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Abstract. Advances in theorem proving have enabled the emergence
of a variety of formal developments that, over the years, have resulted
in large corpuses of formalizations. For example, the NASA PVS Li-
brary is a collection of 55 formal developments written in the Prototype
Verification System (PVS) over a period of almost 30 years and con-
taining more than 28000 proofs. Unfortunately, the simple accumulation
of formal developments does not guarantee their reusability. In fact, in
formal systems with very expressive specification languages, it is often
the case that a particular conceptual object is defined in different ways.
This paper presents a technique to establish sound connections between
formal definitions. Such connections support the possibility of (partial)
borrowing of proved results from one formal description into another,
improving the reusability of formal developments. The technique is de-
scribed using concepts from the field of universal algebra and algebraic
specification. The technique is illustrated with concrete examples taken
from formalizations available in the NASA PVS Library.

1 Introduction

Proof assistants have been actively used for decades now. Advances in formal
verification techniques have enabled their use in the development cycle of critical
systems. The routine use of proof assistants in some domains has resulted in the
generation of a large number of formalizations. This generation of content can be
seen as an unguided collective effort, since it includes the work of very different
actors, from purely academic environments to industrial organizations. Thus,
each formalization is biased by the particular background, goals, and style of its
creators and the subtleties of each theorem prover.

With the aim of promoting the reuse of existing efforts, large corpuses of
formal models have been created and augmented by accumulating individual en-
deavors. For instance, the NASA PVS Library4 is a collection of formal models
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written in the Prototype Verification System (PVS) [1] and maintained by the
NASA Langley Formal Methods Team. While this library is extensively used at
NASA and other places, it falls short in reusability. This is often the case of
formal systems featuring powerful formalisms such as higher-order logic. In such
settings, the same conceptual object can be described in different and, some-
times, incompatible ways. While some of these differences can be avoided, they
are often intentional. For example, a particular way of stating some definition
could help the construction of a proof for a specific property, but could make
the definition not suitable for computation. Examples of this phenomenon arise
naturally when working with structured data types. Depending on the objectives
of a particular project, it may be more convenient to represent a graph with a
set of nodes and a set of edges, while in a different context, it may be preferable
to use an adjacency list instead. Several examples of multiple definitions for the
same conceptual element can be found in the NASA PVS Library.

This paper proposes a technique for (1) stating a formal connection be-
tween (parts of) different specifications, which provide the same functionality,
and (2) supporting the transference of properties (and their proofs) between
these specifications. From a practical point of view, the proposed technique im-
proves the possibility of reuse of existing developments. This technique has the
following distinguishing features: it is explicitly verifiable, since it provides a for-
mal proof of the correctness of the link between definitions that can be checked
in the same environment (PVS), it is nonintrusive, since its use does not require
any modification of existing developments, it is automatable, since most of the
steps of the proposed technique are suitable for automation, and it is general
enough to deal with cases that could not be adressed by similar techniques.

The rest of the paper is devoted to the description of the representation
technique and the illustration of its use by means of a practical case study. In
Section 2, basic definitions are presented in order to state the notation to be used
in the following sections. Section 3 describes formally the datatype connection
technique. A real case study with significative practical consequences is detailed
in Section 4. Section 5 discusses related work. Finally, Section 6 summarizes the
results and discusses further work.

2 Preliminary Definitions

Most of the definitions and results presented in this section are taken and adapted
from [2, 3]. The formalism used throughout the rest of the paper is based on
higher-order logic and its syntax and semantics follows mainly [4].

A concrete PVS specification is used to illustrate the notions and concepts
introduced in this and the next section. PVS supports a strongly-typed higher-
order language with several additional features intended to provide the user with
a rich set of tools for the formalization of concepts. Regarding datatype defini-
tions, PVS includes built-in support for structured, algebraic, and enumeration
types, among other characteristics. As in the vast majority of modern comput-
erized deduction systems, specifications in PVS must be grouped in syntactic



fseqs [T: TYPE+]: THEORY BEGIN

[. . .]

default: T = choose({t:T | TRUE})

barray(n: nat): TYPE = {f: [nat->T] |

FORALL (i: nat): i >= n => f(i) = default}

fseq:TYPE = [#length:nat, seq:barray(length)#]

empty? fseq(f): bool = (f‘length = 0)

[. . .]

END fseqs

list [T: TYPE]: DATATYPE BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

Fig. 1. Fragments of different PVS theories representing finite-sized containers. Left:
finite sequences (NASA PVS Library). Right: finite lists (PVS Prelude).

constructions called theories. A comprehensive battery of theories containing
fundamental definitions and properties is provided under the name of PVS pre-
lude. There, notions for basic datatypes such as booleans, numbers, and charac-
ters, and well-known data structures, such as arrays and lists, can be found. All
the definitions in the prelude are implicitly available to any user-defined theory.
Additionally, the NASA PVS Library is an ongoing effort that collects a signif-
icant amount of both elemental and specialized PVS developments. In order to
use definitions from user-defined theories, they must be explicitly imported. To
improve the presentation of the notions needed to describe the representation
technique, practical aspects such as the structured nature of PVS specifications
are not reflected in the theoretical development. Nevertheless, comments on how
to bridge that gap are provided when it is considered adequate.

