
Submitted to:
HCVS 2018

c© A. Ravara
This work is licensed under the
Creative Commons Attribution License.

A simple functional presentation
and an inductive correctness proof

of the Horn algorithm

António Ravara
NOVA-LINCS and Dep. de Informática, FCT.

Universidade NOVA de Lisboa, Portugal

We present a recursive formulation of the Horn algorithm for deciding the satisfiability of proposi-
tional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for
simple proofs of its main properties. By defining the algorithm as a recursive function (computing a
least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising
executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive
proofs.

1 Motivation

The Horn algorithm [Hor51] is a particularly efficient decision procedure for the satisfiability problem of
propositional logic. Although Horn Clause Logic is computationally complete, the satisfiability problem
for the conjunction of Horn clauses is P-complete and nevertheless provable in linear time (there is an
algorithm that takes at most n steps to determine if the conjunction of Horn clauses is satisfiable) [CN10,
DG84]. Note that the general Boolean satisfiability problem (for arbitrary propositional formulae) is
NP-complete.

Textbooks on (Mathematical or Computational) Logic usually present imperative formulations of
this algorithm, with rather informal proof sketches [Hed04, HR04]. To present a correctness proof in full
detail, one would need to follow, for instance, the Hoare style, defining the syntax of the programming
and of an assertion languages, the operational semantics, the proof system (at least discussing its correct-
ness), and then present the axiomatic proof. The setting is a bit demanding and requires some auxiliar
“machinery”.

We believe a formulation of the algorithm as a recursive function allows for not only a simple and
easily readable definition, but mainly, allows for a simple (inductive) proof, which in turn sheds light on
the algorithm itself, leading to several possible improvements.

We present herein such a formulation together with examples of execution, a correctness proof, and
some further results useful for optimisations of the algorithm.

2 The Horn algorithm

Motivation. If a propositional formula ϕ is in Conjunctive Normal Form (or CNF(ϕ), according to
Definition A.20), then checking that ϕ is valid is straightforward: it has polynomial complexity (with
respect to the number of propositional symbols occurring in the formula). The Horn algorithm is a simple
and fast solution (polynomial as well) to determine if a formula is satisfiable or contradictory. However,
the algorithm works only for a certain class of formulae — the Horn Clauses.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A functional presentation and a correctness proof of the Horn algorithm

Syntax. Let P be a countable set of propositional symbols, ranged over by p,q, . . ., and consider Alf P =
P∪{⊥,∨,∧,→,(,)} a propositional alphabet over P. The set FP of propositional formulæ is the least
one including the symbols in P, the symbol ⊥, and closed for the operators ∨,∧,→ (cf. Definitions A.2
and A.3).

2.1 Horn Clauses

Recall that a literal is an atomic formula or its negation (cf. Definition A.18).

Definition 2.1. A basic Horn clause is a disjunction of literals where at most one occurs positively.

Formulæ like ⊥, p, p∨¬q, and ¬p∨¬q are basic Horn clauses, whereas p∨q or ⊥∨ p are not.

Horn formulæ. Note that a basic Horn clause is in one of the following three cases: (1) does not have
positive literals; (2) does not have negative literals (and so it is a single positive literal); (3) it has negative
literals and one positive. Therefore, any basic Horn clause may be presented as an implication. Let ’≡’
stand for logical equivalence (cf. Definition A.16).

Lemma 2.2. Let L and Li (for all considered i) be positive literals.

1. L≡>→ L

2.
∨n

i=1¬Li ≡ (
∧n

i=1 Li)→⊥

3.
∨n

i=1¬Li∨L≡ (
∧n

i=1 Li)→ L

Proof. In Appendix B.

We define now when is a propositional formula a Horn clause.

Definition 2.3. A formula ϕ ∈ FP such that CNF(ϕ) is a Horn clause, if it is the conjunction of basic
Horn clauses.

Let EP denote the set of propositional formulæ obtained by considering negation a primitive operator.

Proposition 2.4. Let ϕ ∈ EP be a Horn clause; then, ϕ ≡
∧n

i=1(Ci→ Li), for some n≥ 1, where, for any
i ∈ {1, . . . ,n}, each Li is a positive literal, each Ci => or Ci =

∧ki
j=1 Li, j, with ki ≥ 1, and each Li, j is a

positive literal.

