
An Agda Formalization of Üresin & Dubois'
Asynchronous Fixed-Point Theory

Ran Zmigrod, Matthew L. Daggitt, and Timothy G. Gri�n

Computer Laboratory, University of Cambridge

Abstract. In this paper we describe an Agda-based formalization of re-
sults from Üresin & Dubois' �Parallel Asynchronous Algorithms for Dis-
crete Data.� That paper investigates a large class of iterative algorithms
that can be transformed into asynchronous processes. In their model each
node asynchronously performs partial computations and communicates
results to other nodes using unreliable channels. Üresin & Dubois provide
su�cient conditions on iterative algorithms that guarantee convergence
to unique �xed points for the associated asynchronous iterations. Proving
such su�cient conditions for an iterative algorithm is often dramatically
simpler than reasoning directly about an asynchronous implementation.
These results are used extensively in the literature of distributed com-
putation, making formal veri�cation worthwhile.
Our Agda library provides users with a collection of su�cient conditions,
some of which mildly relax assumptions made in the original paper. Our
primary application has been in reasoning about the correctness of net-
work routing protocols. To do so we have derived a new su�cient con-
dition based on the ultrametric theory of Alexander Gurney. This was
needed to model the complex policy-rich routing protocol that maintains
global connectivity in the internet.

1 Introduction

Many applications work with an iterative algorithm F and an initial state xp0q
where successive states are computed as

xpt` 1q “ Fpxptqq

until a �xed point ξ is reached at some time t1 when xpt1q “ ξ “ Fpξq. Here we
assume that xptq represents an n-dimensional vector in some state space. If we
rewrite F as

Fpxq “ pF1pxq, . . . , Fnpxqq,

then we can imagine that it may be possible to assign the computation of each
Fi to a distinct processor. This might be performed in parallel with shared
memory or in a completely distributed manner. However, enforcing correctness
using global synchronization mechanisms may incur performance penalties that
negate the gains from the parallelization. Furthermore, global synchronization
is infeasible for applications such as network routing.

This leads to the question: When can we use the Fi to correctly implement
an asynchronous version of F-iteration? There are many answers to this question
that depend on properties of the state space and the function F � see the survey
paper by Frommer & Syzld [9].

Many of the approaches discussed in [9] rely on the rich structure of vector
spaces over continuous domains. However, our motivation arises from network
routing protocols where the state space is comprised of discrete data. Happily,
Üresin and Dubois [21] have developed a theory of asynchronous iterations over
discrete state spaces. They prove that if F is an Asynchronously Contracting
Operator (ACO, see Section 3), then the associated asynchronous iteration will
always converge to the correct �xed point. Their proof uses very weak assump-
tions about inter-process communication (indeed, in the case that the state space
is �nite they show that ACO is a necessary condition as well). These weak as-
sumptions are a good model for the case of distributed routing protocols where
messages can be delayed, lost, duplicated or reordered. Henceforth we will refer
to Üresin and Dubois [21] as UD.

Proving that a given F is an ACO can be dramatically simpler than reasoning
directly about an asynchronous implementation. However, in many cases it still
remains non-trivial and soUD also derive several su�cient conditions that imply
the ACO condition. These conditions are typically easier to prove for many
common iterative algorithms. For example, they provide su�cient conditions for
special cases where the state space is a partial order and F is order preserving.

In this paper we describe an Agda [3] formalization of the su�cient conditions
and associated proofs from UD. This represents one part of a larger project
in which we are developing formalized proofs of the asynchronous convergence
for policy-rich distributed Bellman-Ford routing protocols (see [5]). This work
required formalizing a new su�cient condition not found in UD, based on the
ultrametric theory of Gurney [11].

Many other applications of the results of UD can be found in the literature
(for example, [4, 6, 7, 16]). The proofs in UD are mathematically rigorous in the
traditional sense, but their de�nitions are somewhat informal and they occasion-
ally claim the existence of objects without providing an explicit construction. In
our opinion a formal veri�cation of the results is therefore a useful exercise.

There have been other e�orts to formalize asynchronous computation such
as Meseguer and Ölveczky [17] for real-time systems and Henrio, Khan, and
Kammüller [13, 14] for distributed languages. However, as far as we know our
work is the �rst attempt to formalize the results of UD.

Our Agda development can be found on Github [1]. We hope that this will
be a valuable resource for others interested in asynchronous iterations.

2 Preliminaries

In this section we introduce the components of the model of asynchronous com-
putation that underpin UD's results together with their Agda formalizations.
Naturally, when formalizing mathematical proofs, there are concerns over steps

2

that are considered trivial in the informal proof. We therefore highlight key fea-
tures in the proof which are in practice signi�cantly more complex than perhaps
implied by the original reasoning.

