
Formalizing Implicative Algebras in Coq

Étienne Miquey

Équipe Gallinette
Inria, LS2N (CNRS)

etienne.miquey@inria.fr

Abstract. We present a Coq formalization of Alexandre Miquel’s im-
plicative algebras [18], which aim at providing a general algebraic frame-
work for the study of classical realizability models. We first give a self-
contained presentation of the underlying implicative structures, which
roughly consist of a complete lattice equipped with a binary law rep-
resenting the implication. We then explain how these structures can be
turned into models by adding separators, giving rise to the so-called im-
plicative algebras. Additionally, we show how they generalize Boolean
and Heyting algebras as well as the usual algebraic structures used in
the analysis of classical realizability.

1 Introduction

Krivine classical realizability It is well-known since Griffin’s seminal work [10]
that a classical Curry-Howard correspondence can be obtained by adding control
operators to the λ-calculus. Several calculi were born from this idea, amongst
which Krivine λc-calculus [13], defined as the λ-calculus extended with Scheme’s
call/cc operator (for call-with-current-continuation). Elaborating on this cal-
culus, Krivine’s developed in the late 90s the theory of classical realizability [13],
which is a complete reformulation of its intuitionistic twin. Originally introduced
to analyze the computational content of classical programs, it turned out that
classical realizability also provides interesting semantics for classical theories.
While it was first tailored to Peano second-order arithmetic (i.e. second-order
type systems), classical realizability actually scales to more complex classical
theories, e.g. ZF [14], and gives rise to surprisingly new models. In particular, its
generalizes Cohen’s forcing [14,17] and allows for the direct definition of a model
in which neither the continuum hypothesis nor the axiom of choice hold [16].

Algebraization of classical realizability During the last decade, the study
of the algebraic structure of the models that classical realizability induces have
been an active research topic. This line of work was first initiated by Streicher,
who proposed the concept of abstract Krivine structure [24], followed by Ferrer,
Frey, Guillermo, Malherbe and Miquel who introduced other structures peculiar
to classical realizability [6,7,5,8,9]. In addition to the algebraic study of classical
realizability models, these works had the interest of building the bridge with
the algebraic structures arising from intuitionistic realizability. In particular,

Streicher showed in [24] how classical realizability could be analyzed in terms of
triposes [21], the categorical framework arising from intuitionistic realizability
models, while the later work of Ferrer et al. [6,7] connected it to Hofstra and Van
Oosten’s notion of ordered combinatory algebras [12]. More recently, Alexandre
Miquel introduced the elegant concepts of implicative structure and implicative
algebra[18]1, which appear to encompass the previous approaches and which we
present in this paper.

Implicative structures In addition to providing an algebraic framework con-
ducive to the analysis of classical realizability, an important feature of implica-
tive structures is that they allow us to identify realizers (i.e. λ-terms) and truth
values (i.e. formulas). Concretely, implicative structures are complete lattices
equipped with a binary operation a → b satisfying properties coming from the
logical implication. As we will see, they indeed allow us to interpret both the
formulas and the terms in the same structure. For instance, the ordering relation
a ≤ b will encompass different intuitions depending on whether we regard a and
b as formulas or as terms. Namely, a ≤ b will be given the following meanings:

– the formula a is a subtype of the formula b;

– the term a is a realizer of the formula b;

– the realizer a is more defined than the realizer b.

The last item corresponds to the intuition that if a is a realizer of all the formulas
of which b is a realizer, a is more precise than b, or more powerful as a realizer.

In terms of the Curry-Howard correspondence, this means that not only do
we identify types with formulas and proofs with programs, but we also identify
types and programs.

Implicative Algebras Because we consider formulas as realizers, any formula
will be at least realized by itself. In particular, the lowest formula ⊥ is realized.
While this can be dazzling at first sight, it merely reflects the fact that implicative
structures do not come with an intrinsic criterion of consistency. To overcome
this, we will introduce the notion of separator, which is similar to the usual notion
of filter for Boolean algebras. Implicative algebras will be defined as implicative
structures equipped with a separator. As we shall see, they capture the algebraic
essence of classical realizability models. In particular, we will embed both the
λc-calculus and its second-order type system in such a way that the adequacy
is preserved. Implicative algebras therefore appear to be the adequate algebraic
structure to study classical realizability and the models it induces.

Coq formalization The formalization of implicative algebras that we present in
this paper has been written using the Coq proof assistant. It was written during
the author’s PhD, as a way of (1) checking the correctness of implicative algebras

1 Independently, very similar structures can be found in Frédéric Ruyer’s Ph.D. the-
sis [22] under the name of applicative lattices.

2

properties (which, at the time, were neither published nor formally written with
their proofs), and (2) easing the further study of similar structures2.

Technically, it relies on Charguéraud’s locally nameless representation of λ-
terms [2]. and the corresponding LN library3, which was developed at the oc-
casion of the POPLmark challenge [1]. As for the different algebraic structures
evoked in the paper, we systematically represent them as classes using Sozeau-
Oury’s Class mechanism [23]. Interestingly, apart from the technical details men-
tioned above to define terms (and types), the formalization of the different results
mostly follows the corresponding pen and paper proofs.

Outline of the paper We begin by briefly recalling the structures of classical
realizability models in Section 2. We then present in Section 3 the concept of
implicative structures and explain how it generalizes well-known algebraic struc-
tures4. We then show in Section 4 how λc-terms and second-order types can be
adequately embedded within implicative structures. Finally, we introduce im-
plicative algebras in Section 5. We study their internal logic and finally explain
how they give rise to models. It should be clear to the reader that the notion of
implicative algebra and its properties are due to Alexandre Miquel [18].

The theorems in the paper are hyperlinked with their formalizations in the Coq
development5. Detailed proofs can be found in [19, Chapter 10] from which this
paper is partially taken.

