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Abstract. We present a formalization of probabilistic timed automata
(PTA) in which we try to follow the formula “MDP + TA = PTA” as
far as possible: our work starts from existing formalizations of Markov
decision processes (MDP) and timed automata (TA) and combines them
modularly. We prove the fundamental result for probabilistic timed au-
tomata: the region construction that is known from timed automata car-
ries over to the probabilistic setting. In particular, this allows us to prove
that minimum and maximum reachability probabilities can be computed
via a reduction to MDP model checking, including the case where one
wants to disregard unrealizable behavior.

1 Introduction

Timed automata (TA) [1] are a widely used formalism for modeling nondetermin-
istic real-time systems. Markov decision processes (MDPs) with discrete time are
popular for modeling probabilistic systems with nondeterminism. Probabilistic
timed automata (PTA) fuse the concepts of TA and MDPs and allow probabilis-
tic modeling of nondeterministic real-time systems. PRISM [3] implements model
checking functionality for MDPs and PTA and has successfully been applied to
a number of case studies [6].

We have previously formalized MDPs [2] and TA [8] in Isabelle/HOL. This
paper presents an Isabelle/HOL formalization of PTA, which follows the formula
“MDP + TA = PTA” as far as possible by combining our existing formalizations
modularly. We prove the fundamental result for PTA: the region construction
that is known from TA carries over to the probabilistic setting. In particular,
we prove that minimum and maximum reachability probabilities (with respect
to possbile resolutions of nondeterminism) can be computed via a reduction to
MDP model checking, including the case where one wants to disregard unrealiz-
able behavior. This work is a necessary first step towards our long-term goal of
certifying the computation results of PRISM’s backward reachability algorithm
[4] for reducing PTA to MDP model checking. The formalization can be found
in the Archive of Formal Proofs [9].
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2 Preliminaries

Markov chains A probability mass function (PMF, or discrete distribution)
µ :: σ pmf is a function σ ⇒ R≥0 with countable support {x | µx 6= 0} whose
range sums to 1. Any PMF forms a monad, thus we have (mappmf f µ) y =
µ {x | f x = y} and (retpmf x)x = 1. A Markov chain (MC) is represented by
the transition system K :: σ ⇒ σ pmf (its kernel, which is commonly repre-
sented by a transition matrix R|σ|×|σ|), mapping each state to a distribution of
next states. The trace space TK s is the probability measure with the property
TK s (x0 · · ·xn) = K sx0 ∗ · · · ∗K xn−1 xn (where (x0 · · ·xn) is the set of state
traces starting with x0, · · · , xn). A probabilistic coupling with respect to a rela-
tion R exists between two PMFs µ and µ′ (written relpmf Rµµ

′) if there exists
a distribution ν on the product type, such that the support of ν is a subset of R
and the marginal distributions of ν are µ = mappmf π1 ν and µ′ = mappmf π2 ν.
Probabilistic couplings allow us to relate two Markov chains.

Markov decision processes MDPs are automata allowing probabilistic and non-
deterministic choice. An MDP is represented by the transition system K :: σ ⇒
σ pmf set , where σ is the type of states, and the probability distributions over
the next states of type σ pmf are called actions. Each MDP gives rise to a set
of MCs, each showing one possible behaviour. We introduce, coinductively, con-
figurations σ cfg , where each c :: σ cfg consists of a state σ, an action σ pmf ,
and a continuation σ ⇒ σ cfg . The configurations give rise to a Markov chain
Kc :: σ cfg ⇒ σ cfg pmf , by mapping the continuations over the actions. Each
c :: σ cfg whose actions are closed under K and which is in state s induces a MC
showing a possible behavior of the MDP K starting in s. To simplify the theory,
we assume that K x 6= ∅. See [2] for details.