Figure 1 presents the running example for this and the next section5. On its
left-hand side, an excerpt from a formalization of finite sequences by Butler and
Maddalon is depicted. This theory, which is part of the NASA PVS Library, takes
as parameter the type (T) of the elements being contained in the sequence. The
definition of the type of the finite sequences (fseq) is based on an auxiliary type
named barray, for bounded array. The arrays in PVS are formalized as functions
from natural numbers to T. The barray datatype depends on a natural number,
which represents the bound of the array; queries for an index beyond the bound
are defined to result in an arbitrary, but constant, value (default). The existence
of such value is guaranteed by the declaration of T as TYPE+, which forces T to
be a nonempty type. The right side of the figure shows the formalization of an
algebraic datatype representing finite lists of a generic type T. In this case, the
DATATYPE construct is used as an abbreviation for the definition of a regular PVS
theory, containing a type (list), a constant (null), three functions (cons, car,
and cdr) and two predicates (null? and cons?). The constant null denotes the
empty list and the function cons can be used to construct a list from an element
and another list. The predicates null? and cons? determine whether a given

5 Keywords in PVS are not case sensitive. Uppercase is used here to differentiate them
from the rest of the tokens.



list is empty or not, respectively. The function car returns the first element of
a list. The function cdr returns the rest of its elements.

Definition 1 (Type). Let T be a set of sort symbols. Type(T ) is defined as the
smallest set satisfying: (1) T ⊆ Type(T ), and (2) if t1, · · · , tk ∈ Type(T ), then
the list [t1, · · · , tk] ∈ Type(T ).

Definition 2 (Signature of Symbols). Let T be a set of sort symbols and
s, t ∈ Type(T ). The signature (or type) of a function symbol f is of the form
[s, t] and is also written as [s → t], while the signature (or type) of a predicate
symbol p is of the form [t].

Definition 3 (Signature of a Language). Let T be a set of sort symbols.
The signature of a language is a structure 〈C,F ,P〉 where C is a set of constant
symbols and F (resp. P) is an indexed set of function (resp. predicate) symbols,
each one with its corresponding type over Type(T ) accessible through the function
type : C ∪ F ∪ P → Type(T ).

Henceforth, whenever a signature Π is used, its sets of symbols will be referred
to as CΠ , FΠ and PΠ . The notion of language signature refers to the available
symbols in the context of a given PVS theory. Thus, for example, the signature
Πfseqs includes all the symbols defined in the PVS prelude, the constant symbol
default, and the predicate symbol empty? fseq. The set Tfseqs of sort symbols,
on which the signature Πfseqs stands, contains all the sort symbols defined in
the prelude plus barray and fseq. Because list is part of the PVS prelude, its
corresponding set of sort symbols Tlist and signature Πlist contain the sort and
language symbols previously defined, plus the sort symbol list and the constant,
function, and predicate symbols mentioned above. Thus, Πlist ⊂ Πfseqs.

Definition 4 (The Language of Higher-Order Logic with Equality). Let
T be a set of sort symbols and Π a language signature over Type(T ). Let X be
a set of flexible symbols for which the function type : X → Type(T ) reports the
type of each symbol. Term(Π,X ) is defined as the smallest set satisfying:

– X ⊆ Term(Π,X ), CΠ ⊆ Term(Π,X ), and FΠ ⊆ Term(Π,X ),
– for any function symbol f in FΠ s.t. type(f) = [t→ tk+1] and t = [t1, · · · , tk],

for all ri ∈ Term(Π,X ) with 1 ≤ i < k s.t. type(ri) = ti, f(r1, · · · , rk) ∈
Term(Π,X ) and type(f(r1, · · · , rk)) = tk+1, and

– for any flexible symbol x in X s.t. type(x) = [t → tk+1] and t = [t1, · · · , tk],
for all ri ∈ Term(Π,X ) with 1 ≤ i < k s.t. type(ri) = ti, x(r1, · · · , rk) ∈
Term(Π,X ) and type(x(r1, · · · , rk)) = tk+1.

In its turn, Form(Π,X ) is the smallest set satisfying:

– for any type t in Type(T ), {r, r′} ⊆ Term(Π,X ), and type(r) = type(r′) = t,
r = r′ ∈ Form(Π,X ), and

– for any predicate symbol p in PΠ s.t. type(p) = [t1, · · · , tk], for all ri ∈
Term(Π,X ) with 1 ≤ i < k s.t. type(ri) = ti, p(r1, · · · , rk) ∈ Form(Π,X )



– for any formulas ϕ and ψ in Form(Π,X ), t ∈ Type(T ) and x ∈ X , {¬ϕ,ϕ ∨
ψ, (∃x : t)ϕ} ⊆ Form(Π,X ).

The language of higher-order logic over signature Π and a set of flexible symbols
X will be denoted LΠ,X .

Due to space limitations, and because it is not central to the proposed work,
a formal definition of model theory for the language of higher-order logic of
Definition 4 is not explicitly presented. The next definition presents the classical
proof calculus for higher-order logics which mainly follows [5, Chap. 11].

Definition 5 (Proof Theory). Let T be a set of sort symbols and Π be a
language signature over Type(T ). The notion of syntactic deduction is expressed
by the relation ` ⊆ 2Form(Π,X )×Form(Π,X ) and defined by the following set of
rules: (1) the usual rules for first-order logic [5, Sec. 2.1.1] and (2) rules for
the introduction and elimination of higher-order quantifiers: see [5, Sec. 11.1.1]
for a description of the rules and its interpretation in terms of substitution using
lambda expressions and their application [6, Sec. 3.1] or [7, Chap. 4].