2 Krivine classical realizability

Due to the lack of space, it is not possible to fully introduce here Krivine classi-
cal realizability and its models defined using the machinery of the λc-calculus6.
Rather than that, we choose to present it through the lenses of Streicher’s ab-
stract Krivine structures (AKS), which are merely an axiomatization of the
Krivine abstract machine for the λc-calculus viewed as an algebraic structure:

Definition 1. (AKS) An abstract Krivine structure is given by a septuple
(Λ,Π, app, push, k ,k, s, cc,PL,⊥⊥) where:

1. Λ and Π are non-empty sets, called the terms and the stacks of the AKS;
2. app : t, u 7→ tu is a function (called application) from Λ×Λ to Λ;
3. push : t, π 7→ t · π is a function (called push) from Λ×Π to Π;
4. k : π 7→ kπ is a function from Π to Λ (kπ is called a continuation);
5. k, s and cc are three distinguished terms of Λ;

2 Namely, one goal of the author’s PhD work was to define similar algebras based on
the decomposition of the implication as ¬A ∨B and ¬(A ∧ ¬B) (see [19]).

3 In doing so, our development implicitly relies on assumptions of functional and
propositional extensionnality, which we do not need nor use.

4 We will not recall the definition of lattices, Heyting algebras and so on, for a more
detailed introduction we refer the reader to [19, Chapter 9].

5 Available at https://gitlab.com/emiquey/ImplicativeAlgebras/.
6 For a detailed introduction on this topic, we refer the reader to [13] or [19].

3

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS
https://gitlab.com/emiquey/ImplicativeAlgebras/

6. ⊥⊥ ⊆ Λ ×Π (called the pole) is a relation between terms and stacks, also
written t ? π ∈ ⊥⊥. This relation fulfills the following axioms for all terms
t, u, v ∈ Λ and all stacks π, π′ ∈ Λ:

t ? u · π ∈ ⊥⊥ ⇒ tu ? π ∈ ⊥⊥
t ? π ∈ ⊥⊥ ⇒ k ? t · u · π ∈ ⊥⊥

tv(uv) ? π ∈ ⊥⊥ ⇒ s ? t · u · v · π ∈ ⊥⊥

t ? kπ · π ∈ ⊥⊥ ⇒ cc ? t · π ∈ ⊥⊥
t ? π ∈ ⊥⊥ ⇒ kπ ? t · π′ ∈ ⊥⊥

7. PL ⊆ Λ is a subset of Λ (whose elements are called the proof-like terms),
which contains k, s, cc and is closed under application.

Given any subset of stacks X ⊆Π (which we call a falsity value), we write X⊥⊥

for its orthogonal set with respect to the pole:

X⊥⊥ , {t ∈ Λ : ∀π ∈ X, t ? π ∈ ⊥⊥}
Orthogonality for subsets X ⊆ Λ (i.e. a truth value) is defined identically. In-
tuitively, classical realizability models are mainly given by the choice of the sets
⊥⊥ and PL together with the interpretation of formulas as falsity values. Valid
formulas are the one admitting a proof-like realizer, that is to say a term t ∈ PL
such that t ∈ ‖A‖⊥⊥ where ‖A‖ ∈ P(Π) is the falsity value of A.

3 Implicative structures

3.1 Definition

Intuitively, implicative structures are tailored to represent both the formulas of
second-order logic and realizers arising from Krivine’s λc-calculus. We shall see in
the sequel how they indeed allow us to define λ-terms, but let us introduce them
by focusing on their logical facet. We are interested in formulas of second-order
logic, that is to say of system F , which are defined by a simple grammar:

A,B ::= X | A⇒ B | ∀X.A
Implicative structures are therefore defined as meet-complete lattices (for the
universal quantification) with an internal binary operation satisfying the prop-
erties of the implication:

Definition 2. An implicative structure is a complete meet-semilattice (A,4)
equipped with a binary operation (a, b) 7→ (a→ b), called the implication of A ,
that fulfills the following axioms:

1. Implication is anti-monotonic with respect to its first operand and monotonic
with respect to its second operand, in the sense that for all a, a0, b, b0 ∈ A:

(Variance) If a0 4 a and b 4 b0 then (a→ b) 4 (a0 → b0).

2. Arbitrary meets distribute over the second operand of implication, in the
sense that for all a ∈ A and for all subsets B ⊆ A :

(Distributivity)
k

b∈B

(a→ b) = a→
k

b∈B

b

Remark 3. In the particular case where B = ∅, the axiom of distributivity
states that a→ > = > for all a ∈ A.

4

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#ImplicativeStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#arrow_bot

3.2 Examples of implicative structures

Complete Heyting algebras The first example of implicative structures is
given by complete Heyting algebras. Indeed, the axioms of implicative structures
are intuitionistic tautologies verified by any complete Heyting algebra. Therefore,
every complete Heyting algebra induces an implicative structure with the same
arrow:

Proposition 4. Every complete Heyting algebra is an implicative structure.

Proof. Since H is complete, by definition we have a→ b =
b
{x ∈ H : a∧x 4 b},

from which we deduce that a f c 4 b ⇔ a 4 c → b. The axioms defining
implicative structures are straightforward to prove using these observations.

The converse is obviously false, since the implication of an implicative struc-
ture A is in general not determined by the lattice structure of A. Besides, since
any (complete) Boolean algebra is in particular a (complete) Heyting algebra, a
fortiori any complete Boolean algebra induces an implicative structure:

Proposition 5. If B is a complete Boolean algebra, then B induces an implica-
tive structure where the implication is defined for all a, b ∈ B by a→ b , ¬ag b.

Dummy structures Given a complete lattice L, it is easy to check that the
following definitions induce dummy implicative structures:

Proposition 6. If L is a complete lattice, the following definitions give rise to
implicative structures: 1. a→ b , > 2. a→ b , b (for all a, b ∈ L)

Both definitions lead to implicative structures which are meaningless from
the point of view of logic. Nonetheless, they will provide us with useful counter-
examples.