Proof. Use the previous lemma to transform each basic clause in an implication.

Henceforth, we call Horn formula to a Horn clause ϕ ∈ EP such that

ϕ =
n∧

i=1

(Ci→ Li)

2.2 A functional presentation of the algorithm

The main contribution of this note is the (non-deterministic, for simplicity)1 recursive formulation of the
Horn algorithm, together with the proof of correctness and the optimisation lemmas.

1A deterministic formulation is achieved easily, e.g. by inspecting the formula from left to right.

A. Ravara 3

Definition 2.5. Let ϕ be a Horn formula. We define the function H : EP→{0,1} as

H (ϕ) =

{
1, if ⊥ 6∈A (ϕ,{>})
0, otherwise

with A : EP×℘({⊥,>}∪P)→℘({⊥,>}∪P) being the following function over Horn formulæ.

A (ϕ,C)=> if ϕ ≡> ; otherwise A (ϕ,C)=

{
A (ϕ \ (Ci→ Li),C ∪{Li}), if ∃i∈{1,...,n}.set(Ci)⊆ C
C , otherwise

where set(>) = {>} and set(
∧k

i=1 Li) = {Li | i ∈ {1, . . . ,k} with k ≥ 1}; moreover, ϕ \ ϕ
def
= > and

ϕ \ (Ci→ Li)
def
= (

∧i−1
j=1(C j→ L j))∧ (

∧n
j=i+1(C j→ L j)), if i > 1.

To illustrate how the algorithm works, we present some representative examples. Let us first state
the main property of the algorithm. Recall that a formula is satisfiable if it is satisfied by some valuation
and is contradictory if no valuation satisfies it (cf. Definition A.10 and subsequent lemmas).

Theorem 2.6. For any Horn clause ϕ ∈ EP:

• H (ϕ) = 1 if, and only if, ϕ it is satisfiable;

• H (ϕ) = 0 if, and only if, ϕ it is contradictory.

Proof. A consequence of Theorem 3.6 (presented ahead).

Example 2.7. Let us determine the nature of the following Horn clause.

ϕ
def
= p∧ (¬r∨ s)∧ (r∨¬p∨¬q)∧ (¬r∨¬s)∧q

Notice that ϕ is a CNF, but (according to Lemma A.19) it is not valid. We convert it to a Horn formula
using Lemma 2.2.

ϕ ≡ ψ
def
= (>→ p)∧ (r→ s)∧ ((p∧q)→ r)∧ ((r∧ s)→⊥)∧ (>→ q)

Considering

ψ1 = (r→ s)∧ ((p∧q)→ r)∧ ((r∧ s)→⊥)∧ (>→ q)

ψ2 = (r→ s)∧ ((p∧q)→ r)∧ ((r∧ s)→⊥)

we calculate the function A .

A (ψ,{>}) = A (ψ1,{>, p})
= A (ψ2,{>, p,q})
= A ((r→ s)∧ ((r∧ s)→⊥),{>, p,q,r})
= A ((r∧ s)→⊥,{>, p,q,r,s})
= A (>,{>, p,q,r,s,⊥})
= {>, p,q,r,s,⊥}

Since ⊥ ∈ {>, p,q,r,s,⊥}, then H (ψ) = 0; therefore ψ is contradictory, and since ϕ ≡ ψ , so is ϕ .

4 A functional presentation and a correctness proof of the Horn algorithm

Example 2.8. Let us now determine the nature of the following Horn clause.

ϕ
def
= p∧ (¬r∨ s)∧ (r∨¬p∨¬q)∧ (¬r∨¬s)

Notice that ϕ is a CNF, but (according to Lemma A.19) it is not valid. We convert it to a Horn formula

ϕ ≡ ψ
def
= (>→ p)∧ (r→ s)∧ ((p∧q)→ r)∧ ((r∧ s)→⊥)

and considering

ψ1 = (r→ s)∧ ((p∧q)→ r)∧ ((r∧ s)→⊥))

we calculate the function A .