The calculus implemented in PVS is a version of sequent calculus for higher-
order logic, which fulfill the requisites stated by the Definition 5.

Definition 6 (Theory Presentation). Let T a set of sort symbols and Π a
language signature over Type(T ). A theory presentation over flexible symbols X
is a structure 〈T,Π, Γ,∆〉, where Γ ∪∆ ⊆ LΠ,X and {Γ ` ϕ}ϕ∈∆.

A theory presentation in the context of PVS involves all the symbols defined
in a given theory as well as all the symbols available from other (imported)
theories, along with all the explicit and implicit axioms, introduced for example
by defining types, constants, predicates, or functions, and the properties stated
as theorems.

3 Representation Technique

Both types from the example of Figure 1, list and fseq, can be seen as formal-
izations of the same ideal object: an ordered finite-sized container. Nevertheless,
they are fairly different from a practical point of view. PVS supports the evalua-
tion of ground expressions through a translation to Common Lisp, which enables
useful features such as rapid prototyping and computational reflection [8]. Ex-
pressions involving fseq cannot be evaluated since they are based on total func-
tions over the infinite domain of natural numbers. On the other hand, expressions
involving list are completely amenable to evaluation because of its recursive
definition. However, proving properties of list often requires induction, while
the same properties in fseq are proven by straightforward instantiations of ex-
istential or universal quantifications. Hence, it is useful to have a connection
between fseq and list in order to transfer the functions and properties defined
on fseq to list with minimum human interaction.



The representation of theory presentations, as stated in this paper, finds its
theoretical foundations in the field of algebraic specification [9, 10] and more
specifically in its subsequent development through the use of category theory
[11, 12]. The definitions shown below constitute the basic elements used in con-
structing representations between theory presentations.

Definition 7 (Type Map). Let T and T ′ be sets of sort symbols. The function
τ : T → Type(T ′) is a type map if it is a total function mapping sort symbols in
T to types in Type(T ′). Given a type map τ , its homomorphic extension to lists

of types will be denoted by τ T ′

T

∧
: Type(T )→ Type(T ′).

Continuing with the example of Figure 1, the following equations should hold:
1) τ list

fseq

∧
(fseq) = list and 2) τ list

fseq

∧
(t) = t for any other t ∈ Tfseqs. The extension

of τ list
fseq

∧
to lists of types is done positionwise.

Definition 8 (Language Signature Map). Let T and T ′ be sets of sort
symbols and Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over
Type(T ) and Type(T ′) respectively. Let X and X ′ be sets of flexible symbols and
τ : T → Type(T ′) be a type map.

A total function
〈
σC , σF , σP

〉
τ

: Π → Term(Π ′,X ′)∪Form(Π ′,X ′) is a lan-

guage signature map if it satisfies: 1) σC : C → Term(Π ′,X ′) is a total function

s.t. τ T ′

T

∧
(type(c)) = type(r′), whenever σC(c) = r′, 2) σF : F → Term(Π ′,X ′) is

a total function s.t. τ T ′

T

∧
(type(f)) = type(r′), whenever σF (f) = r′, and 3) σP :

P → Form(Π ′,X ′) is a total function s.t. τ T ′

T

∧
(type(p)) = [t′1, . . . , t

′
k], whenever

σP (p) = ϕ′, fv(ϕ′) = {x′1, . . . , x′k}, where fv : Form(Π ′,X ′) → X ′ is a function
that yields the free variables of a formula and type(x′i) = t′i.

Language signature maps show how constants, functions and predicates from
the source theory presentation are interpreted in the target one. As the target
theory presentation is not guaranteed to have the exact same signature, constant
and function symbols from the source theory can be represented by terms in the
target. The same consideration applies to predicate symbols from the source
theory. In the example, the only predicate defined in the source theory (fseqs)
is empty? fseq and holds when the sequence is empty. This symbol is represented
by the term null?(l), whose free variable l is of type list, as stated by the type
map τ list

fseq

∧
. The notion of term representation, defined below, relates a term in

the source language with its intended representation in the target language.

Definition 9 (Term Representation). Let T and T ′ be two sets of sort
symbols and Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over
Type(T ) and Type(T ′) respectively. Let τ : T → Type(T ′) be a type map,
σ =

〈
σC , σF , σP

〉
τ

be a language signature map, and X and X ′ be sets of flexible
symbols. The term representation relation Reprσ ⊆ Term(Π,X )×Term(Π ′,X ′)
is the smallest relation such that:

(1) it relates flexible symbols in X to flexible symbols in X ′ preserving:
(a) typing, i.e., for all x ∈ X and x′ ∈ X ′, if Reprσ(x, x′) then τ T ′

T

∧
(type(x)) =

type(x′), and



(b) free occurrences of symbols, i.e., if Reprσ(t, t′) each free flexible symbol
in t is related to the same flexible symbol from X ′ via Reprσ,

(2) it is homomorphic with respect to language signature representation, i.e.,

– for all function symbol f in F such that type(f) = [t1, · · · , tk → tk+1],
and for all ri ∈ Term(Π,X ) and r′i ∈ Term(Π ′,X ′) s.t. type(ri) = ti,
type(r′i) = t′i, and Reprσ(ri, r

′
i) holds for each i ∈ N such that 1 ≤ i ≤ k,

Reprσ(f(r1, · · · , rk), (λx′1 · · ·x′k.σF (f))(r′1, · · · , r′k)) holds,

being x′1, · · · , x′k−1 the free flexible symbols occurring in σF (f).
– for all predicate symbol p in P such that type(p) = [t1, · · · , tk], and for all
ri ∈ Term(Π,X ) and r′i ∈ Term(Π ′,X ′) s.t. type(ri) = ti, type(r′i) = t′i,
and Reprσ(ri, r

′
i) holds for each i ∈ N such that 1 ≤ i ≤ k,

p(r1, · · · , rk) iff σP(p)
∣∣∣[r′1,··· ,r′k][x′

1,··· ,x′
k]

being x′1, · · · , x′k the free flexible symbols occurring in σP(p).