Ordered combinatory algebras We recall the notion of ordered combinatory
algebra, abbreviated in OCA, which is a variant7 of Hofstra and Van Oosten’s
notion of ordered partial combinatory algebras [12]. Ferrer et al. structures to
represent Krivine realizability, called IOCA or KOCA, are particular cases of
OCA [6,7,5].

Definition 7. (OCA) An ordered combinatory algebra is given by a quintuple
(A,≤, app,k, s), where:

– ≤ is a partial order over A,
– app : (a, b) 7→ ab is a monotonic function8 from A×A to A,
– k ∈ A is such that kab ≤ a for all a, b ∈ A,
– s ∈ A is such that sabc ≤ ac(bc) for all a, b, c ∈ A.

7 In partial combinatory algebras, the application is defined as a partial function.
8 Observe that the application, which is written as a product, is neither commutative

nor associative in general.

5

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.HeytingAlgebras.html#CHA_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#CBA_IS
https://www.irif.fr/~emiquey/ITP/Dummies.html#dummy_imp_top
https://www.irif.fr/~emiquey/ITP/Dummies.html#dummy_imp_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.OCA.html#OCA

Given any ordered combinatory algebra, we can define an implication on the
complete lattice P(A) which give rise to an implicative structure:

Proposition 8. If A is an ordered combinatory algebra, then the complete lat-
tice P(A) equipped with the implication9 :

A→ B , {r ∈ A : ∀a ∈ A.ra ∈ B} (∀A,B ⊆ A)

is an implicative structure.

Proof. Both conditions (variance/distributivity) are trivial from the definition.

Implicative structure of classical realizability Our final example of im-
plicative structure—which is the main motivation of this work—is given by clas-
sical realizability. As we saw in Section 2, the construction of classical realiz-
ability models, whether it be from Krivine’s realizability algebras [14,15,16] in
a set-theoretic like fashion or in Streicher’s AKS [24], takes place in a structure
of the form (Λ,Π, ·,⊥⊥) where Λ is the set of realizers; Π is the set of stacks;
(·) : Λ ×Π → Π is a binary operation for pushing a realizer onto a stack and
⊥⊥ ⊆ Λ×Π is the pole. Given such a quadruple, we can define for all a, b ∈ A:

A , P(Π) a 4 b , a ⊇ b a→ b , a⊥⊥ · b = {t · π : t ∈ a⊥⊥, π ∈ b}

where as usual a⊥⊥ is {t ∈ Λ : ∀π ∈ a, (t, π) ∈ ⊥⊥} ∈ P(Λ), the orthogonal set of
a ∈ P(Π) with respect to the pole ⊥⊥. It is easy to verify that:

Proposition 9. The triple (A,4,→) is an implicative structure.

Proof. The proof is again trivial. Variance conditions correspond to the usual
monotonicity of truth and falsity values in Krivine realizability [13], while the
distributivity follows directly by unfolding the definitions.

4 Interpreting the λ-calculus

4.1 Interpretation of λ-terms

We motivated the definition of implicative structures with the aim of obtaining a
common framework for the interpretation both of types and programs. We shall
now see how λ-terms can indeed be defined in implicative structures.

From now on, let A = (A,4,→) denotes an arbitrary implicative structure.

9 This definition is related with the consttruction of a realizability tripos from an
OCA A. Indeed, given a set X, the ordering on predicates of P(A)X is defined by:

ϕ `X ψ , ∃r ∈ A.∀x ∈ X.∀a ∈ A.(a ∈ ϕ(x)⇒ ra ∈ ψ(x))

where r is broadly a realizer of ∀x ∈ X.ϕ(x)⇒ ψ(x). See [12] for further details.

6

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.OCA.html#OCA_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IS

Definition 10. (Application) Given two elements a, b ∈ A , we call the appli-
cation of a to b and write ab the element of A that is defined by:

ab ,
k
{c ∈ A : a 4 (b→ c)}.

If we think of the order relation a 4 b as “a is more precise than b”, the above
definition actually defines the application ab as the meet of all the elements
c such that b → c is an approximation of a. This definition fulfills the usual
properties of the λ-calculus:

Proposition 11. (Properties of application) For all a, a′, b, b′, c ∈ A :

1. If a 4 a′ and b 4 b′ , then ab 4 a′b′ (Monotonicity)
2. (a→ b)a 4 b (β-reduction)
3. a 4 (b→ ab) (η-expansion)
4. ab = min{c ∈ A : a 4 (b→ c)} (Minimum)
5. ab 4 c ⇔ a 4 (b→ c) (Adjunction)

Proof. Simple lattice manipulations using the properties of the arrow.

Remark 12. (Galois connection) The adjunction ab 4 c ⇔ a 4 (b → c)
expresses the existence of a family of Galois connections fb a gb indexed by all
b ∈ A, where the left and right adjoints fb, gb : A → A are defined by:

fb : a 7→ ab and gb : c 7→ (b→ c) (for all a, b, c ∈ A)

Recall that in a Galois connection, the left adjoint is fully determined by the
right one (and vice-versa). In the particular case of a complete Heyting algebra
(H,4,→), this implies that the application is characterized by ab = af b for all
a, b ∈ H. Indeed, in any Heyting algebra, the adjunction afb 4 c ⇔ a 4 (b→ c)
holds for all a, b, c ∈ H, by uniqueness of the left adjoint, ab and a f b are thus
equal.