A (ψ,{>}) =
A (ψ1,{>, p}) =

{>, p}

Since ⊥ /∈ {>, p}, then H (ψ) = 1; therefore ψ is satisfiable, and since ϕ ≡ ψ , so is ϕ .

Indeed, considering V where V (p) = 1 and V (q) = V (r) = V (s) = 0, one easily verifies that V
satisfies ϕ .2

Example 2.9. Let us finally determine the nature of the Horn clause p∧ (¬r∨ s)∧ (r∨¬p)∧¬r. Notice
that it is a not valid CNF (according to Lemma A.19); we convert it to a Horn formula and considering

ϕ = (>→ p)∧ (r→ s)∧ (p→ r)∧ (r→⊥)
ϕ1 = (r→ s)∧ (p→ r)∧ (r→⊥)
ϕ2 = (r→ s)∧ (r→⊥)

we calculate the function A , taking advantage of its monotonicity (cf. Lemma 1).

A (ϕ,{>}) =
A (ϕ1,{>, p}) =

A (ϕ2,{>, p,r}) ⊇
{>, p,r,⊥}

Since⊥∈A (ϕ,{>}), then H (ϕ) = 0; therefore ϕ is contradictory; since it is equivalent to the original
formula, that one is also contradictory.

3 Results

We state herein several relevant properties of the algorithm, namely its characterisation as a least fixed-
point and its correctness. Proofs are in the appendices.

2A property capturing this fact is stated as Proposition 3.5.

A. Ravara 5

3.1 Fixed-points

Considering L to be the set of all literals, the set℘(L) is a complete lattice with respect to set inclusion.
Since the function A is monotone (result stated below), by the Knaster-Tarski Theorem [Tar55], the
function A has (unique) maximal and minimal fixed points. In fact, when applied to the set {>}, the
algorithm calculates a least fixed-point of A (the proof is in Appendix C).

Lemma 3.1. Let ϕ =
∧n

i=1(Ci→ Li) be a Horn formula. The function A is:

1. increasing: C ⊆A (ϕ,C)⊆ C ∪
⋃n

i=1{Li};

2. and monotone: if C ⊆D then A (ϕ,C)⊆A (ϕ,D).

Notice that once an execution step of A adds a literal to the result set, that literal is never taken out.
Therefore, once an execution step adds ⊥ to the result set, the procedure may stop as ⊥ shall necessarily
be in the final set. Moreover, the least result set of the algorithm is the single set {>}, the literal > is in
all result sets, and the greatest one is composed by > and all the literals that appear in the consequence
of the implications constituting the input Horn formula.

3.2 Auxiliary and optimization lemmas

We present a couple of (straightforward) results that allow, in some particular cases, for better perfor-
mance of the algorithm. Notice that if ⊥ is not in the consequent of an implication of a Horn formula ϕ ,
or if no antecedent is >, then ⊥ is not in A (ϕ,{>}). Then, ϕ is satisfiable (and one does not even need
to execute the algorithm). The fact is a particular case of the following corollary of the previous lemma
(it is the contra-positive of Lemma 3.1.1).

Corollary 3.2. Let ϕ =
∧n

i=1(Ci→ Li) be a Horn formula. If L /∈
⋃n

i=1 Li then L /∈A (ϕ,{>}).

Furthermore, if there are no “unit clauses” (of the form >→ p), the execution of the algorithm ends
in one step, not modifying the initial set. The lemma below, a simple consequence of the definition of
the algorithm, captures this fact.

Lemma 3.3. Let ϕ =
∧n

i=1(Ci→ Li) be a Horn formula. If ∀i.1≤ i≤ n∧Ci 6=>, then A (ϕ,{>}) = {>}
and the execution of A takes exactly one step.

Proof. By definition of the function A (in Definition 2.5), if T /∈
⋃

1≤i≤nCi then A (ϕ,{>}) = {>}, and
A is calculated in exactly one step (applying the base case of its recursive definition).

3.3 Termination and complexity

The algorithm always produces a unique result set for a given input, i.e., it is a function, and it always
terminates; moreover, it is linear in the size of the formula, with each recursive step examining all the
atomic symbols occurring in one of the clauses (which is then removed from the formula).