A term representation relation Reprσ relies on the signature map σ on which
it is constructed. In fact, Reprσ inherits several of the properties fulfilled by σ.
For example, since signature maps are type-preserving (see Def. 8) and condition
(1) above assures type-preservation in the case of representation of flexible sym-
bols, it can be assured that Reprσ preserves typing as well, i.e., if Reprσ(t, t′)

then τ T ′

T

∧
(t) = t′. Additionally, properties such as totality, injectivity and surjec-

tivity can be inherited from signature maps to term representation relations. In
the following, the case of surjective term-representation relations is addressed
first in order to ease the reading. A more general case is explained later.

The representation of formulas is just a translation between two different
theory presentations but within the same logical language. The only nontrivial
cases require the application of language signature maps, for the case of predicate
symbols, and term representation as it was defined above.

Definition 10 (Formula Representation). Let T and T ′ be sets of sort sym-
bols, Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over Type(T )
and Type(T ′) respectively, τ : T → Type(T ′) be a type map, σ =

〈
σC , σF , σP

〉
τ

be a surjective language signature map, and X and X ′ be sets of flexible symbols.
A formula representation Trσ : L(Π,X )→ L(Π ′,X ′) is defined as follows:

Trσ(r1 = r2) = r′1 = r′2 , s.t. Reprσ(ri, r
′
i) for i ∈ {1, 2}.

Trσ(p(r1, · · · , rk)) = σP(p)
∣∣∣[r′1,··· ,r′k][x′

1,··· ,x′
k]

, for all p ∈ P and

Reprσ(ri, r
′
i) for i ∈ {1, · · · , k}.

Trσ(ϕ ∨ ψ) = Trσ(ϕ) ∨ Trσ(ψ)

Trσ((∃x : t)ϕ) = (∃ x′ : τ T ′

T

∧
(t))Trσ(ϕ), for all x ∈ X .

Trσ extends to sets of formulas as Trσ(∆) = {Trσ(ϕ) | ϕ ∈ ∆}.



The next definition provides the means for connecting two theory presenta-
tions. This type of map was introduced in [13] under the name map of entailment
system. More recently, a similar type of map used to connect the semantics of
two theory presentations, was given the name of theoroidal co-morphisms of
institutions by Goguen and Roçu [14].

Definition 11 (Theoroidal Representation). Let T and T ′ be sets of sort
symbols, Π and Π ′ be language signatures over Type(T ) and Type(T ′) respec-
tively, τ : T → Type(T ′) be a type map, σ be a language signature map, and
T = 〈T,Π, Γ,∆〉 and T ′ = 〈T ′, Π ′, Γ ′, ∆′〉 two theory presentations. Then, a for-
mula representation Trσ is said to be a theoroidal representation if Γ ′ ` Trσ(Γ ).
It is said to be axiom preserving if Trσ(Γ ) ⊆ Γ ′.

Note that if σ is a surjective signature map, Trσ is axiom preserving. It can be
shown that theoroidal representations compose in a very smooth component-wise
form yielding theoroidal representations (see [13, pp. 24] for details). Theorem 1
states that theoroidal representations preserve deductibility, i.e., the existence
of a proof, while axiom preserving theoroidal representations are stronger by
providing proof representation.

Theorem 1 (Deductibility Preservation). Let T and T ′ be sets of sort
symbols, Π and Π ′ be language signatures over Type(T ) and Type(T ′) respec-
tively, τ : T → Type(T ′) be a type map, σ be a language signature map, and
T = 〈T,Π, Γ,∆〉 and T ′ = 〈T ′, Π ′, Γ ′, ∆′〉 two theory presentations related by
the theoroidal representation Trσ. Then,

Γ ` ϕ implies Γ ′ ` Trσ(ϕ).

Proof. First observe that Γ ′ ` Trσ(Γ ) holds by Def. 11 and then, Trσ(Γ ) `
Trσ(ϕ) follows by induction on the structure of the proof. The base case is when
ϕ ∈ Γ , which holds by definition of Trσ(Γ ) in Def. 10. The inductive steps follow
by considering each of the rules for introducing and eliminating logical symbols
(i.e., ¬, ∨ and ∃). The inductive hypothesis guarantees that the hypothesis of
the rule follow from Trσ(Γ ). After applying the same rule, and considering that
Trσ preserve the logical structure of the formula, its definition can be fold to
obtain the translation of the original formula. ut

Corollary 1 (Theorem Preservation). Let T and T ′ be sets of sort symbols
and Π and Π ′ be language signatures over Type(T ) and Type(T ′) respectively,
τ : T → Type(T ′) be a type map, σ be a language signature map, and T =
〈T,Π, Γ,∆〉 and T ′ = 〈T ′, Π ′, Γ ′, ∆′〉 two theory presentations related by the
axiom preserving theoroidal representation Trσ. Then,

ϕ ∈ ∆ implies Trσ(ϕ) ∈ ∆′.