Definition 13.(Abstraction) Given a function f : A → A, we call abstraction
of f and write λf the element of A defined by:

λf ,
k

a∈A
(a→ f(a))

Once again, if we think of the order relation a 4 b as “a is more precise than b”,
the meet of the elements of a set S is an element containing the union of all the
informations given by the elements of S. With this in mind, the above definition
sets λf as the union of all the step functions a→ f(a). This definition, together
with the definition of the application, fulfills again properties expected from the
λ-calculus:

Proposition 14. (Properties of the abstraction) The following holds for
any f, g : A → A:

1. If for all a ∈ A, f(a) 4 g(a), then λf 4 λg. (Monotonicity)

7

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_mon
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_beta
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_eta
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_min
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#adjunction
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.HeytingAlgebras.html#app_CHA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#abs
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#abs_mon

2. For all a ∈ A, (λf)a 4 f(a). (β-reduction)
3. For all a ∈ A, a 4 λ(x 7→ ax). (η-expansion)

Proof. Again, the proof consists in easy lattices manipulations.

We call λ-term with parameters (in A) any term defined from the following
grammar11:

t, u ::= x | a | λx.t | tu

where x is a variable and a is an element of A. We can thus associate to each
closed λ-term with parameters t an element tA of A, defined by induction on
the size of t as follows (where a ∈ A):

aA , a (tu)A , tAuA (λx.t)A , λ(a 7→ (t[a/x])A)

Thanks to the properties of the application and of the abstraction in implicative
structures that we proved, we can check that the embedding of λ-term is sound
with respect to the β-reduction:

Proposition 15. For all closed λ-terms t and u with parameters, if t −→β u,
then tA 4 uA.

Proof. By induction on the reduction t −→β u using Propositions 11 and 14.

Again, if we think of the order relation a 4 b as “a is more precise than b”, it
makes sense that the β-reduction t −→β u is reflected in the ordering tA 4 uA:
the result of a computation contains indeed less information than the computa-
tion itself10.

4.2 Adequacy

We now dispose of a structure in which we can interpret types and λ-terms. We
saw that the interpretation of terms was intuitively sound with respect to the
β-reduction. We shall now prove that the typing rules of System F are adequate
with respect to the interpretation of terms, that is to say that if t is a closed
λ-term of type T , then tA 4 TA. The last statement can again be understood
as the fact that a term (i.e. a computation) carries more information than its
type, just like a realizer of a formula is more informative about the formula than
the formula itself.

Adequacy of the interpretation We shall now sketch the formalization of
the former result. First, we extend the usual formulas of System F by defining
second-order formulas with parameters as:

A,B ::= a | X | A⇒ B | ∀X.A (a ∈ A)

10 For instance, 0 contains less information than 15− (3× 5) or than 1Q(
√

(2)).

8

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#betarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#etarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#imp_betared

We can then embed closed formulas with parameters into the implicative struc-
ture A. The embedding is trivially defined by:

aA , a (A⇒ B)A , AA → BA (∀X.A)A ,
c
a∈A(A{X := a})A

where a ∈ A. We define a type system for the λc-calculus with parameters11

(that is λ-terms with parameter plus an instruction cc). Typing contexts are
defined as usual by finite lists of hypotheses of the shape (x : A) where x is a
variable and A a formula with parameters. The inference rules, given in Figure 1,
are the same as in System F (with the extended syntaxes of terms and formulas
with parameters), plus the additional rules for cc.

In order to prove the adequacy of the type system with respect to the embed-
ding, we define substitutions, which we write σ, as functions mapping variables
(of terms and types) to element of A:

σ ::= ε | σ[x 7→ a] | σ[X 7→ a] (a ∈ A, x,X variables)

In the spirit of the proof of adequacy in classical realizability, we say that a
substitution σ realizes a typing context Γ , which we write σ Γ , if for all
bindings (x : A) ∈ Γ we have σ(x) 4 (A[σ])A.

Theorem 16. (Adequacy) The typing rules of Figure 1 are adequate with
respect to the interpretation of terms and formulas: if t is a λc-term with param-
eters, A a formula with parameters and Γ a typing context such that Γ ` t : A
then for all substitutions σ Γ , we have (t[σ])A 4 (A[σ])A.

Proof. The proof resembles the usual proof of adequacy in classical realizability
(see [13,19]), namely by induction on typing derivations.

Corollary 17. For all λ-terms t, if ` t : A, then tA 4 AA.

4.3 Combinators

The previous results indicate that any closed λ-term is, through the interpreta-
tion, lower than the interpretation of its principal type. We give here some ex-
amples of closed λ-terms which are in fact equal to their principal types through
the interpretation in A. Let us now consider the following combinators:

i , λx.x k , λxy.x s , λxyz.xz(yz) w , λxy.xyy

11 In practice, we use Charguéraud’s locally nameless representation [2] for terms and
formulas. Without giving too much details, we actually define pre-terms and pre-
types which allow both for names (for free variables) and De Bruijn indices (for
bounded variables). Terms and types are then defined as pre-terms and pre-types
without free De Bruijn indices. As for the embedding from pre-terms (resp. pre-
types) into an implicative structure, we define them by means of inductive predicates:
Inductive translated : trm �X � Prop := ... for which we proved the expected
properties.

9

https://www.irif.fr/~emiquey/ITP/Lambda.html#env
https://www.irif.fr/~emiquey/ITP/Adequacy.html#substitution
https://www.irif.fr/~emiquey/ITP/Adequacy.html#realize
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy_empty
https://www.irif.fr/~emiquey/ITP/Lambda.html#trm
https://www.irif.fr/~emiquey/ITP/Lambda.html#typ
https://www.irif.fr/~emiquey/ITP/Lambda.html#typ
https://www.irif.fr/~emiquey/ITP/Lambda.html#term
https://www.irif.fr/~emiquey/ITP/Lambda.html#type

(x : A) ∈ Γ
Γ ` x : A

Γ, x : A ` t : B

Γ ` λx . t : A→ B
Γ ` t : A→ B Γ ` t : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀X.A

(X/∈FV (Γ))
Γ ` t : ∀X.A

Γ ` t : A{X := B} Γ ` cc : ((A→ B)→ A)→ A

Fig. 1. Second-order type system for the λc-calculus

It is well-known that these combinators can be given the following polymorphic
types:

i : ∀X.X ⇒ X
k : ∀XY.X ⇒ Y ⇒ X

s : ∀XY Z.(X ⇒ Y ⇒ Z)⇒ (X ⇒ Y)⇒ X ⇒ Z
w : ∀XY.(X ⇒ X ⇒ Y)⇒ X ⇒ Y

Through the interpretation these combinators are identified with their types:

Proposition 18. The following equalities hold in any implicative structure A:

1. iA =
c
a∈A(a→ a)

2. kA =
c
a,b∈A(a⇒ b⇒ a)

3. sA =
c
a,b,c∈A((a→ b→ c)→ (a→ b)→ a→ c)

4. wA =
c
a,b,c∈A((a→ a→ b)→ a→ b)

Proof. The inequality from left to right are consequences of the adequacy. The
converse inequalities are proved by hands, using the properties of application
and abstraction in implicative structures (Propositions 11 and 14).