De�nition 1. An iterative algorithm consists of an initial state xp0q and an
operator F such that @t P N, xpt` 1q “ Fpxptqq.

We begin by formalizing the product state space S “ S1 ˆ ¨ ¨ ¨ ˆ Sn. This is
encoded by a Fin n-indexed family of Setoids. The type S is a function that
takes i and returns the Carrier type of the i-th setoid. We can now formalize the
iterative algorithm as follows:

sync-iter : S Ñ N Ñ S
sync-iter x0 zero = x0
sync-iter x0 (suc K) = F (sync-iter x0 K)

Routing example.We brie�y outline how this work can be applied to reasoning
about convergence of a very general class of internet routing protocols. Full
details can be found in Daggitt, Gurney & Gri�n [5].

Routing problems can be formalized as a tuple pR, ‘, E, 0̄, 8q, where:

� R is the set of routes,
� ‘ : RÑ RÑ R is the choice operator, returning the preferred route,
� E is a set of functions of the form R Ñ R representing generalized edge
weights,

� 0̄ is the trivial route from a node to itself,
� 8 is the invalid route.

A network con�guration is represented as an nˆ n adjacency matrix A over
E. The state space is made up of n ˆ n matrices X over R. Matrix addition,
X‘X1, is just the pointwise application of ‘. The application of A to state X
is de�ned as

pApXqqij “

˜

à

k

AikpXkjq

¸

.

That is, each node i choose the best extensions of the routes to j advertised by
its neighbors. Finally, the iterative algorithm F is de�ned as

FpXq “ ApXq ‘ I, (1)

where I is the matrix de�ned as Iii “ 0̄, and Iij “ 8 for i “ j. As explained in [5],
an asynchronous version of F provides a good model of Distributed Bellman-
Ford (DBF) routing protocols. At each asynchronous iteration in the distributed
setting, each node i will compute only the i-th row of FpXq from the rows
communicated by its adjacent neighbors.

Shortest paths routing is probably the simplest example where ‘ “ min and
E is the set of all fw with fwprq “ w ` r.

3

2.1 Schedules

Schedules determine the asynchronous behaviour; they dictate when nodes re-
lease new information and the timing of that information propagating to other
nodes. Let I be the set of nodes participating in the asynchronous process.

De�nition 2. A schedule ζ is a pair of functions α : N Ñ PpIq and β : N Ñ
I Ñ I Ñ N which satisfy the following properties:

A1 : @t P N, i, j P I. βpt` 1, i, jq ĺ t
A2 : @t P N, i P I. Dt1. t ă t1 ^ i P αpt1q
A3 : @t P N, i, j P I. Dt1. @t2. t1 ă t2 ñ βpt2, i, jq ‰ t

The activation function α takes a time t and returns a subset of I containing
the nodes that updated their value at time t. The data �ow function β takes a
time t and two nodes i and j and returns the time at which the data used by i
at time t was generated by j.

Assumption A1 captures the notion of causality by ensuring that data can
only be used after it was generated. A2 says that each node continues to activate
inde�nitely. Lastly, A3 says that the data generated at time t will only be used
for a �nite number of future updates.

Generalization 1. UD use a shared-memory model with all nodes communi-
cating via shared memory, and so their de�nition of β takes only a single node
i. However this model does not capture processes in which nodes communicate
in a pairwise fashion without shared memory (e.g. internet routing). We have
therefore augmented our de�nition of β to take two nodes, a source and desti-
nation. Their original de�nition can be recovered by providing a β function that
is constant in its third argument.

Generalization 2. UD assumed that all nodes are active initially (i.e. αp0q “
I), which is unlikely to be true in a distributed context. Fortunately this as-
sumption turns out to be unnecessary.

We formalize schedules in Agda as a dependent record. The number of nodes in
the computation is passed as a parameter and the nodes themselves are repre-
sented by the Fin n type. The three properties are named causality, nonstarvation,
and �nite respectively.

record Schedule (n : N) : Set where
�eld
α : (t : T) Ñ Subset n
B : (t : T)(i j : Fin n) Ñ T
causality : @ t i j Ñ B (suc t) i j ĺ t
nonstarvation : @ t i Ñ D ń k Ñ i P α (t + suc k)
�nite : @ t i j Ñ D ń k Ñ @ l Ñ B (k + l) i j ı t

In the de�nition we use T as an alias for N to help semantically di�erentiate
between times and other natural numbers. It would also be possible to implicitly

4

capture causality by changing the return type of B to Fin t instead of T. However,
it turns out that in practice when using B we nearly always want a regular time,
and therefore each call to B would require a conversion to T. We thus decide to
keep causality as an explicit �eld of Schedule.

Another choice made when designing the formalisation of nonstarvation and
�nite was to replace the conditions such as @y. x ĺ y ùñ P pyq with @y. P px`yq.
This removes the need to pass around proof terms, and consequently often makes
using these properties easier to use. This same technique is used throughout the
rest of our library.