Theorem 3.4. For any Horn formula ϕ ∈EP there is a unique set C of literals such that A (ϕ,{>})=C .
Furthermore, the procedure takes at most n+1 steps, where n is the number of clauses of ϕ .

The proof of this result is in Appendix D (as the proof of Theorem D.1).

6 A functional presentation and a correctness proof of the Horn algorithm

3.4 Correctness

Notice first that the result of the algorithm determines a unique least model: if the formula is satisfiable,
then one gets a valuation satisfying it by assigning value 1 to the propositional symbols occurring in the
resulting set. The other symbols occurring in the formula are set to 0. Let SMB(ϕ) denote the set of
propositional symbols of a formula ϕ .

Proposition 3.5. For any Horn formula ϕ ∈ EP, let A (ϕ,{>}) = C and ⊥ /∈ C . Then, V
 ϕ consid-
ering V such that V (p) = 1 for each p ∈ C and V (q) = 0 for each q ∈ (P\C).

The proof of this result is in Appendix E (as the proof of Proposition E.2).

We finally state the main result: the algorithm is sound and complete for Horn formulæ.

Theorem 3.6. For any Horn formula ϕ ∈ EP:

• ⊥ /∈A (ϕ,{>}), if, and only if, ϕ it is satisfiable;

• ⊥ ∈A (ϕ,{>}), if, and only if, ϕ it is contradictory.

The proof of this result is in Appendix F (as the proofs of Theorems F.2 and F.3).

4 Conclusions

We present herein a new formulation of the Horn algorithm for deciding the satisfiability problem of
propositional logic. We define the procedure as a recursive function, instead of the usual imperative
formulation in pseudo-code. This presentation has several advantages:

1. It is concise and readable, being at the same time rigorous;

2. allows for a simple presentation of “manual” executions of the algorithm, being usable in under-
graduate logic courses;

3. has simple inductive proofs of soundness and completeness;

4. leads to optimization results, easy to state, prove, and implement.

We develop such a formulation and show examples of execution, a correctness proof and some further
results useful for optimizations of the algorithm. Computing solutions for our recursive formulation of
the lagorithm is akin to the fixed point (Knaster-Tarski) least Herbrand model construction.

Acknowledgements

This work was partially supported by NOVA LINCS grant UID/CEC/04516/2013.

References
[CLP00] René Cori, Daniel Lascar, and Donald H. Pelletier. Mathematical logic: a course with exercises; Pt. 1:

Propositional calculus, Boolean algebras, predicate calculus. Oxford University Press, 2000.
[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge University

Press, 2010.
[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability of proposi-

tional Horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.

A. Ravara 7

[Gal87] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving. Wiley, 1987.
[Hed04] Shawn Hedman. A First Course in Logic: An Introduction to Model Theory, Proof Theory, Computabil-

ity, and Complexity. Oxford University Press, 2004.
[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic Logic,

16(1):14–21, 1951.
[HR04] Michael Huth and Mark Ryan. Logic in Computer Science - Modelling and Reasoning about Systems

(2. ed.). Cambridge University Press, 2004.
[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

5(2):285–309, 1955.

8 A functional presentation and a correctness proof of the Horn algorithm

A The language of Propositional Logic

We make a brief presentation of the main concepts of Propositional Logic, to keep the paper self-
contained. We define the syntax of the logic, a satisfaction relation, a notion of logical equivalence,
and finally, a normal form. We omit the proofs of the results presented, which are standard and may be
found in most textbooks (cf. [Gal87] or [HR04]).

A.1 Syntax

We inductively define the language with a minimal set of connectives, defining the other (redundant)
ones as abbreviations.

Definition A.1. Let P be a countable set (of propositional symbols). The Propositional Alphabet over a
set P is the set Alf P = P∪{⊥,∨,∧,→,(,)}
Definition A.2. The Propositional Language induced by Alf P is the set FP, defined by the following
grammar.

ϕ,ψ ::= ⊥ | p | (ϕ → ψ)

Elements of FP are called formulae. Symbols in P and ⊥ are atomic formulae.

Definition A.3. The following abbreviations are useful.