Finally, in the spirit of the previous equalities, we define the interpretation of cc
by the interpretation of its principal type, that is:

ccA ,
k

a,b

(((a→ b)→ a)→ a)

Remark 19. It is not always the case that a term is equal to its principal type.
Consider for instance a dummy implicative structure A where a→ b = > for all
elements a, b ∈ A. Suppose in addition that A has at least two distinct elements,
so that ⊥ 6= >. Then the following holds:

1. For any a, b ∈ A, we have ab =
c
{c : a 4 b→ c} =

c
A = ⊥.

2. For any f : A → A, we have λf =
c
a∈A(a→ f(a)) =

c
a∈A> = >.

3. ii : ∀X.X → X, yet (ii)A = ⊥ 6= > = (∀X.X → X)A.
4. iA = > 6= ⊥ = (skk)A.

4.4 The problem of consistency

The last remark shows us that not all implicative structures are suitable for
interpreting intuitionistic or classical logic. We thus need to introduce a criterion
of consistency.

10

https://www.irif.fr/~emiquey/ITP/Lambda.html#typing_trm
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_Id
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_W
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#dummy_top_app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#dummy_top_abs
https://www.irif.fr/~emiquey/ITP/Dummies.html#II_neq_I
https://www.irif.fr/~emiquey/ITP/Dummies.html#I_neq_SKK_dum

Definition 20. (Consistency) We say that an implicative structure is:

– intuitionistically consistent if tA 6= ⊥ for all closed λ-terms;
– classically consistent if tA 6= ⊥ for all closed λc-terms.

We shall now relate the previous definition to the usual definition of consis-
tency in classical realizability models. Recall that any abstract Krivine struc-
ture K = (Λ,Π, app, push, k ,k, s, cc,PL,⊥⊥) induces an implicative structure
(A,4,→) where A = P(Π), a 4 b⇔ a ⊇ b and a→ b = a⊥⊥ · b. A realizability
model is said to be consistent when there is no proof-like term realizing ⊥. In
terms of abstract Krivine structures, the consistency can then be expressed by
this simple criterion:

K is consistent if and only if {⊥}⊥⊥ ∩PL = Π⊥⊥ ∩PL = ∅

We thus need to check that this criterion of consistency for the AKS implies the
consistency of the induced implicative structure, i.e. that if t is a closed λc-term,
then tA 6= ⊥. By definition of the implicative structure A induced by K, we have
that tA ∈ A = P(Π). Therefore, tA is a falsity value from the point of view of
the AKS. To ensure that it is not equal to ⊥ (i.e. Π), it is enough to find a
realizer of tA in K. The consistency of K precisely states that ⊥ does not have
any realizer.

Our strategy to find a realizer for tA in K is to use t itself. First, we reduce
the problem to the set of terms that are identifiable with the combinatory terms
of K. We call a combinatory term any term that is obtained by combination of
the combinators (k, s, cc). To each combinatory term t we associate a term tΛ

in Λ, whose definition by induction is trivial:

kΛ , k sΛ , s ccΛ , cc (tu)Λ , app(tΛ, uΛ)

Since the set PL is closed under application, for any combinatory term t, its in-
terpretation tΛ is in PL. The combinatory completeness of (k, s, cc) with respect
to closed λc-terms ensures us that there exists a combinatory term t0 (viewed
as a λ-term) such that t0 −→β t. By Proposition 15, we thus have tA0 4 tA. It
is thus enough to show that tA0 6= ⊥: we reduced the original problem for closed
λc-terms to combinatory terms.

It only remains to show that for any combinatory term t0, its interpretation
tA0 is not ⊥. For the reasons detailed above, it is sufficient to prove that tA0 is
realized. We prove that tA0 is in fact realized by tΛ0 :

Lemma 21. For any combinatory term t, tΛ realizes tA, i.e. tΛ tA

Proof. By induction on the structure of t, by combining usual results of classical
realizability and properties of implicative structures.

We can thus conclude that the consistency of K induces the one (in the sense
of Definition 20) of the associated implicative structure:

Proposition 22. If K is a consistent abstract Krivine structure, then the im-
plicative structure it induces is classically consistent.

11

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#Kreal

Proof. Let t be any closed λc-term. We want to show that tA 6= ⊥ = Π. We
show that tA, which belongs to P(Π) is realized by a proof-like term.

It is worth noting that the criterion of consistency is defined with respect to
the set PL together with the pole. These sets are already at the heart of the
definition of Krivine’s realizability models, where valid formulas are precisely the
formulas realized by a proof-like term. We shall then introduce the corresponding
ingredient for implicative structures.

5 Implicative algebras

5.1 Separation

Definition 23. (Separator) Let (A,4,→) be an implicative structure. We call
a separator over A any set S ⊆ A such that for all a, b ∈ A, the following
conditions hold:

1. kA ∈ S, and sA ∈ S. (Combinators)
2. If a ∈ S and a 4 b, then b ∈ S. (Upwards closure)
3. If (a→ b) ∈ S and a ∈ S, then b ∈ S. (Closure under modus ponens)

A separator S is said to be classical if ccA ∈ S and consistent if ⊥ /∈ S.