An asynchronously iteration can be constructed by combining an iterative
algorithm with a schedule.

De�nition 3. An asynchronous iteration over a schedule S “ pα, βq, an initial
state xp0q, and an operator F, is denoted as pF, xp0q, S q such that @t P N, i P I

xipt` 1q “

#

xiptq if i R αpt` 1q

Fipx0pβpt` 1, i, 0qq, . . . ,xn´1pβpt` 1, i, n´ 1qqq otherwise

We formalize this in Agda as follows:

async-Iter' : Schedule n Ñ S Ñ @ {t} Ñ Acc _<_ t Ñ S
async-Iter' S x0 {zero} _ i = x0 i
async-Iter' S x0 {suc t} (acc rec) i with i P? α S (suc t)
... | yes _ = F (ń j Ñ async-Iter' S x0

(rec (B S (suc t) i j) (sĺs (causality S t i j))) j) i
... | no _ = async-Iter' S x[0] (rec t ĺ-re�) i

Those unfamiliar with Agda may wonder why the Acc argument is necessary.
While we can see that this function will terminate as each recursive call goes
from time t to time βpt, i, jq which is strictly smaller due to causality, the Agda
termination checker cannot detect this without help. Acc is a data-type found
in the Agda standard library that helps the termination checker by providing
an argument to the function that always becomes structurally smaller with each
recursive call. Using the proof that the natural numbers are well-founded, this
complexity is hidden from the user in the main function:

async-iter : Schedule n Ñ S Ñ T Ñ S
async-iter S x0 t = async-iter' S x0 (<-wellFounded t)

3 Convergence theorem

UD de�ne a class of Fs called Asynchronously Contracting Operators (ACOs).
They then prove that if an operator is an ACO, then it will converge to the
correct �xed point for all possible schedules.

5

De�nition 4. An operator F is an asynchronously contracting operator (ACO)
on a subset Dp0q of the state space S “ S0 ˆ S1 ˆ ¨ ¨ ¨ ˆ Sn´1 i� there exists a
sequence of sets DpKq such that

(i) @K P N. DpKq “ D0pKq ˆD1pKq ˆ ¨ ¨ ¨ ˆDn´1pKq
(ii) Dξ P S. DT P N. @K P N.

K ă T ñ DpK ` 1q Ď DpKq

K ľ T ñ DpKq “ tξu

(iii) @K P N. x P DpKq ñ Fpxq P DpK ` 1q

The sequence DpKq can be seen as a form of approximation for the process with
each iteration providing a higher accuracy. Each set contains the possible states
at a moment in time. Dp0q contains many possible states as the algorithm has
just begun, and each set in the sequence removes some incorrect states. This
occurs until DpT q “ tξu when the converged state has been found.

Generalization 3. The de�nition of ACO in UD used the clause K ă T ñ
DpK ` 1q Ă DpKq, where we have relaxed this to K ă T ñ DpK ` 1q Ď DpKq.
This relaxation is also found in the survey by Frommer & Szyld [9].

The de�nition of an ACO is captured in the following record type:

record ACO p : Set _ where
�eld
D : N Ñ @ i Ñ Si i Ñ Set p
D-decreasing : @ K Ñ D (suc K) Ď D K
D-�nish : D2 ń T ξ Ñ @ K Ñ IsSingleton ξ (D (T + K))
F-monotonic : @ K {t} Ñ t P D K Ñ F t P D (suc K)

The variable p represents the universe level of the family of sets D, while the
universe level of ACO is inferred automatically (Set _). The sets themselves are
implemented as a double-indexed family of predicates over Si i.

The following theorem is the main su�cient condition proved in UD.

Theorem 1. If F is an ACO on a set Dp0q, then for all schedules S , any
asynchronous iteration xpkq “ pF,xp0q,S q with xp0q P Dp0q, converges to the
unique �xed point ξ of F in Dp0q.

In order to prove this theorem, UD consider the concept of a pseudo-periodic
schedule. It is then proved that every schedule (De�nition 2) is in fact pseudo-
periodic, which greatly simpli�es reasoning about schedules. This is perhaps the
least rigorous aspect of the work of UD , as they state this without proof.

De�nition 5. A schedule S “ pα, βq is pseudo-periodic if there exists an in-
creasing function ϕ : NÑ N such that:

(i) ϕp0q “ 0
(ii) @K P N, i P I. Dt P N. i P αptq ^ ϕpKq ĺ t ă ϕpK ` 1q
(iii) @K, t P N, i, j P I. t ľ ϕpK ` 1q ùñ βpt, i, jq ľ τipKq ľ ϕpKq

6

where τipKq is the earliest time after ϕpKq that element i is updated.

