas witness allowing to return a
contradictory constant constraint written λT·I. Otherwise, I is satisfiable and
reduce enters into a loop to learn all implicit equalities.

At each step of the loop, the satisfiability of I> is tested. If is_sat returns
“Unsat (λ)”, then a new set E′ of equalities is learned from λ and I ′ contains
the inequalities of I that do not appear in the conflict. After echeloning the new
system, the loop continues.

Otherwise, is_sat returns “Sat(m)” where m is a model of I>. Geometri-
cally, m is a point in the interior of polyhedron I. Point m helps rm_redundancies

to detect and remove redundant constraints of I, by a ray-tracing method de-
scribed in [16]. At last, reduce returns E ∧ I, which is a satisfiable reduced
polyhedron because of Lemma 2.

Variant. In a variant of this algorithm, we avoid to test the satisfiability of I
before entering the loop (i.e. the first step of the algorithm). Indeed, the satis-
fiability of I can be directly deduced from the witness returned by is_sat(I>).
If the combination of the linear terms induced by the witness gives a negative
number instead of 0, it means that I is unsatisfiable. However, we could make



several loop executions before finding that I is unsatisfiable: polyhedron I may
contain several implicit equalities which do not imply the unsatisfiability of I
and which may be discovered first. We do not know which version is the most
efficient one. It probably differs according to applications.

6 Conclusion and Related Works

This paper describes a Coq tactic that learns equalities from a set of linear
rational inequalities. It is less powerful than Coq SMT tactics [2,5,11] and than
the famous sledgehammer of Isabelle [7,6]. But, it may help users to progress
on goals that do not exactly fit into the scope of existing SMT-solving procedures.

This tactic uses a simple algorithm – implemented in the new VPL [15] –
that follows a kind of conflict driven clause learning. This equality learning
algorithm only relies on an efficient SAT-solver on inequalities able to generate
nonnegativity witnesses. Hence, we may hope to generalize it to polyhedra on Z.

The initial implementation of the VPL [14] also reduces polyhedra as defined
in Definition 3. Its equality learning is more naive: for each inequality t ≥ 0 of
the current (satisfiable) inequalities I, the algorithm checks whether I ∧ t > 0 is
satisfiable. If not, equality t = 0 is learned. In other words, each learned equality
derives from one satisfiability test. Our new algorithm is more efficient, since
it may learn several equalities from a single satisfiability test. Moreover, when
there is no equality to learn, this algorithm performs only one satisfiability test.

We have implemented this algorithm in an Ocaml oracle, able to produce
proof witnesses for these equalities. The format of these witnesses is very similar
to the one of micromega [4], except that it provides a bind operator which avoids
duplication of computations (induced by rewriting of learned equalities). In the
core of our oracle, the production of these witnesses follows a lightweight, safe
and evolutive design, called polymorphic LCF style [8]. This style makes the
implementation of VPL oracles much simpler than in the previous VPL imple-
mentation. Our implementation thus illustrates how to instantiate “polymorphic
witnesses” of polymorphic LCF style in order to generate Coq abstract syntax
trees, and thus to prove the equalities in Coq by computational reflection.

The previous Coq frontend of the VPL [13] would also allow to perform
such proofs by reflection. Here, we believe that the HOAS approach followed in
Section 4.3 is much simpler and more efficient than this previous implementation
(where substitutions were very inefficiently encoded with lists of constraints).

Our tactic is still a prototype. Additional works are required to make it robust
in interactive proofs. For example, the user may need to stop the tactic before
that the rewritings of the learned equalities are performed, for instance when
some rewriting interferes with dependent types. Currently, the user can invoke
instead a subtactic vpl_reduce, and apply these rewritings by “hand”. The
maintainability of such user scripts thus depends on the stability of the generated
equalities and their order w.r.t. small changes in the input goal. However, we
have not yet investigated these stability issues. A first step toward stability would



be to make our tactic idempotent by keeping the goal unchanged on a already
reduced polyhedron.

Another library, called Coq-Polyhedra [1], now formalizes a large part of
the convex polyhedra theory without depending on external oracles. Our work is
based on the VPL, because it wraps efficient external solvers [14]. In particular,
computations in VPL oracles mix floating-points and GMP numbers, which are
far more efficient than Coq numbers. However, the usability of the VPL would
probably increase by being linked to such a general library.

Acknowledgements. We thank anonymous referees for their useful feedback on a
preliminary version of this paper.
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