Proof. The proof follows trivially from Thm. 1 and by definition of axiom pre-
serving theoroidal representations in Def. 11. ut



A mechanizable method for transferring theorems between theory presentations
can be inferred from the structure of the proof of Theorem 1. The mechanization
is particularly easier to achieve when dealing with conditions compatible with
the hypothesis of Corollary 1.

Up to this point, some strong restrictions were posed on mapping notions
presented in this section, i.e., type maps, language signature maps, term repre-
sentations, formula representations, and theoroidal representations, in order to
ease the presentation of the technique. These restrictions are totality and sur-
jectivity. Establishing a theorem preserving representation from one theory to
another should be more flexible.

Relaxing the restriction about surjectivity of representations implies that
no every element in the target domain is required to represent an element in
the source domain. To allow such relaxation, the way in which formulas are
translated (Def. 10) needs to be modified. In particular, quantified variables
appearing in the representation of a quantified formula must range only over
those elements from τ T ′

T

∧
(t) that in fact represent elements from t. Then, a way

to refer to representability of elements must be included at the logical level of
the language of the signatures. While in higher-order settings such as the one
provided by PVS is possible to define the notions needed at that level (symbol,
term, formula, term representation, etc.), an alternative way is proposed in order
to reduce the amount of practical effort needed to apply the technique. This
alternative approach is based on the semantic counterpart of the Repr relation.
Given a source and a target theory representation, Π and Π ′ respectively, the
semantic version of the term representation relation (Repr) can be stated as a
relation repr ⊆ Type(T )× Type(T ′) such that:

(1) for every pair of predicates p ∈ {p}p∈P and p′ ∈ {p′}p′∈P′ s.t. σP(p) = p′,

and for all xi ∈ Type(T ), with 1 ≤ i ≤ n and n = arity(p), and x′i ∈
Type(T ′) s.t. repr(xi, x

′
i),

p(x1, · · · , xn) iff p′(x′1, · · · , x′n) and

(2) for every pair of functions f ∈ {f}f∈F and f ′ ∈ {f ′}f ′∈F ′ s.t. σF (f) = f ′,

and for all xi ∈ Type(T ) and x′i ∈ Type(T ′) s.t. repr(xi, x
′
i) with 1 ≤ i ≤ n

and n = arity(f),

repr(f(x1, · · · , xn), f ′(x′1, · · · , x′n)).

The similarity between the conditions on repr and Repr is not casual and can
be used to prove its equivalence. The PVS definition shown in the left side of
Fig. 2 can be proposed to denote repr for the example. The lemma depicted on
the right side is to be proved to assure that it is in fact a good candidate. Then,
the representation of a quantified formula (∃x : t)ϕ in Def. 10 can be stated as

(∃ x′ : τ T ′

T

∧
(t))( ((∃x : t)repr(x, x′)) ∧ Trσ(ϕ)).

Another restriction that needs to be relaxed in the definitions above, is the
totality of the maps. It is not unusual that different formalisations, responding
to different needs, only specify the portion of the language signature, i.e., types,



repr(f:fseq,l:list): bool =

length(l) = f‘length AND

FORALL(i:nat): i < length(l)

IMPLIES nth(l,i) = f‘seq(i)

empty? fseq homomorphic: LEMMA

FORALL(f:fseq,l:list|repr(f,l)):

empty? fseq(f) IFF null?(l)

Fig. 2. PVS implementation of the repr for the example of Fig. 1 (left) and the lemma
about its homomorphism w.r.t. the empty? fseq function (right).

constants, functions and predicates, required by the context where that partic-
ular specification is used. This observation means that the approach presented
before should be able to cope with partial language signature maps.

From a practical point of view, a possible way to support this feature with
minimum impact in the definitions above is to restrict the sets of syntactic sym-
bols taken into consideration in the representation process. First, note that not
every type in the source theory is needed in the context of the target theory.
For example, when constructing the representation of fseqs using list ele-
ments, the type barray is just an auxiliary concept that needs no counterpart
on the list side. Then, the domain of the intended type map τ list

fseq

∧
should be

Type(Tfseqs) \ barray. Secondly, the domain of the total functions σC , σF and
σP in the language signature map (Def. 8) would be a subset of the whole set
of constant (resp. function and predicate) symbols of the source theory presen-
tation. In the example, the domain of σC should be Cfseqs \ {default}. Finally,
the term, formula, and theoroidal representation relation is now restricted to
accept those terms and formulas that can be constructed using only the symbols
of interest. It is important to note that this restriction on the symbols could pro-
voke that some proofs from the source theory can not be preserved in the target
theory. This occurs when terms or formulas that can only be constructed using
discarded symbols are explicitly provided during the application of a proof step,
such as in the introduction of a new hypothesis (cut rule, for example) or in the
instantiation of existential-strength quantifiers. While there is no automatic way
to solve this kind of problem, it is easily and even mechanically discoverable.