• Negation: ¬ϕ
abv
= ϕ →⊥;

• Truth: > abv
= ¬⊥;

• Disjunction: ϕ ∨ψ
abv
= ¬ϕ → ψ;

• Conjunction: ϕ ∧ψ
abv
= ¬ϕ ∨¬ψ;

• Equivalence: ϕ ↔ ψ
abv
= (ϕ → ψ)∧ (ψ → ϕ).

Consider that the connective ¬ has precedence over all the other.

A.2 Semantics

We interpret the formulæ in a Boolean Algebra (like, e.g., in [CLP00]).

Satisfaction relation.

Definition A.4. A valuation over a set P of propositional symbols is a function V : P→{0,1}.
Definition A.5. Consider the set {0,1} equipped with two binary operations, + and ×, interpreted as
the addition and multiplication operations of the naturals, but such that 1+ 1 = 1. An interpretation
function of a formula ϕ ∈ FP, for a given valuation V , denoted [[ϕ]]V , is a function [[·]]V : FP → {0,1}
inductively defined by the following rules:

• [[p]]V =V (p), for each p ∈ P;

• [[⊥]]V = 0;

• [[(ϕ → ψ)]]V = (1− [[ϕ]]V)+ [[ψ]]V .

Lemma A.6. The following statements hold.

• [[(ϕ ∨ψ)]]V = [[ϕ]]V +[[ψ]]V ;

A. Ravara 9

• [[(ϕ ∧ψ)]]V = [[ϕ]]V × [[ψ]]V .
Definition A.7. Given a valuation V over P, the satisfaction of a formula ϕ ∈ FP by the valuation,
denoted V
 ϕ , is a relation containing the pair (V,ϕ), if [[ϕ]]V = 1.

Hereafter we use the following terminology.
Definition A.8. • Whenever V
 ϕ one says that ϕ is satisfied by V .

• Whenever it is not the case that V
 ϕ (i.e., ϕ is not satisfied by V), one may write V 6
 ϕ .

• Given Φ⊆ FP, one may write V
 Φ, whenever V
 ϕ for each ϕ ∈Φ.
Lemma A.9. The following statements hold.
• V 6
 ϕ if, and only if, V
 ¬ϕ

• V
 ϕ if, and only if, V 6
 ¬ϕ

Definition A.10. A formula ϕ ∈ FP is:
• satisfiable, if V
 ϕ , for some V ;

• valid (denoted |= ϕ), if V
 ϕ , for all V ;

• contradictory, if no V is such that V
 ϕ .
One may write 6|= ϕ , if ϕ is not valid. The notion of satisfiability also applies to sets of formulae: a

set Φ ⊆ FP is satisfiable, if there is a V that satisfies every formula in Φ; otherwise, the set is said to be
contradictory.
Lemma A.11. A formula that is not:
• valid, is either satisfiable or contradictory;

• contradictory, is either satisfiable or valid;

• satisfiable, is contradictory (as it cannot be valid).
Lemma A.12. The negation of a formula:
• valid, is contradictory;

• contradictory, is valid;

• satisfiable (not valid), is satisfiable.

Logical equivalence. There are syntactically different formulæthat evaluate to the same value, i.e., are
equivalent. To rigorously define the notion, we introduce first the idea a formula resulting from (or being
a semantic consequence of) a set of formulæ.
Definition A.13. Let Φ⊆ FP and ϕ ∈ FP. One may say that a formula ϕ is a semantic consequence of a
set of formulæ Φ, denoted by Φ |= ϕ , if whenever V
 Φ also V
 ϕ .
Proposition A.14. {ϕ1, . . . ,ϕn} |= ψ if, and only if, |= (ϕ1∧ . . .∧ϕn)→ ψ , for any n ∈ N.
Lemma A.15. The following statements hold.

1. {⊥} |= ϕ

2. {ϕ ∧ψ} |= ϕ and {ϕ ∧ψ} |= ψ

3. {ϕ} |= ϕ ∨ψ and {ψ} |= ϕ ∨ψ

Definition A.16. The formulae ϕ,ψ ∈FP are logically equivalent, denoted by ϕ ≡ψ , whenever {ϕ} |=ψ

if, and only if, {ψ} |= ϕ .
Theorem A.17. The binary relation ≡ on FP is a congruence relation.