Timed Automata Compared to standard finite automata, TA introduce a notion
of clocks. Clocks are indexed by natural numbers and do not have any structure.
A clock valuation u is a function of type N ⇒ R. Locations and transitions are
guarded by clock constraints, which have to be fulfilled to stay in a location or to
take a transition. Clock constraints are conjunctions of constraints of the form
c ∼ d for a clock c, an integer d, and ∼∈ {<,≤,=,≥, >}. We write u ` cc if the
clock constraint cc holds for the clock valuation u. We define a timed automaton
A as a pair (T , I) where I is an assignment of clock constraints to locations (also
named invariants) and T is a set of transitions written as A ` l −→g,r l′ where l
and l′ are the start and successor location, g is the guard of the transition, and
r is a set of clocks that will be reset to zero when the transition is taken. States
of TA are pairs of a location and a clock valuation. The operational semantics
define two kinds of steps:

Delay: (l, u)→ (l, u⊕ d) if d ≥ 0 and u⊕ d ` I l;
Action: (l, u)→ (l′, [r → 0]u) if A ` l −→g,r l′, u ` g, and [r → 0]u ` I l′;

where (u⊕ d) c = u c+ d and ([r → 0]u) c = if c ∈ r then 0 else u c.
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Regions The initial decidability result [1] partitioned the set of clock valuations
into a quotient of sets of clock valuations, the so-called regions, and showed that
these yield a sound and complete abstraction3. Our formalization [8] proves this
fundamental result and decidability of reachability properties for ordinary TA.

3 Probabilistic Timed Automata

PTA fuse the concepts of TA and MDPs: discrete transitions are replaced by
probability distributions over pairs of a set of clocks to be reset and a successor
location. An example of a PTA is depicted in the left part of Fig. 1.
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Fig. 1: Example of a PTA with one clock and its region graph

Definition Consequently, the syntactic definition of PTA is very similar to TA.
The only difference is that now transitions are of the form A ` l −→g µ for µ of
type (N set × σ) pmf (the clocks to reset and σ for the type of locations).

Typical presentations define the semantics of PTA based on the notion of so-
called probabilistic timed structures, which are just a special type of MDP. We
omit this detour and directly formalize PTA in terms of MDPs. Consequently,
to formalize the semantics of a PTA, we define its kernel K as the smallest set
that is compatible with

(l, u) ∈ S t ≥ 0 u⊕ t ` I l
retpmf (l, u⊕ t) ∈ K (l, u)

Delay

(l, u) ∈ S A ` l −→g µ u ` g
mappmf (λ(r, l). (l, [r → 0]u))µ ∈ K (l, u)

Action

where S is the set of valid states. A state (l, u) is valid if l belongs to A and if
u ` I l. For technical reasons there is a third rule to add self loops for non-valid
states. These do not change the semantics as they are not reachable from valid
states. The MDP K is uncountably infinite as S is generally infinite.
3 We use the same notions as in [8]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.
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Region Graph We want to reduce the computation of reachability probabilities
for A to a computation on a finite MDP. Analogous to TA, this reduction can
be obtained through the region quotient. More precisely, we will partition S into
a finite set of states S of the form (l, R), for l a location of A, and R a region
of A such that ∀u ∈ R. u ` I l. With this notion, the finite MDP, coined region
graph in [5], is defined through its kernel K:

(l, R) ∈ S R′ ∈ Succ R ∀u ∈ R′. u ` I l
retpmf (l, R

′) ∈ K (l, R)
DelayR

(l, R) ∈ S A ` l −→g µ ∀u ∈ R. u ` g
mappmf (λ(r, l). (l, {[r → 0]u | u ∈ R})µ ∈ K (l, R)

ActionR

Here Succ R denotes the set of regions that can be reached from R by delaying
for an arbitrary amount of time. Again, for technical reasons there is a third rule
to add self loops for non-valid states. The maximum probability (under all valid
initial configurations) to reach the state in the upper right of the region graph
depicted in Fig. 1 is 0.7, while the minimum probability is 0.

4 Bisimulation

We relate the infinite MDP that defines the PTA with the finite region graph in
a way that directly allows us to prove correctness of the reduction for maximum
and minimum reachability probabilities in one go. Concretely, our agenda is to
first define abstraction and representation functions that map between config-
urations of the infinite MDPs and the finite region graph, and vice versa. We
then prove a more general bisimulation theorem on MDPs which states that the
path measure assigned to related paths is the same for related configurations.