The intuition behind ϕ is that by time ϕpK ` 1q every node is guaranteed
to be using data generated at least as recently as ϕpKq. Hence the interval
pϕpKq, ϕpK ` 1qs is known as the kth pseudo-period.

We formalize the pseudo-periodic property in Agda as follows:

record IsPseudoperiodic {n : N} (S : Schedule n) : Set where
open Schedule S
�eld
ϕ : N Ñ T
τ : N Ñ Fin n Ñ T

ϕ-increasing : @ K Ñ K ĺ ϕ K
τ-active : @ K i Ñ i P α (τ K i)
τ-after-ϕ : @ K i Ñ ϕ K ĺ τ K i
τ-expired : @ K t i j Ñ τ K j ĺ B (ϕ (suc K) + t) i j

Note that this represents a simpli�cation of UD's de�nition. We worked
backwards from the proof of Theorem 1 and identi�ed only those properties
required. This simpli�cation may have to change if we extend our library to
include UD's proof that the ACO condition is also necessary (in the case of
�nite state spaces).

UD assert that for any schedule there exist an in�nite number of possible
functions ϕ, but they do not provide any explicit constructions. This is one area
where we had initial concerns when planning our proof strategy in Agda.

We start by de�ning nextActive, which takes a time t and a node index i and
returns the �rst time after t for which that i is active.

nextActive' : (t k : T) {i : Fin n} Ñ i P α (t + suc k) Ñ Acc _<_ k Ñ T
nextActive' t zero {i} _ _ = suc t
nextActive' t (suc k) {i} iPα[t+1+K] (acc rs) with i P? α t
... | yes iPα = t
... | no iRα rewrite +-suc t (suc k) = nextActive' (suc t) k iPα[t+1+K] _

nextActive : T Ñ Fin n Ñ T
nextActive t i with nonstarvation t i
... | (K , iPα[t+1+K]) = nextActive' t K iPα[t+1+K] (<-wellFounded K)

We then de�ne allActive, which returns the �rst time after t such that all nodes
have activated since t.

allActive : T Ñ T
allActive t = max t (nextActive t)

We then need to de�ne three auxiliary functions: pointExpiryij returns a time
after which i does not use the data generated by j at time t.

7

pointExpiryij : Fin n Ñ Fin n Ñ T Ñ T
pointExpiryij i j t = proj1 (�nite t i j)

expiryij returns a time after which i only uses data generated by j after time t.

expiryij : T Ñ Fin n Ñ Fin n Ñ T
expiryij t i j = List.max t (applyUpTo (pointExpiryij i j) (suc t))

expiryi returns a time after which i only uses data generated after time t.

expiryi : T Ñ Fin n Ñ T
expiryi t i = max t (expiryij t i)

Using these we can de�ne the function expiry that returns a time after which all
nodes only use data generated after time t.

expiry : T Ñ T
expiry t = max t (expiryi t)

Finally, we construct ϕ as follows:

ϕ : N Ñ T
ϕ zero = zero
ϕ (suc K) = suc (expiry (allActive (ϕ K)))

Therefore we �nd a time t such that all nodes have been activated after ϕpKq
and then ϕpK`1q is de�ned as the time after which all data used was generated
after t. The function τ (as de�ned in property (iii) of pseudo-periodic schedules)
is simply a special call to nextActive.

τ : N Ñ Fin n Ñ T
τ K i = nextActive (ϕ K) i

We now prove that ϕ and τ satisfy the properties required to be pseudo-periodic
as given in De�nition 5. The property ϕ-increasing is relatively simple, given that
proofs that the various functions are increasing:

ϕ-increasing : @ K Ñ K ĺ ϕ K
ϕ-increasing zero = zĺn
ϕ-increasing (suc K) = sĺs (begin
K ĺx ϕ-increasing K y

ϕ K ĺx allActive-increasing (ϕ K) y
allActive (ϕ K) ĺx expiry-increasing (allActive (ϕ K)) y
expiry (allActive (ϕ K)) �)

The second property says that τ is always active and it can be satis�ed by using
properties of nextActive:

τ-active : @ K i Ñ i P α (τ K i)
τ-active K = nextActive-active (ϕ K)

8

The third property can be easily proved using the fact that nextActive is increas-
ing:

τ-after-ϕ : @ K i Ñ ϕ K ĺ τ K i
τ-after-ϕ zero i = zĺn
τ-after-ϕ (suc K) i = nextActive-increasing (ϕ (suc K)) i

The �nal property states that at all points during a pseudo-period, no nodes use
information generated in a previous pseudo-period. This is the most complex of
the four properties to prove.