Remark 24. (Alternative definition) In presence of condition (2), it is easy
to show that condition (3) is equivalent to the following condition:

(3’) If a ∈ S and b ∈ S then ab ∈ S. (Closure under application)

Intuitively, thinking of elements of an implicative structure as truth values, a
separator should be understood as the set which distinguishes the valid formulas.
Considering the elements as terms, it should rather be viewed as the set of valid
realizers. Indeed, conditions (1) and (3’) ensure that all closed λ-terms are in
any separator. Reading a 4 b as “the formula a is a subtype of the formula
b”, condition (2) ensures the validity of semantic subtyping. Thinking of the
ordering as “a is a realizer of the formula b”, condition (2) states that if a
formula is realized, then it is in the separator.

Definition 25.(Implicative algebra) We call implicative algebra any quadru-
ple (A,4,→,S) where (A,4,→) is an implicative structure and S is a separator
over A. We say that an implicative algebra is classical if its separator is.

Example 26. (Complete Boolean algebras) It is easy to verify that for
any complete Boolean algebra B, combinators are interpreted by the maximal
element in the induced implicative structure: kB = sB = ccB = >. Therefore, the
singleton {>} is a classical separator for the induced implicative structure. Any
non-degenerated complete Boolean algebras thus induces a classically consistent
implicative algebra.

Example 27. (Abstract Krivine structure) Recall that any AKS induces
an implicative structure (A,4,→) where A = P(Π), a 4 b ⇔ a ⊇ b and
a→ b = a⊥⊥ ·b. The set of realized formulas, namely S = {a ∈ A : a⊥⊥∩PL 6= ∅},
defines a valid separator.

12

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#separator
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#mod_pon_app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ImplicativeAlgebra
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#BA_IA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IA

5.2 λc-terms

The first property that we shall state about classical separators is that they
contain the interpretation of all closed λc-terms. This follows again from the
combinatory completeness of the basis (k, s, cc) for the λc-calculus12. Indeed, if
S is a classical separator over an implicative structure (A,4,→), it is clear that
any combinatory term is in the separator. Again, by combinatory completeness,
if t is a closed λc-term, there exists a combinatory term t0 such that t0 −→β t,
and therefore tA0 4 t

A (by Proposition 15). By upward closure of separators, we
deduce that:

Proposition 28. If (A,4,→,S) is a (classical) implicative algebra and t is a
closed λ-term (resp. λc-term), then tA ∈ S.

From the previous proposition and the adequacy of second-order typing rules
for the λc-calculus (Theorem 16), we obtain that:

Corollary 29. If (A,4,→,S) is a (classical) implicative algebra, t is a closed
λ-term (resp. λc-term) and A is a formula such that ` t : A, then AA ∈ S.

Remark 30. The latter corollary provides us with a methodology for proving
that an element of a given implicative algebra is in the separator. In the spirit of
realizability, where the standard methodology to prove that a formula is realized
consists in using typed terms and adequacy as much as possible, we can use
typed terms to prove automatically that the corresponding formulas belongs to
the separator. We shall use this methodology abundantly in the sequel. In the
Coq development, this corresponds to a tactic called realizer which allows us
to prove that an element belongs to the separator simply by furnishing a realizer:

Lemma composition: ∀ a b c, (a 7→ b) 7→ (b 7→ c) 7→ a 7→ c ∈ S
Proof. intros. realizer ((λ+ λ+ λ+([$1] ([$2] $0)))). Qed. (** λxyz.y(xz) *)

5.3 Internal logic

In order to be able to define triposes from implicative algebras, the first step is
to equip them with a structure of Heyting algebra. To this end, we begin with
defining an entailment relation in the spirit of filtered OCAs [12]. We then define
quantifiers and connectives as usual in classical realizability (see [13]), and we
verify that they satisfy the usual logical rules. In the rest of this section, we work
within a fixed implicative algebra (A,4,→,S).

Definition 31.(Entailment) For all a, b ∈ A, we say that a entails b and write
a `S b if a → b ∈ S. We say that a and b are equivalent and write a ∼=S b if
a `S b and b `S a.

Proposition 32. (Properties of `S) For any a, b, c ∈ A, the following holds:

1. a `S a (Reflexivity)

12 In order to avoid the certification of the corresponding compilation function, we state
this well-known fact as an axiom (the only one) in our development.

13

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sep_sclosed
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sep_typ
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#composition
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#realizer
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_refl

2. If a `S b and b `S c then a `S c. (Transitivity)
3. If a 4 b then a `S b. (Subtyping)
4. If a ∼=S b, then a ∈ S if and only if b ∈ S. (Closure under ∼=S)
5. If a `S b→ c then af b `S c. (Half-adjunction property)
6. ⊥ `S a (Ex falso quod libet)
7. a `S > (Maximal element)

Proof. Straightforward from the definitions, using λxyz.y(xz) to realize the sec-
ond item and λxy.xyy to realize the fifth.

Besides, the entailment relation behaves like Heyting’s arrow with respect to
the preorder relation `S in terms of monotonicity:

Proposition 33. (Compatibility with →) For all a, a′, b, b′ ∈ A, we have:

1. If b ` b′ then a→ b ` a→ b′. 2. If a ` a′ then a′ → b ` a→ b.

Proof. Direct using λxyz.x(yz) and λxyz.y(xz) as realizers.

Negation We define the negation by ¬a , a→ ⊥. If the separator is classical,
we can prove that for any a ∈ A, we have:

Proposition 34. (Double negation) If S is a classical separator, for any
a ∈ A we have: 1. a `S ¬¬a 2. ¬¬a `S a

Proof. The first item is realized by λxk.kx, while the second follows from the
inequality ((a → ⊥) → a) → a 4 ((a → ⊥) → ⊥) → a, whose left member is
realized by cc.