Representation and Abstraction We will use the overloaded notations α and rep
to denote the abstraction and representation functions for states, actions, and
configurations. The main difficulty of our formalization effort was to define these
such that one obtains the desired properties. What are these properties? Chiefly,
for a valid configuration c, the probability distributions of the successors of c
and α c should expose a probabilistic coupling w.r.t. the relation λc a. α c = a.
Moreover, the abstraction of a representative should yield the original object:
α (rep x) = x. Finally, validity should be preserved, i.e. α (l, u) ∈ S ↔ (l, u) ∈ S.

The elementary abstraction functions are easy to define: α (l, u) = (l, [u]R)
for [u]R the unique region with u ∈ [u]R, and α t = mappmf α t for an action t.
For a configuration c, α c is defined co-recursively in terms of c: the concrete
configuration c is maintained as the internal state of α c and states and actions
are simply mapped with α; the internal successor configuration however is deter-
mined by the continuation of c for the unique successor state s of c such that α s
is the successor state of α c. The definition of rep is more involved and omitted
for brevity.
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Bisimulation Theorem At the core of our argument lies the following bisimula-
tion theorem on Markov chains:

TK x A = TL y B if Rxy and ∀ω ω′. rel stream Rω ω′ −→ (ω ∈ A↔ ω′ ∈ B)
and ∀x y.R x y −→ relpmf R (K x) (L y)

where T{K,L} denotes the trace space induced by Markov chainsK and L, respec-
tively; x and y are states of K and L; rel stream R compares two traces pointwise
by R; and A and B are sets of infinite traces of K and L. Finally, R has to be
of the form Rs t = (s ∈ S ∧ f s = t) for some S and f .

For a configuration c with state s, we can instantiate this theorem by taking
K = Kc, L = Kc, x = s, y = α s, f = α, and S as the set of valid configurations
of the PTA. The coupling property of K and L follows because

Kc (α c) = mappmf α (Kc c) .

For this instantiation, rel stream Rxy essentially means that y is the pointwise
abstraction of x. We consider reachability properties on state traces of the form
ϕU ψ (where ϕ and ψ can be a mixture of predicates on location and clock), so

A = {ω | ϕU ψ (smap st ω)} and B = {ω | (ϕ ◦ rep)U (ψ ◦ rep) (smap st ω)}

where smap st ω maps traces of configurations to traces of MDP states. Conse-
quently, the premise on A and B is easily satisfied if

∀s t. α s = α t −→ ϕ s↔ ϕ t ∧ ψ s↔ ψ t ,

which matches exactly the property that is delivered by the region construction.

5 Taking Zenoness Into Account

So far, we have considered bisimulation properties between trace spaces of pairs
of related configurations. Minimum and maximum reachability probabilities,
however, are considered in relation to a set of configurations C. To compute
these probabilities, one can consider the set of configurations Cα on the finite
MDP such that ∀c ∈ C.α c ∈ Cα and ∀c ∈ Cα. rep c ∈ C. If C is the set of
valid configurations, for instance, then Cα is easily proved to be the set of valid
configurations of the region graph.

Often one wants to restrict C such that unrealizable behaviors are excluded:
a configuration should not be able to keep time from passing beyond a fixed
deadline. A configuration is zeno if it admits such behaviours. In the example,
a zeno configuration could continuously take the loop transition on l1 without
letting any time pass. In [5] a computable description of Cα is given for the case
that C is restricted to configurations that only yield non-zeno behaviors with
probability 1.

The critical component of our proof for the correctness of Cα (in the sense
outlined above) is that rep chooses the successor states always such that at least
half of the amount of time that could possibly elapse does elapse.
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Interestingly, the proof of ∀c ∈ Cα. rep c ∈ C was much harder to formalize
than the other direction, although roles seem to flipped in the argument of [5].
For the harder direction, we illustrate the structure of our proof on the part that
is concerned with the single region R∞ in which all clocks have elapsed beyond
the maximal clock constant of the automaton (the region c > 1 in the example):
any run on the region graph that stays in R∞ forever is classified as non-zeno.