10 A functional presentation and a correctness proof of the Horn algorithm

Conjunctive Normal Form.

Definition A.18. A literal is an atomic formula (said positive) or the negation of an atomic formula (said
negative).

Recall that > abv
= ¬⊥ (being thus a negative literal).

Lemma A.19. A disjunction of literals
∨n

i=1 Li, with n≥ 1, is valid if, and only if, there are 1≤ i, j ≤ n
such that Li => or Li = ¬L j.

Definition A.20. A formula ϕ ∈ FP is in Conjunctive Normal Form, if it is a conjunction of disjunctions
of literals.

Consider a predicate CNF such that CNF(ϕ) holds if ϕ is in conjunctive normal form.

Lemma A.21. A formula ϕ ∈ FP such that CNF(ϕ) is:

• valid, if all disjunctions are valid;

• contradictory, if some of the disjunctions are contradictory;

• satisfiable, otherwise.

Any propositional formula is convertible in an equivalent formula in conjunctive normal form.

Theorem A.22. For any formula ϕ ∈ FP there is a formula ψ ∈ FP such that ϕ ≡ ψ and moreover,
CNF(ψ).

B Conversion to Horn Formula

Any basic Horn clause may be presented as an implication (cf. Lemma 2.2).

Lemma B.1. Let L be a positive literal.

1. L≡>→ L

2.
∨n

i=1¬Li ≡ (
∧n

i=1 Li)→⊥

3.
∨n

i=1¬Li∨L≡ (
∧n

i=1 Li)→ L

Proof. We use below standard equivalences of Propositional Logic. Recall that logical equivalence is a
congruence relation.

1. L≡>→ L

L≡ L∨⊥
≡ L∨¬¬⊥
≡ L∨¬>
≡ ¬>∨L

≡>→ L

2.
∨n

i=1¬Li ≡ (
∧n

i=1 Li)→⊥ The proof is by natural induction, using the following law.

(ϕ → γ)∨ (ψ → γ)≡ (ϕ ∧ψ)→ γ

A. Ravara 11

Base case: n=1.
n∨

i=1

¬Li = ¬L1 ≡ ¬L1∨⊥≡ L1→⊥

Inductive step:

n+1∨
i=1

¬Li =
n∨

i=1

¬Li∨¬Ln+1 ≡ ((
n∧

i=1

Li)→⊥)∨ (Ln+1→⊥)≡ (
n+1∧
i=1

Li)→⊥

The proof of the auxiliar law is easy.

(ϕ ∧ψ)→ γ ≡ ¬(ϕ ∧ψ)∨ γ

≡ (¬ϕ ∨¬ψ)∨ γ

≡ (¬ϕ ∨¬ψ)∨ (γ ∨ γ)

≡ (¬ϕ ∨ γ)∨ (¬ψ ∨ γ)

≡ (ϕ → γ)∨ (ψ → γ)

3.
∨n

i=1¬Li∨L≡ (
∧n

i=1 Li)→ L

The proof is by natural induction.

Base case: n=1.
n∨

i=1

¬Li∨L = ¬L1∨L≡ L1→ L

Inductive step:

n+1∨
i=1

¬Li∨L≡ (
n∨

i=1

¬Li∨¬Ln+1)∨ (L∨L)

≡ (
n∨

i=1

¬Li∨L)∨ (¬Ln+1∨L)

≡ (
n∧

i=1

Li→ L)∨ (Ln+1→ L)

≡ (
n+1∧
i=1

Li)→ L

C Least Fixed-Point

We present here the proof of Lemma 3.1.

Lemma C.1. Let ϕ be a Horn formula, i.e., ϕ =
∧n

i=1(Ci→ Li). The function A is:

1. increasing: C ⊆A (ϕ,C)⊆ C ∪
⋃n

i=1{Li};
2. and monotone: if C ⊆D then A (ϕ,C)⊆A (ϕ,D).

12 A functional presentation and a correctness proof of the Horn algorithm

Proof. The proofs of both cases are so similar that we present them together. If A (ϕ,C) =C , the results
hold trivially. Otherwise, let C ′ =A (ϕ,C) and D ′ =A (ϕ,D). We proceed by natural induction on the
number of clauses in ϕ .