Quantifiers Following the usual definitions in classical realizability (see [13,19]),
the universal quantification of a family of truth values is naturally defined as its
meet while the existential quantification is defined through a negative encoding:

∀
i∈I

ai ,
k

i∈I
ai ∃

i∈I
ai ,

k

c∈A
(
k

i∈I
(ai → c)→ c)

While it could have seemed more natural to define existential quantifiers
through joins, we should recall that the arrow does not commute with joins in
general13. It is clear that these definitions are compatible with the expected
semantic rules:

Proposition 35. (Universal quantifier) The following semantic typing rules
are valid in any implicative structures:

Γ ` t : ai for all i ∈ I
Γ ` t : ∀i∈I ai

Γ ` t : ∀i∈I ai i0 ∈ I
Γ ` t : ai0

13 When it does, the realizability tripos actually collapses to a forcing tripos, see [18,19].

14

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_trans
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#subtyping
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#equiv_sep
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_half_adj
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#exfalso_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#true_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#arrow_entails_mon_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#arrow_entails_mon_l
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#dni
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#dne
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_fa_intro

Proposition 36.(Existential quantifier) The following semantic typing rules
are valid in any implicative structures:

Γ ` t : ai0 i0 ∈ I
Γ ` λx.xt : ∃i∈I ai

Γ ` t : ∃i∈I ai Γ, x : ai ` u : c (for all i ∈ I)

Γ ` t(λx.u) : c

Proof. Straightforward using the adjunction of the application (Proposition 11).

Sum and product We define it by the usual encodings in System F:

a× b ,
k

c∈A
((a→ b→ c)→ c) a+ b ,

k

c∈A
((a→ c)→ (b→ c)→ c)

Recall that the pair 〈a, b〉 is encoded by the λ-term λx.xab, while first and second
projections are respectively defined by π1 , λxy.x and π2 , λxy.y. We can check
that the expected semantic typing rules are valid

Proposition 37. (Product) The following semantic typing rules are valid:

Γ ` t : a Γ ` u : b
Γ ` λz.ztu : a× b

Γ ` t : a× b
Γ ` tπ1 : a

Γ ` t : a× b
Γ ` tπ2 : b

Proposition 38. (Sum) The following semantic typing rules are valid:

Γ ` t : a
Γ ` λlr.lt : a+ b

Γ ` t : b
Γ ` λlr.rt : a+ b

Γ ` t : a1 + a2 Γ, xi : ai ` ui : c

Γ ` t(λx1.u1)(λx2.u2) : c

Proof. Straightforward lattices manipulations, similar to the proof for the exis-
tential quantifier.

The natural candidate to computationally represents a “meet” of a and b is
the product type a× b. We can verify that it satisfies the expected property (in
Heyting algebras) with respect to the arrow:

Proposition 39. (Adjunction) For any a, b, c ∈ A, we have a `S b → c if
and only if a× b `S c.

Proof. Both directions are proved using the expected realizer and subtyping:
from left to right, we use λxy.yx to realize (a→ b→ c)→ a× b→ c; from right
to left, we realize (a× b→ c)→ a→ b→ c with λpxy.p(λz.zxy).

5.4 Implicative tripos

It is clear from the properties of implicative algebras presented in the last sec-
tions that the entailment relation together with the sum and products induce a
structure of Heyting prealgebra (indeed, the entailment relation only defines a
preorder). By considering the quotientA/∼=S of the former Heyting prealgebra by
the relation ∼=S , and lifting the previous definitions of connectives and quantifiers

15

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_ex_intro
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_pair
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sumt
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ha_adjunction

to equivalence classes, we thus obtain a Heyting algebra14. This construction is
actually the main step towards the definition of the implicative tripos [18,19],
which allows us to recover the usual categorical interpretation of realizability
models. In particular, it provides us with a framework in which simple criteria
allows us to compare classical realizability and forcing models.

6 Conclusion & future work

6.1 Conclusion

We presented in this paper Miquel’s concept of implicative algebra [18], that relies
on the primitive notion of implicative structure. These structures are defined as a
particular class of meet-complete lattices equipped with an arrow, where this ar-
row satisfies commutations with arbitrary meets which are the counterpart of the
logical commutation between the universal quantification and the implication.
We showed that implicative algebras are a generalization Streicher’s AKSs [24]
and Ferrer et al.’s KOCAs [6,7]. Besides, they provide us with a framework in
which both λc-terms and their types can be interpreted. This has the nice con-
sequence that we really consider the elements of the implicative structure as
λc-terms and that we can compute with truth values. Through the formaliza-
tion, this is reflected by a tactic allowing us to prove that elements belong to
the separator simply by furnishing realizers.

6.2 Future work

For future work, it would be interesting to push the formalization further to
be able to represent implicative triposes. However, this poses the challenge of
manipulating quotients and equivalent classes. The safe definition of quotients
within CIC (and thus Coq) is indeed a tricky question [11,3,4], and as for now,
we do not know which solution (reasoning modulo setoids, quotient as types
classes, etc.) would be the more adapted to our situation.

In a more theoretic perspective, implicative algebras take position on a pre-
sentation of logic through universal quantification and the implication. The com-
putational counterpart of this choice is that the presentation relies on the call-
by-name λc-calculus. This raises the question of knowing whether it is possible
to have alternative presentations with similar structures based on different con-
nectives (and thus different calculi). We partially undertook this investigation
in [19] by studying different presentations based on disjunctive and conjunctive
connectives and related Munch-Maccagnoni’s system L [20]. Yet, the equivalence
between all presentations still remains to prove.

Acknowledgments The author wishes to thank Assia Mahboubi for pushing him
to write the current paper.

14 If the implicative algebra is classical, for all a ∈ A we saw that ¬¬a ∼=S a. Through
the same quotient, this implies that ¬¬[a] = [a] for all a ∈ A, and that the induced
Heyting algebra is actually a Boolean algebra.