τ-expired : @ K t i j Ñ τ K j ĺ B (ϕ (suc K) + t) i j
τ-expired K t i j = expiry-expired (begin
expiry (nextActive _ j) ĺx expiry-monotone (nextActiveĺallActive _ j) y
expiry (allActive (ϕ K)) ĺx nĺ1+n (expiry (allActive (ϕ K))) y
ϕ (suc K) ĺx mĺm+n (ϕ (suc K)) t y
ϕ (suc K) + t �) i j

As previously mentioned the construction of ϕ is not discussed in UD. Never-
theless, �lling this gap required signi�cant e�ort in our Agda development.

The proof of Theorem 1 requires an additional fact about the functions τi:
for each K, once all i have been updated after some time t, then xptq P DpKq.

Lemma 1. @t, K P N, i P I. τipKq ĺ t ùñ xiptq P DipKq.

In UD Lemma 1 is proved by a fairly easy induction on K. However, in
Agda the construction, called τ-stability, turned out to be more di�cult. Several
smaller lemmas were required, the biggest of which is that the asynchronous
iteration remains within Dp0q, the proof of which is called async[t]'PD0.

async[t]'PD0 : @ {t} (acct : Acc _<_ t) Ñ async-Iter' S x0 acct P D 0
async[t]'PD0 {zero} _ i = x0PD0 i
async[t]'PD0 {suc t} (acc rec) i with i P? α (suc t)
... | yes iPα = D-decreasing 0 (F-monotonic 0 (ń j Ñ

async[t]'PD0 (rec (B (suc t) i j) (sĺs (causality t i j))) j)) i
... | no iRα = async[t]'PD0 (rec t (sĺs ĺ-re�)) i

τ-stability' : @ {t K i} (acct : Acc _<_ t) Ñ τ K i ĺ t Ñ
async-Iter' S x0 acct i Pu D K i

τ-stability' {_} {zero} {i} acct _ = async[t]'PD0 acct i
τ-stability' {zero} {suc K} {i} _ τĺ0 =

contradiction τĺ0 (<ñğ 0<τ[1+K])
τ-stability' {suc t} {suc K} {i} (acc rec) τĺ1+t with i P? α (suc t)
... | yes _ = F-monotonic K (ń j Ñ τ-stability' _ (τ[1+K]-expired τĺ1+t)) i

... | no iRα with τ (suc K) i
?
“ suc t

... | no τı1+t = τ-stability' _ (<ñĺpred (ĺ+ıñ< τĺ1+t τı1+t))

... | yes τ”1+t =
contradiction (subst (i Ps_) (cong α τ”1+t) (τ-active (suc K) i)) iRα

9

τ-stability : @ {t K i} Ñ τ K i ĺ t Ñ asyncIter S x0 t i Pu D K i
τ-stability {t} = τ-stability' (<-wellFounded t)

We now construct the �nal proof of convergence. To do this we must construct
a time after which the result of the asynchronous iteration is always equal to
the �xed point. UD prove that ϕpT ` 1q, where T is from the ACO, is the
convergence time. This is because each pseudo-period, every node is updated at
least once and a total of T updates must occur before convergence. In the Agda,
we �rst extract T and ξ from D-Finish. We then prove Theorem 1 as follows.

T : T
T = proj1 D-�nish

ξ : S
ξ = proj1 (proj2 D-�nish)

tc : T
tc = F (suc T)

async[tc]PD[T] : @ t Ñ asyncIter S x0 (tc + t) P D T
async[tc]PD[T] t j = τ-stability (begin
τ T j ĺx τ-expired T 0 j j y
B (tc + 0) j j ”x cong (ń v Ñ B v j j) (+-identityr tc) y
B tc j j ĺx B-decreasing j j 1ĺtc y
tc ĺx mĺm+n tc t y
tc + t �)
where open ĺ-Reasoning

async-converge : @ K Ñ asyncIter S x0 (tc + K) « ξ
async-converge K = D[T]«tξu (async[tc]PD[T] K)

4 The library

UD show that being an ACO is a su�cient (and sometimes a necessary) condi-
tion for convergence. However in practice, constructing the sets DpKq can still
be a non-trivial exercise. Therefore, an extensive array of su�cient (but often
not necessary) conditions have been constructed that in practice can be simpler
and more intuitive to apply. These conditions are nearly always a reduction back
to ACOs.

In this section we introduce three di�erent su�cient conditions that are avail-
able in our library. The �rst two are from UD and the third is a modi�ed version
of a new su�cient condition found in a recent paper by Gurney [11] (which was
essential for the results described in Daggitt, Gurney and Gri�n [5]).