When language signatures are analysed in detail, it is possible to recognize
that function and predicate symbols play different roles depending on their log-
ical definition. Some symbols may be axiomatized defining the result of their
application to terms and performing observations of their properties that cannot
be obtained by other means. Some other symbols may be defined as the com-
position of other functions (resp. predicates) leading to conservative extensions
[15, Sec. 2.3.3] of a theory presentation where such a symbol does not exists. The
representation of a symbol in the latter group can be automatically generated
whenever the representation of those symbols in the former group have already
been provided. In such case, the result of the language signature map applied to
the constituent parts of the symbol’s definition can be used to extend the lan-
guage signature map to apply to both sets of symbols. Additionally, the proof
that the representation of the symbol does not invalidate the correctness of the
term representation relation (second item in Definition 9) can be automatically



constructed. It should proceed as a proof by induction on the complexity of the
term. This technique is particularly useful when defining representations for al-
gebraic datatypes, since once representations for the constructors, selectors, and
recognizers are defined, the rest of the definitions are stated in terms of them or
some other symbol whose definition relies on them. Thus, the representation of
such symbols can be mostly automated.

Like most modern proof-assistance environments, PVS provides a variety of
features intended to help the user in writing complex formalizations. Some of
these features include the ability of structuring specifications through the use of
specific clauses (EXPORTING and IMPORTING) and the definition of theory schemas
through the use of theory parameters, among others. While specific uses for both
characteristics are mentioned above, they can also be used for different purpose.
For instance, the IMPORTING clause can be used to extend a PVS theory for which
a representation is already defined. In such case, the theoretical notion of theory
extension needs to be further studied in order to establish how the theoroidal rep-
resentation is affected by this relationship between theories. Theory extensions
can be formalized by considering a special kind of (axiom preserving) theoroidal
representations relying on language signature maps whose components are injec-
tive functions, and term representation relations that are total and one-to-one.
These conditions force the formula representation to be analogue to an injective
translation, forcing the target theory to extend the source one. Conservativity
can also be posed in terms of conditions imposed to language signature maps
and term representation relations.

The use of theory parameters to define theory schema is one of the most use-
ful PVS features regarding the development of formalizations. When the theory
parameters are not part of the representation, i.e., when they are trivially rep-
resented, no further consideration is needed. Such is the case of the fseqs and
list example presented in the previous section. However, the theory parameters
can also be represented in a non-trivial way in the target theory, as illustrated by
the case study presented in the next Section. To formally cope with the impact
that both features could impose on the proposed technique, a complete study
of the ways theory presentations can be related is necessary, but left as further
work.

4 Case Study

Polynomials are widely used to provide smooth approximations of non-linear
functions. At the beginning of the last century, Bernstein developed a novel way
to represent polynomials in his proof of the StoneWeierstrass approximation
theorem [16]. This representation has proved to be specially useful in the field
of computerized graphics. Muñoz and Narkawicz [17] developed a formalization
based on Bernstein polynomials that can be effectively used to find minimum
and maximum values for arbitrary polynomial expressions. Such formalization,
provided as a PVS specification available as part of the NASA PVS Library,
relied on the fragment of PVS that can be soundly evaluated [8].



Polynomial: TYPE = [nat->Coefficient]

Polyproduct: TYPE = [nat->Polynomial]

MultiPolynomial : TYPE = [nat->Polyproduct]

mpoly eval(bspoly,degmono,cf,m,n)(X) : real =

sigma(0,n-1,LAMBDA(i:nat):cf(i)*pprod eval(bspoly(i),degmono,m)(X))

Fig. 3. Excerpt from the original multipolynomial formalization part of the Bernstein
development.

As part of the upgrade from the version 5 to 6 of PVS, the internal implemen-
tation of some PVS data structures was changed. While this change improved
the overall performance of the system, it also affected the ground evaluation used
in proof strategies developed as part of the Bernstein development. To overcome
this problem, it was necessary to change the way in which polynomials were
modeled in the formalization. Because of this, the Bernstein development and
its strategies were not originally ported from PVS 5 to PVS 6. Recently, the
technique proposed in this paper was applied and a new version of the Bernstein
algorithms were developed in just a fraction of the time originally estimated.
In this section, the case study of the representation of Bernstein polynomials is
presented.

The Bernstein development was built around a formalization of multivariate
polynomials, or multipolynomials for short. Any multipolynomial in m variables
(denoted by P below) can be seen as a sum of a finite number, say n, of products
between a real coefficient ci and a so-called polyproduct, which is a product of
univariate polynomials (pi,j).

P (x1, · · · , xm) =

n∑
i=1

ci

m∏
j=1

pi,j(xj) (1)

In the first version of the Bernstein development, multipolynomials were
modeled using arrays, i.e., functions from natural numbers into a type, as shown
in Figure 3. Every index k of a Polynomial array p provides access to the co-
efficient of the k-th power in the univariate polynomial p. Indices i and j in
Equation 1 would be used to access Multipolynomial and Polyproduct arrays
respectively. The type Coefficient is a renaming for real, the PVS type de-
noting real numbers. Figure 3 also shows the formalization of the evaluation
function mpoly eval. Its parameters are respectively: the multipolynomial to be
evaluated, the degree of the polynomials in each polyproduct, the coefficients ci
and the values m and n from Equation 1; X represents the variables x1, · · · , xm.
The function pprod eval, omitted for brevity, is the function used to evaluate
polyproducts and it is formalized similarly to mpoly eval.