Base case: let ϕ = C→ L. Since set(C) ⊆ C (as A (ϕ,C) 6= C), then A (C→ L,C) = C ∪{L}. By
hypothesis C ⊆D , thus set(C)⊆D . Therefore, C ⊆ C ′ = C ∪{L} ⊆D ∪{L}= D ′, and thus A
is increasing and monotone.

Inductive step: let ϕ =C→ L∧
∧n+1

i=1 (Ci→ Li), where n≥ 0. Assume, without loss of generality, that
set(C)⊆ C . Then,

C ′ = A (ϕ,C) = A (
n+1∧
i=1

(Ci→ Li),C ∪{L})

If A (
∧n+1

i=1 (Ci → Li),C ∪ {L}) = C ∪ {L}, the results hold trivially. Otherwise, by induction
hypothesis,

1. C ∪{L} ⊆A (
∧n+1

i=1 (Ci→ Li),C ∪{L})⊆ C ∪{L}∪
⋃n

i=1{Li};
2. if C ∪{L} ⊆D ∪{L} then A (

∧n+1
i=1 (Ci→ Li),C ∪{L})⊆A (ϕ,D ∪{L}).

It is now simple to show the results. The function A is:

increasing - C ⊆ C ∪{L} ⊆ C ′ ⊆ C ∪{L}∪
⋃n

i=1{Li}; and

monotone - considering C ⊆ D , also C ∪{L} ⊆ D ∪{L}, and as D ⊆ D ∪{L}, we conclude
C ′ ⊆A (ϕ,D)⊆A (ϕ,D ∪{L}).

D Termination and complexity

Auxiliary notions. Henceforth, let ϕ =
∧n

i=1(Ci → Li), where n ≥ 1 be a Horn formula. Thus, each
set(Ci) is a set of positive literals. Recall that a Horn formula may be regarded as a set of clauses.3

Whenever ϕ ∈ EP is a Horn form such that ϕ = ϕ1 ∧ϕ2, we may write ϕ1 ⊆ ϕ . Then, for ψ ⊆ ϕ and
C ⊆ C ′, when we write A (ϕ,C) =k A (ψ,C ′), the equality ’=k’ denotes that the term on the right is
obtained from the term on the left by executing k steps of the algorithm.

Main result. Theorem 3.4 is in fact a corollary of the following general result.

Theorem D.1. For any Horn formula ϕ =
∧n

i=1(Ci→ Li) and any set C of literals such that {>} ⊆ C ⊆
{>}∪

⋃n
i=1 Li, there is a unique set of literals C ′ such that A (ϕ,C) = C ′. Furthermore, the function A

takes at most n+1 steps to yield C ′, where n is the number of clauses of ϕ .

Proof. We proceed by natural induction on the number of clauses in ϕ .

Base case: since ϕ is a single clause; then, either C => or C =
∧n

i=1 Li.

1. Case ϕ =>→ L; therefore, as > ∈ C by hypothesis, it is the case that

A (ϕ,C) = A (>,C ∪{L}) = C ∪{L}
3Any propositional formula in CNF determines univocally a set of sets of literals.

A. Ravara 13

2. Case ϕ =
∧n

i=1 Li→ L; therefore, as A (ϕ,C) = A (>,C ′) = C ′, where

C ′ =

{
C ∪{L}, if {Li | forall 1≤ i≤ n} ⊆ C
C , otherwise

In both cases the algorithm returns the result in two steps: one to analyse the clause and affect the
resulting set; another to finish the execution, using the base case of the inductive definition. Notice
that as n = 1, the execution of A takes exactly n+1 = 2 steps.

Inductive step: let ϕ =
∧n+1

i=1 (Ci → Li), where n ≥ 0; notice that each {Ci} is either {>} or a set of
literals. Considering ψ =

∧n
i=1(Ci→ Li), then ϕ = ψ ∧ (Cn+1→ Ln+1). Assume, without loss of

generality, that one chooses ψ such that

A (ϕ,C) =k A (ψ ′∧ (Cn+1→ Ln+1),C
′) = C ′′

where

1. 0≤ k ≤ n;
2. ψ ′ ⊆ ψ , i.e., it is a subset of clauses;

3. C′′ =
{

C ′∪{Li}, if {Ci} ⊆ C ′

C ′, otherwise

By induction hypothesis C ′ exists. Therefore, C ′′ exists and is obtained from C ′ in two steps.
Therefore, the execution of A takes k+2 steps and

k+2≤ n+2 = (n+1)+1.