10

4.1 Synchronous iteration conditions

The �rst set of su�cient conditions makes use of the synchronous iteration of the
algorithm, which UD refer to as yptq, as opposed to the asynchronous iteration
xptq. The conditions involve the existence of partial orderings, ĺi, over each Si,
which are lifted to the order ĺ over S in the usual point-wise manner. To do
this, each ĺi must be a partial order, and is formalized in Agda as:

record S-poset p : Set (lsuc (a \ ` \ p)) where
�eld
ĺi : @ {i} Ñ Rel (Si i) p
isPartialOrderi : @ i Ñ IsPartialOrder (_«i_ {i}) _ĺi_

Proposition 1. An operator F is an ACO over the set Dp0q with a start state
yp0q P Dp0q if:

(i) @a P Dp0q. Fpaq P Dp0q
(ii) @a,b P Dp0q. a ĺ b ùñ Fpaq ĺ Fpbq
(iii) @K P N. ypK ` 1q ĺ ypKq
(iv) The sequence typKqu converges

Proposition 1 indicates that if ypkq converges, the operator F is monotonic, and
there exists some set Dp0q that is closed over F, then F is an ACO.

The existing of a starting state yp0q and the condition (i) are shared with the
second set of su�cient conditions described later in Section 4.2, and therefore
we split them out into their own record type.

record StartingConditions p : Set (lsuc (a \ ` \ p)) where
�eld
D0 : @ i Ñ Si i Ñ Set p
D0-closed : @ x Ñ x P D0 Ñ F x P D0

x0 : S
x0PD0 : x0 P D0

Therefore, the pre-conditions of Proposition 1 are formalized as:

record SynchronousConditions p : Set (lsuc (a \ ` \ p)) where
�eld
start : StartingConditions p
poset : S-poset p
F-monotone : @ {x y} Ñ x P D0 Ñ y P D0 Ñ x ĺ y Ñ F x ĺ F y
iter-decreasing : @ K Ñ sync-iter x0 (suc K) ĺ sync-iter x0 K
iter-converge : D ń T Ñ @ t Ñ sync-iter x0 T « sync-iter x0 (T + t)

The reduction by UD of these conditions to an ACO runs as follows. The se-
quence of sets D required by the de�nition of an ACO are de�ned as follows:

DpKq “ tx | ξ ĺ x ĺ ypKq ^ x P D0u

11

which is directly translated in Agda as:

D : N Ñ @ i Ñ Mi i Ñ Set p
D K i = (ń x Ñ (ξ i ĺ x) ˆ (x ĺ sync-iter x0 K i)) X D0 i

The proof that the sets DpKq are decreasing is a direct application of iter-
decreasing. The �xed point for the ACO is computed by calling sync-iter on the
convergence time given by iter-converge.

Routing example. Classical routing theory [2] assumes that distributivity
holds:

@e P E : x, y P S : epx‘ yq “ epxq ‘ epyq (2)

and under this assumption one can prove that every entry of every routing table
improves monotonically with each iteration when the protocol starts from the
initial state I. Therefore for classical routing problems such as shortest-paths, it
is fairly easy to construct an instance of SynchronousConditions.

4.2 Finite conditions

The next set of su�cient conditions are applicable when the initial set Dp0q is
�nite. Like Proposition 1, it requires that F is monotonic and Dp0q be closed
over F. Instead of reasoning about the synchronous iteration of the operator, it
adds an additional requirement that F is non-expansive over Dp0q.

Proposition 2. An operator F is an ACO over the set �nite Dp0q with a start
state xp0q P Dp0q if:

(i) @a P Dp0q. Fpaq P Dp0q
(ii) @a P Dp0q. Fpaq ĺ a
(iii) @a,b P Dp0q. a ĺ b ùñ Fpaq ĺ Fpbq

This can be formalized in a similar manner as Proposition 1.

record FiniteConditions p : Set (lsuc (a \ ` \ p)) where
�eld
start : StartingConditions p
poset : M-poset p

_
?
“_ : Decidable _«_

D0-�nite : Finite-Pred D0

F-nonexpansive : @ {x} Ñ x P D0 Ñ F x ĺ x
F-monotone : @ {x y} Ñ x P D0 Ñ y P D0 Ñ x ĺ y Ñ F x ĺ F y
F-cong : @ {x y} Ñ x « y Ñ F x « F y

The proof for Proposition 2 is a reduction to the conditions for Proposition 1.
To do this we must show that the synchronous iteration decreases and converges.
For convenience we de�ne the Finite-Pred condition as the existence of a List that
contains all elements of D0.

12

The �rst goal is to prove that the synchronous iteration decreases, as x0 is in
D0, this is a direct use of F-nonexpansive.

iter-decreasing : @ K i Ñ iter x0 (suc K) i ĺ iter x0 K i
iter-decreasing K i = F-nonexpansive (closed-trans K) i

Proving that the synchronous iteration converges is more complex. This is due
to the constructive nature of the proof, meaning that we must actually construct
the �xed point ξ. To do this, we iterate until two consecutive steps are equal
in which case we have converged (this exlaines the need for the two additional

assumptions about equality: f-cong and _
?
“_). However the Agda termination

checker is not initially satis�ed that this process will ever halt. We must therefore
provide a value that strictly decreases each iteration and once again use the Acc
type from the standard library.