Our argument establishes that for a transition (l, R∞)→ (l′, R∞) of the re-
gion graph, the representing transition (l, u)→ (l′, u′) will incur a time delay of
0.5 if u 6= u′. An informal argument can get away by claming that the transition
can always be chosen such that the latter condition is satisfied. Unfortunately,
this is not immediately true for the semantics given above as the abstract tran-
sition could always be a reset transition and thus time would never be allowed
to elapse. A possible remedy is to fuse delay and action transitions into a single
step. We rather want to keep them separate and instead employ a probabilistic
argument: assuming that a transition with l = l′ occurs infinitely often, with
probability 1 a step with u 6= u′ has to occur infinitely often.

6 Conclusion

Discussion Our bisimulation argument neatly separates discrete, TA-related rea-
soning from probabilistic, MDP-related reasoning. In fact, most of the proofs
take place on the discrete side, because none of the arguments to satisfy the
bisimulation theorem are predominantly of probabilistic nature. As seen above,
only the reasoning on zenoness needs to break with this style.

We found it crucial to carry out each argument on the right level of abstrac-
tion. There are three main levels to consider here (from low to high): Markov
chains, MDPs and configuration traces, and states and state traces of the PTA.
The theorem is usually stated on the highest level possible, and often we can
move easily from a higher to a lower level by applying a number of rewrite rules.
For the divergence argument, we even introduce another level of abstraction:
since we are only concerned with time, the location part can be dropped, and
thus we consider traces of clock valuations. The probabilistic argument described
in the last section manifests a rare case where one needs to put in some upfront
work on a lower level to hold the argument on the higher level together.

It is not yet clear to us whether it is necessary or advantageous to work with
rep. In the current formalization it still plays an important rule by providing the
diverging concrete witness for a diverging configuration of the region graph. The
bisimulation argument in section 4, however, can be made relying only on α.

Lastly, our simple definition of the PTA semantics and of the region graph
shows that derived concepts can be surprisingly easy to define—even compared
to an informal definition—if the necessary foundations have already been laid.

Related Work We are not aware of any previous proof-assistant formalizations of
PTA. There is, however, another formalization of TA and the region construction
using PVS [11]. A formalization in Coq [7] is aimed at modeling a subclass of
TA and proving properties of concrete automata.



7

Future Work We conjecture that many further results for PTA can be formalized
by following the formula “MDP + TA= PTA” in the style that we outlined above.
In particular, most of the more practical zone based (as opposed to region based)
exploration methods for the reduction to a finite MDP should lie within the
scope of this technique. The backward reachability algorithm of PRISM [4] is an
instance. This also means that verified or certified model checkers for PTA can
be devised from a modular combination of verified tools for MDPs and TA. Work
in this direction already exists for the latter [10] but not the former formalism.

Acknowledgments We want to thank David Parker and Gethin Norman for
clarifying our understanding of PTA model checking w.r.t. divergence. This
project has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation program (grant
agreement No 713999 – Matryoshka).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Th. Comp. Sci. 126
2. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. JAR

59(3)
3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: CAV 11. LNCS, vol. 6806, pp. 585–591. Springer (2011)
4. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking

for probabilistic timed automata. Information and Computation 205(7), 1027–1077
(2007)

5. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Th. Comp. Sci. 282(1)

6. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed au-
tomata. Formal Methods in System Design 43(2), 164–190 (2013)

7. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Proc. of
STACS’01. pp. 298–315. LNCS 2215 (2001)

8. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S. (eds.) ITP
2016, Proceedings. LNCS, vol. 9807, pp. 425–440. Springer (2016)

9. Wimmer, S., Hölzl, J.: Probabilistic timed automata. Archive of Formal
Proofs (2018), http://isa-afp.org/entries/Probabilistic_Timed_Automata.
html, Formal proof development

10. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 61–78. Springer International Publishing, Cham (2018)

11. Xu, Q., Miao, H.: Formal verification framework for safety of real-time system
based on timed automata model in PVS. In: Proc. of IASTED’06. pp. 107–112
(2006)

http://isa-afp.org/entries/Probabilistic_Timed_Automata.html
http://isa-afp.org/entries/Probabilistic_Timed_Automata.html

	MDP + TA = PTA: Probabilistic Timed Automata, Formalized  (Short Paper)