E Unique least model

We present now the proof of Proposition 3.5. Let SMB(ϕ) denote the set of propositional symbols of the
formula ϕ , inductively defined on the productions generating the Propositional Language (cf. Definition
A.2). Notice first the following simple fact.

Lemma E.1. For any Horn formula ϕ ∈ EP, let A (ϕ,{>}) = C . Then C ⊆ P∪{⊥,>}.
Proposition E.2. For any Horn formula ϕ ∈ EP, let A (ϕ,{>}) = C and ⊥ /∈ C . Then, V
 ϕ consid-
ering V such that V (p) = 1 for each p ∈ C and V (q) = 0 for each q ∈ (P\C).

Proof. Let C = {>}∪{pi | 1≤ i≤ n, for some n≥ 0} (by the previous lemma). Using laws of Propo-
sitional Logic (in particular (ϕ→ ψ)∧ (ψ→ γ) |= ϕ→ γ), one easily shows that {ϕ} |=

∧n
i=1(>→ pi),

and thus, if V (pi) = 1 for each 1 ≤ i ≤ n, by definition of satisfaction (cf. Definition A.7), it is the case
that V
 ϕ .

F Correctness

F.1 Soundness

Lemma F.1. Let ϕ ∈ EP be in Horn formula such that ϕ = ψ ∧ (C→⊥) and ⊥ ∈ A (ϕ,{>}). Then,
{ϕ} |= (>→⊥), being thus contradictory.

14 A functional presentation and a correctness proof of the Horn algorithm

Proof. Using laws of Propositional Logic (in particular (ϕ→ ψ)∧ (ψ→ γ) |= ϕ→ γ , one easily shows
the result.

Theorem F.2.) For any Horn formula ϕ ∈ EP:

• ⊥ /∈A (ϕ,{>}), only if ϕ it is satisfiable;

• ⊥ ∈A (ϕ,{>}), only if ϕ it is contradictory.

Proof. The first statement is a consequence of Proposition 3.5. We prove the second statement. Since
by hypothesis, ⊥ ∈ A (ϕ,{>}), the contra-positive of Lemma 3.2 ensures that either ϕ = > → ⊥ or
there is a Horn formula γ such that ϕ = γ ∧ (Ci→⊥), for some 1≤ i≤ n. The case ϕ =>→⊥ yields
immediatly the result, as ϕ ≡⊥. Let us then consider the other case.

Let A (ϕ,{>}) =k A (ψ,C) with:

1. 0≤ k < n;

2. > ∈ C (by Lemma 1) and ⊥ /∈ C ;

3. ϕ = ϕ ′∧ψ and either ψ =>→⊥ or ψ = ψ ′∧ (Ci→⊥), for some Horn form ψ ′.

Assume, without loss of generality, that {Ci} ⊆ C ; then, by Lemma 1,

A (ψ,C) = A (ψ ′,C ∪{⊥})⊆ C ∪{⊥}

Since ϕ = ϕ ′∧ψ ′∧ (Ci→⊥), by Lemma F.1 we conclude that ϕ it is contradictory.

F.2 Completeness

Theorem F.3. For any Horn formula ϕ ∈ EP:

• ⊥ /∈A (ϕ,{>}), if ϕ it is satisfiable;

• ⊥ ∈A (ϕ,{>}), if ϕ it is contradictory.

Proof. The first statement is the contra-positive of the second statement of the previous theorem. The
second is the contra-positive of the first statement of the previous theorem.

	Motivation
	The Horn algorithm
	Horn Clauses
	A functional presentation of the algorithm

	Results
	Fixed-points
	Auxiliary and optimization lemmas
	Termination and complexity
	Correctness

	Conclusions
	The language of Propositional Logic
	Syntax
	Semantics

	Conversion to Horn Formula
	Least Fixed-Point
	Termination and complexity
	Unique least model
	Correctness
	Soundness
	Completeness