As we know that all iterations are in D0 from D0-closed, the length of the list
representing the elements of D0 can be used to provide the decreasing values.
Each iteration, the current value is removed from the list. Removing the current
value is where the two additional assumptions of decidable equality and the
preservation of equality by the operator are used.

Routing example.When starting the shortest-path routing iteration from arbi-
trary states, junk routes may be present that cause the well-known phenomenon
of count-to-convergence. In order to guarantee the convergence from arbitrary
states the routing protocol RIP [12] limits the longest path length is 15. This has
the e�ect of making the domain �nite, and hence one could imagine constructing
an instance of FiniteConditions to prove the convergence of RIP from any state.

4.3 Ultrametrics

The notion of convergence has an intuitive interpretation in metric spaces. In
such spaces, convergence is equivalent to every application of the operators Fi

moving you closer (in discrete steps) to the �xed point ξ.
There do exist results of this type. For instance El Tarazi [8] shows that

if there is a normed linear space over each the values at each node i, then
convergence occurs if there exists a �xed point x˚ and a γ P p0, 1s such that:

||Fpxq ´ x˚|| ď γ||x´ x˚||

However in many ways this is a very strong su�cient condition as the existence
of a norm over the operation space assumes the existence of an additive operator
on the space. For many processes, including our example of network routing, this
may not be true.

Instead there is a more general result by Gurney [11] based on ultrametrics.
An ultrametric [19] is a metric where the standard triangle inequality has been
replaced by the strong triangle inequality. As far as we are aware, this result
seems to have appeared only in [11]. In fact [11] proves not only that the condi-
tions imply an ACO but are actually equivalent to being an ACO and therefore

13

equivalent to saying the process converges. As with the theorems of UD we are
primarily concerned with the usability of the theorems and therefore only prove
the forwards direction.

De�nition 6. An ultrametric space pS, Γ, dq is a set S, a totally ordered set Γ
with a least element 0, and a function d : S Ñ S Ñ Γ such that:

M1 : dpx, yq “ 0 ô x “ y
M2 : dpx, yq “ dpy, xq
M3 : dpx, zq ď maxpdpx, yq, dpy, zqq

De�nition 7. A function f : S Ñ S is strictly contracting on orbits in an
ultrametric space pS, Γ, dq if:

x ‰ fpxq ùñ dpx, fpxqq ą dpfpxq, fpfpxqqq

i.e. the distance between iterations strictly decreases.

De�nition 8. An operator f : S Ñ S is strictly contracting on a �xed point
x˚ in an ultrametric space pS, Γ, dq if:

x ‰ x˚ ùñ dpx˚, xq ą dpx˚, fpxqq

Theorem 2 (Gurney [11]). If there exists pSi, Γ, diq, and we take S “
ś

i Si

and dpx,yq “ maxi dipxi,yiq then F is an ACO if:

1. Γ is �nite
2. F is strictly contracting on orbits over pS, Γ, dq
3. F is strictly contracting on a �xed point over pS, Γ, dq
4. S is non-empty

These conditions are constructed in Agda as:

record UltrametricConditions : Set (a \ `) where
�eld
di : @ {i} Ñ Si i Ñ Si i Ñ N

d : S Ñ S Ñ N
d x y = max 0 (ń i Ñ di (x i) (y i))

�eld
di-isUltrametric : @ {i} Ñ IsUltrametric (Si i) di
F-strContrOnOrbits : F StrContrOnOrbitsOver d
F-strContrOnFP : F StrContrOnFixedPointOver d
d-bounded : Bounded d

element : S

_
?
“_ : Decidable _«_

F-cong : F Preserves _«_ ÝÑ _«_

14

Note that in our formalisation we currently assume Γ “ Fin n for some n in
order to simplify the theory. We plan to generalize this at some point.

Our Agda proof is very similar to the original proof by Gurney [11]. One of
the key di�erences is that Gurney assumes that F is contracting where as we
assume that F is strictly contracting on a �xed point. This is because in our
use-case it is not possible to construct a contracting metric. The relationship
between the two properties is not entirely clear, but the resulting proofs are
very similar.

Routing example. The Border Gateway Protocol [18] is used by all Inter-
net Service Providers (ISPs) to maintain connectivity in the global internet.
As explained in [5], distributivity (Eq. 2) cannot be guaranteed in this setting
primarily because of the competing interests of service providers and the very
expressive policy languages needed to implement these interests in routing.