16

References

1. The poplmark challenge, https://www.seas.upenn.edu/~plclub/poplmark/

2. Charguéraud, A.: The locally nameless representation. Journal of Automated Rea-
soning 49(3), 363–408 (Oct 2012). https://doi.org/10.1007/s10817-011-9225-2

3. Chicli, L., Pottier, L., Simpson, C.: Mathematical Quotients and Quotient Types in
Coq. In: Geuvers, H., Wiedijk, F. (eds.) Types for Proofs and Programs. pp. 95–107.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-
540-39185-1 6

4. Cohen, C.: Types quotients en coq. In: Hermann (ed.) Actes des 21ème journées
francophones des langages applicatifs (JFLA 2010). INRIA, Vieux-Port La Ciotat,
France (2010), http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf

5. Ferrer, W., Malherbe, O.: The category of implicative algebras and realizability.
ArXiv e-prints (Dec 2017), https://arxiv.org/abs/1712.06043

6. Ferrer Santos, W., Guillermo, M., Malherbe, O.: Realizability in OCAs and AKSs.
ArXiv e-prints (2015), https://arxiv.org/abs/1512.07879

7. Ferrer Santos, W., Frey, J., Guillermo, M., Malherbe, O., Miquel, A.: Ordered com-
binatory algebras and realizability. Mathematical Structures in Computer Science
27(3), 428–458 (2017). https://doi.org/10.1017/S0960129515000432

8. Frey, J.: Realizability Toposes from Specifications. In: Altenkirch, T. (ed.) 13th In-
ternational Conference on Typed Lambda Calculi and Applications (TLCA 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 38, pp. 196–210.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015).
https://doi.org/10.4230/LIPIcs.TLCA.2015.196

9. Frey, J.: Classical realizability in the cps target language. Electronic Notes
in Theoretical Computer Science 325(Supplement C), 111 – 126 (2016).
https://doi.org/10.1016/j.entcs.2016.09.034, the Thirty-second Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXII)

10. Griffin, T.G.: A formulae-as-type notion of control. In: Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 47–58. POPL ’90, ACM, New York, NY, USA (1990).
https://doi.org/10.1145/96709.96714

11. Hofmann, M.: Extensional Concepts in Intensional Type Theory. Ph.D. thesis,
University of Edinburgh (1995)

12. Hofstra, P., Van Oosten, J.: Ordered partial combinatory algebras. Mathemati-
cal Proceedings of the Cambridge Philosophical Society 134(3), 445–463 (2003).
https://doi.org/10.1017/S0305004102006424

13. Krivine, J.L.: Realizability in classical logic. In Interactive models of computation
and program behaviour. Panoramas et synthèses 27 (2009)

14. Krivine, J.L.: Realizability algebras: a program to well order r. Logical Methods
in Computer Science 7(3) (2011). https://doi.org/10.2168/LMCS-7(3:2)2011

15. Krivine, J.L.: Realizability algebras II : new models of ZF + DC. Logical Meth-
ods in Computer Science 8(1), 10 (Feb 2012). https://doi.org/10.2168/LMCS-
8(1:10)2012, 28 p.

16. Krivine, J.L.: Quelques propriétés des modèles de réalisabilité de ZF (Feb 2014),
http://hal.archives-ouvertes.fr/hal-00940254

17. Miquel, A.: Existential witness extraction in classical realizability and via a neg-
ative translation. Logical Methods in Computer Science 7(2), 188–202 (2011).
https://doi.org/10.2168/LMCS-7(2:2)2011

17

https://www.seas.upenn.edu/~plclub/poplmark/
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/3-540-39185-1_6
https://doi.org/10.1007/3-540-39185-1_6
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
https://arxiv.org/abs/1712.06043
https://arxiv.org/abs/1512.07879
https://doi.org/10.1017/S0960129515000432
https://doi.org/10.4230/LIPIcs.TLCA.2015.196
https://doi.org/10.1016/j.entcs.2016.09.034
https://doi.org/10.1145/96709.96714
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.2168/LMCS-7(3:2)2011
https://doi.org/10.2168/LMCS-8(1:10)2012
https://doi.org/10.2168/LMCS-8(1:10)2012
http://hal.archives-ouvertes.fr/hal-00940254
https://doi.org/10.2168/LMCS-7(2:2)2011

18. Miquel, A.: Implicative algebras: a new foundation for realizability and forcing.
ArXiv e-prints (2018), https://arxiv.org/abs/1802.00528

19. Miquey, É.: Classical realizability and side-effects. Theses, Univ.é Paris
Diderot ; Univ. de la República, Uruguay (Nov 2017), https://hal.inria.fr/

tel-01653733

20. Munch-Maccagnoni, G.: Focalisation and Classical Realisability. In: Grädel, E.,
Kahle, R. (eds.) Computer Science Logic ’09. Lecture Notes in Computer Science,
vol. 5771, pp. 409–423. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04027-6 30

21. Pitts, A.M.: Tripos theory in retrospect. Mathematical Structures in Computer
Science 12(3), 265–279 (2002). https://doi.org/10.1017/S096012950200364X

22. Ruyer, F.: Proofs, Types and Subtypes. Ph.D. thesis, Université de Savoie (Nov
2006), https://tel.archives-ouvertes.fr/tel-00140046

23. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) Theorem Proving in Higher Order Logics. pp. 278–293. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
71067-7 23

24. Streicher, T.: Krivine’s classical realisability from a categorical perspec-
tive. Mathematical Structures in Computer Science 23(6), 1234–1256 (2013).
https://doi.org/10.1017/S0960129512000989

18

https://arxiv.org/abs/1802.00528
https://hal.inria.fr/tel-01653733
https://hal.inria.fr/tel-01653733
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1017/S096012950200364X
https://tel.archives-ouvertes.fr/tel-00140046
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1017/S0960129512000989

	Formalizing Implicative Algebras in Coq