The way in which arrays are used in the algorithms defined as part of the
Bernstein development are not amenable for evaluation in PVS. However, only
a finite prefix of every array is really used. Therefore, a new formalization is
proposed where the array prefixes are represented as finite lists. The addi-



tional difficulty of this case with respect to the example of Figure 1 is that
MultiPolynomial is in fact formalized by a nesting of arrays. Thus, the pro-
posed representation is to be applied at each level of this nesting in order to
mimic every type in Figure 3 with the types depicted in Figure 4.

Consequently, this representation of arrays as finite lists is formalized in PVS
as shown in Figure 5. The theory arrays into lists, in fact, uses finite lists of
elements of a given unrestricted type (T2) to represent arrays containing elements
of a possibly different type (T1). The relation between the type of contained el-
ements T2 and T1 needs to be explicitly stated by a corresponding representing
function, inner repr in the figure. Once these three formal elements (T1,T2, and
inner repr) are provided to arrays into lists as theory parameters, the rep-
resentation relation between arrays and finite lists is stated in the repr relation:
a list l represents an array if every element of the list represents the element in
the corresponding position of the array.

Note that the proposed representation, in contrast to the example of the pre-
vious section, is not injective. Each list l of elements of type T2 can be used to rep-
resent any of an infinite number of arrays starting with T1 elements in the order
induced by l. For instance, the empty list can be used to represent any array. This
coarse-grain property of the representation has to be taken care of by the theory
using it to establish the representation relation between MultiPolynomial and
MultiPolynomialList.

Figure 6 shows such a theory. The theory parameters are, respectively, two
natural numbers representing the number of terms in the sum and the degree of
the polynomial (n and m in Equation 1) and the degree of the polynomials in
each polyproduct. Note how every importing of the arrays into lists theory
is adequately instantiated using, at each nesting level, the representation of the
nested type stated by the previous importing clause. Then, the representation re-
lation states that a MultipolynomialList represents a MultiPolynomial if for
every list in MultipolynomialList at every nesting level: (1) it represents the
corresponding array in MultiPolynomial according to the arrays into list

theory and (2) its length is correct according to the theory parameters. This lat-
ter condition assures that the lists being used to represent the MultiPolynomial
are exactly those that have to be used. Finally, the equivalence between evalu-
ation functions of both formalizations is stated and proved. The proof proceeds
by exploring symmetrically the structure of both functions and leveraging the
equivalence lemmas from the auxiliary functions.

PolynomialList : TYPE = list[Coefficient]

PolyproductList : TYPE = list[PolynomialList]

MultiPolynomialList : TYPE = list[PolyproductList]

a2l mpoly eval(bsplist,degmono,cf,m,n)(X) : real =

sigma(0,n-1,LAMBDA(i:nat):cf(i)*pprod eval(nth(bsplist,i),degmono,m)(X))

Fig. 4. Excerpt from the new formalization for multipolynomials based on lists.



arrays into lists[T1,T2: TYPE, inner repr: [T1,T2->bool]]: THEORY BEGIN

repr(A:[nat->T1], l:list[T2]): bool =

FORALL(i:below(length(l))): inner repr(A(i), nth(l,i))

END arrays into lists

Fig. 5. PVS theory for the representation of arrays using finite lists.

multipoly into polylist[n,m:posnat, degmono: [nat->nat]]: THEORY BEGIN

IMPORTING

arrays into lists[Coefficient,Coefficient,=] AS polynomial,

arrays into lists[Polynomial,PolynomialList,polynomial.repr]

AS polyproduct,

arrays into lists[Polyproduct,PolyproductList,polyproduct.repr]

AS multipolynomial

repr(mp: MultiPolynomial, pl: MultipolynomialList): bool =

multipolynomial.represents(pl,mp) AND

n = length(pl) AND

(FORALL (pp i: below(n)): m = length(nth(pl,pp i))) AND

(FORALL (pp i: below(n), var i: below(m)):

length(nth(nth(pl,pp i),var i)) = degmono(var i) + 1)

a2l multibs eval equivalence: LEMMA

FORALL(mp: MultiPolynomial, pl: MultiPolynomialList):

repr(mp,pl) IMPLIES

FORALL(X: Vars, cf: [nat->real]):

multibs eval(mp,dm,cf,m,n)(X) = a2l multibs eval(pl,dm,cf,m,n)(X)

END multipoly into polylist

Fig. 6. Representation of multipolynomials on arrays using mulitpolynomials as lists.

New versions of the Bernstein algorithms and proof strategies were also de-
fined, changing only the few places where explicit references to the datatype
representing multipolynomials were found. As the correctness theorems for such
algorithms were expressed in terms of the evaluation of the multipolynomial, the
equivalence lemma a2l multibs eval equivalence was used to easily show
that all the algorithms on MultipolynomialList are also correct. The proposed
translation of multipolynomials had the direct impact of providing an executable
and proven correct version of the Bernstein algorithms in a small fraction of the
time it was estimated just for fixing the previous version. Moreover, the new
version outperformed the previous one. This is the case because lists are trans-
lated to Lisp in a much more efficient way than arrays, and because the original
definition also performed some internal conversions to lists that are unnecessary
in the new version.

5 Related Work

The idea of establishing formal connections between datatypes has been ap-
proached from different flanks and support for related features has been added



to a variety of formal systems. Notably, much of the effort has been posed on the
connection between isomorphic datatypes. The goal of the technique presented
in this paper is more general. Since its main motivation emerged from the prac-
tical problem of facilitate the reuse of existent formalizations, limiting the scope
of application to isomorphic types would be too restrictive. The downside of such
design decision is that automatization is harder to achieve.