Consequently, a great deal of research has been directed at �nding su�cient
conditions that guarantee convergence for policy-rich protocols such as BGP (see
for example [10, 20]). One reasonable condition is that the algebra be strictly
increasing :

@e P E : x P S : x “ x‘ epxq ‰ epxq (3)

This says that a route x must be strictly more preferred than any extension epxq.
However, now individual routing table entries are no longer guaranteed to

improve monotonically, and so there is no natural ordering on the state space.
Assuming Eq. 3, [5] show how to construct suitable ultrametrics di over the rout-
ing tables in such a way that they ful�ll the properties required by Theorem 2.
It is based on the observation that the worst routing table entry in the state will
always improve after each iteration.

5 Conclusion

In this paper we have taken the mathematically rigorous yet informal proof
of Üresin and Dubois' theory regarding the convergence of asynchronous itera-
tions [21] and formalized it constructively in Agda. This involved explicitly con-
structing the previously unspeci�ed pseudo-periodic sequences and mildly weak-
ening some assumptions. Furthermore, we have described our library of proofs
and su�cient conditions for asynchronous convergence, including a recent, new
ultrametric condition. We hope that our library of su�cient conditions will be a
valuable resource for those wanting to formally verify the convergence of a wide
range of asynchronous iterations. The library is available on Github [1].

We are primarily interested in proving convergence and therefore we have
thus far only formalized the su�cient conditions from Üresin and Dubois and
not their proof that the ACO condition is also necessary in the case of �nite state
spaces. This would be an interesting extension to our development. In addition
it would be interesting to see if other related work such as [15, 22, 23], using
di�erent models, could be integrated into our formalization.

15

References

1. Agda routing library, https://github.com/MatthewDaggitt/agda-
routing/tree/itp2018

2. Baras, J.S., Theodorakopoulos, G.: Path problems in networks. Synthesis Lectures
on Communication Networks 3(1), 1�77 (2010)

3. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda � a functional language
with dependent types. In: Theorem Proving in Higher Order Logics. pp. 73�78.
Springer Berlin Heidelberg (2009)

4. Chau, C.k.: Policy-based routing with non-strict preferences. SIGCOMM Comput.
Commun. Rev. 36(4), 387�398 (Aug 2006)

5. Daggitt, M.L., Gurney, A.J.T., Gri�n, T.G.: Asynchronous convergence of policy-
rich distributed bellman-ford routing protocols. In: SIGCOMM proceedings. ACM
(2018), to appear

6. Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theoretical Com-
puter Science 293(1), 219 � 236 (2003), Max-Plus Algebras

7. Edwards, S.A., Lee, E.A.: The semantics and execution of a synchronous block-
diagram language. Science of Computer Programming 48(1), 21 � 42 (2003)

8. El Tarazi, M.N.: Some convergence results for asynchronous algorithms. Nu-
merische Mathematik 39(3), 325�340 (1982)

9. Frommer, A., Szyld, D.B.: On asynchronous iterations. Journal of computational
and applied mathematics 123(1), 201�216 (2000)

10. Gri�n, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Transactions on Networking 10(2), 232�243 (2002)

11. Gurney, A.J.T.: Asynchronous iterations in ultrametric spaces. Tech. rep. (2017),
https://arxiv.org/abs/1701.07434

12. Hendrick, C.: Routing information protocol (RIP) (1988), RFC 1058
13. Henrio, L., Kammüller, F.: Functional active objects: Typing and formalisation.

Electronic Notes in Theoretical Computer Science 255, 83 � 101 (2009), FOCLASA
14. Henrio, L., Khan, M.U.: Asynchronous components with futures: Semantics and

proofs in isabelle/hol. Electronic Notes in Theoretical Computer Science 264(1),
35 � 53 (2010)

15. Lee, H., Welch, J.L.: Applications of probabilistic quorums to iterative algorithms.
In: Proceedings 21st International Conference on Distributed Computing Systems.
pp. 21�28 (Apr 2001)

16. Lee, H., Welch, J.L.: Randomized registers and iterative algorithms. Distributed
Computing 17(3), 209�221 (2005)

17. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architec-
tural pattern for distributed real-time systems. In: ICFEM. pp. 303�320 (2010)

18. Rekhter, Y., Li, T.: A Border Gateway Protocol (BGP) (1995)
19. Schörner, E.: Ultrametric �xed point theorems and applications. Valuation Theory

and its Applications 2, 353�359 (2003)
20. Sobrinho, J.L.: An algebraic theory of dynamic network routing. IEEE/ACM

Transactions on Networking 13(5), 1160�1173 (2005)
21. Üresin, A., Dubois, M.: Parallel asynchronous algorithms for discrete data. J. ACM

37(3), 588�606 (Jul 1990)
22. Üresin, A., Dubois, M.: E�ects of asynchronism on the convergence rate of iterative

algorithms. Journal of Parallel and Distributed Computing 34(1), 66 � 81 (1996)
23. Wei, J.: Parallel asynchronous iterations of least �xed points. Parallel Computing

19(8), 887 � 895 (1993)

16