For the sake of brevity, the universe of comparison explored in the following is
restricted to the context of higher-order logic environments, such as Isabelle [18]
and Coq [19]. In such context, the technique presented in this paper is closely
related to the formalization of quotients in Isabelle [20]. There, the connection
between a so-called raw type and a more abstract type is established through the
lifting of terms from the raw to the abstract type and the transfer of theorems
between them. Besides the similarities, there are some important differences.
First, conceptually the work on quotients appears to be designed with a direc-
tionality in mind. While this directionality is not explicit in the transfer-related
features, since theorems can be transfered from raw to abstract and vice versa,
such notion is still present in the lifting functionalities. On the other hand, in
the technique presented in this paper the roles of abstract and raw type are not
forced explicitly. Indeed, the representation presented in this paper is not just
about abstraction (or concretization) relations, but it allows for more general
relationships between types of different nature. More concretely, the lifting of
terms described in [20] is based on the existence of two functions, Abs and Rep,
that relate an abstract instance with its raw counterpart. Meanwhile, the cor-
responding relations in the technique proposed in this paper are not necessarily
functional. This feature makes it easy to apply the proposed technique to the
example presented in the Section 4. Nevertheless, there is a cost associated: the
level of automation described in [20] is not reachable, in general, for the proposed
technique. For particular cases, as those identified in the NASA PVS Library,
automation seems feasible and it is work in progress.

Also addressing the problem of transfering theorems along isomorphic types,
Zimmermann and Herbelin [21] have proposed a technique for Coq that shares
much of the spirit of the one presented here. Nevertheless, similarly to [20],
their work also relies in a functional notion to relate elements from different
datatypes. Again, while automation is easier to achieve, in fact a simple algo-
rithm to translate proofs is explicitely presented in the mentioned paper, the use
of a relational representation mechanism makes the technique presented here ap-
plicable to cases that can not be addressed in functional representation settings.
Additionally, the transfer mechanism in [21] does not support some features al-
ready supported in this paper, such as the compositionality of the technique
showed in the case study. Other similar approaches have been proposed in the
context of the Coq system. For example, the concept of signature for higher-order
functions by Sozeau [22] resembles the idea of transfer of theorems proposed in
this paper. Furthermore, the work of Magaud [23] on translation of proof terms
for Coq also addressed the problem of minimizing the effort in sharing theorems



of related datatypes. Both approaches are less general than the work presented
in this paper.

Regarding PVS, the system provides native suport for theory interpreta-
tions [24]. This feature allows for the instantiation of uninterpreted symbols
such as constant, function, and even type symbols. The necessary proof obli-
gations are automatically generated by the type-checker in order to ensure the
validity of the interpretation. While this feature greatly improves reusability of
theories, the examples described in this paper fall out of its scope of application
because interpretations are limited to refinement of uninterpreted symbols.

A typical instantiation of the problem of formal connections is the refinement
of abstract into concrete datatypes. In this practical but more restricted case,
elaborated features can be developed and a higher level of automation can be
achieved. Notable examples of refinement in higher-order logic systems were
developed by Lammich [25] for Isabelle/HOL and Cohen et. al. [26] for Coq,
among others.

There are also similar techniques that were specially developed with the aim
to connect different dependent types. From the observation that when work-
ing with dependent types is not unusual to find cases were the only difference
between them is given by its logical description, while the structural definition
is almost or directly the same, McBride have developed the notion of Orna-
ments [27], which allows to handle type declarations as first-order citizens of
the formal setting and establish relationships between them. These relationships
are particularly aimed at qualifying one of the types as more informative than
the other. Ornaments are specially designed to relate inductive structures, for
instance, natural numbers (defined inductively using zero and successor) and
finite-length lists. On the contrary, the technique presented in this paper does
not suffer from such restriction: the (possible dissonant) nature of the datatypes
being connected does not limit the applicability of the connection process. Some-
how in the same line of Ornaments but motivated by the extraction of code
from a formally verified description, Dagand et. al. have presented a technique
grounded on an application of the notion of Galois connections that outperforms
Ornaments in that it supports the connection between more general datatypes
[28]. The constructive setting in which such technique is developed makes it very
different from the approach explained in these pages.

6 Conclusion

This paper presents a formal study of the concept of connections between theory
presentations in a higher-order logic setting. The concept is approached in a
way as general as possible in order to maximize the range of application of the
representation technique. In particular, the proposed approach does not only
apply to refinement of abstract into concrete types, but also to more general
relationships between types. A non-trivial case study is presented to illustrate
the usefulness of the proposed technique.



While the technique is not implemented as an automatic procedure yet, the
systematic nature of the approach hints that automation can be achieved for a
considerable part of the process. For specific cases, such as when dealing with
structured and algebraic datatypes, the automation of a significant part of the
technique is planned to be undertaken as future work. On the theoretical side,
further research is needed to understand how the technique presented in this pa-
per is affected by the various theory extension mechanisms provided by modern
proof assistants.
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14. Goguen, J.A., Roşu, G.: Institution morphisms. Formal Aspects of Computing
13(3-5) (2002) 274–307

15. Turski, W.M., Maibaum, T.S.E.: The specification of computer programs. Inter-
national Computer Science Series. Addison–Wesley Publishing Co., Inc. (1987)
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