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Scoped channels, in the m-calculus, are not nameable, as they are bound and subject to alpha-
renaming. For program analysis purposes, however, to identify properties of these channels, it is
necessary to talk about them. We present herein a method for uniquely identifying scoped channels.

1 Introduction

In process calculi like the 7-calculus [2, 3} 4], the new operator has two roles: it creates a fresh channel
and binds its occurrences in a declared scope. A basic rule of the operational semantics is ¢-conversion,
i.e., the simultaneous substitution of all occurrences of a bound identifier in a given scope by another
one, usually taking into account care to avoid capturing free identifiers.

So, the identities of bound identifiers are actually meaningless, as they can change. However, one
often needs to refer to particular occurrences of a bound identifier to pinpoint, for instance, program
defects. Thus, program analysis methods like those looking for deadlocks, need to inspect bound names.
Moreover, to provide meaningful explanations to the reasons of a deadlock, it might be necessary to refer
to occurrences of bound identifiers, what seems to be a contradiction in terms.

We address the problem by associating with each syntactic occurrence of an identifier in a new
operator a pair of unique labels that are treated like constants. We present the syntax and the operational
semantics of the calculus, and show that as new names are created, the generated labels associated with
them are unique. Therefore, one can refer particular instances of bound names, even if their identifiers
occur more than once in a process, free or bound.

In short, our contribution is the following: a syntactic mechanism, simple to automatise, that gener-
ates unique identifiers associated with each new name. The uniqueness of these identifiers is preserved
by reduction, the usual operational semantics mechanism of the calculus. This mechanism is useful for
program analysis purposes, like detecting deadlocks on scoped names.

2 Syntax and semantics

The syntax of the process language is inductively defined by the grammar in Figure (1l As usual, u,v
range over names and n,x over name variables. The occurrences in process P of the variable x in process
like u?x.P and *u?x.P, and n in (newn : (h,h))P, are bound. As usual, other occurrences are free. Let
fn(P) denote the set of free names in process P. Moreover, we use the standard notion of capturing
avoiding substitution of a free variable x by a name v in a process P (denoted by P[V/x]).
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2 Pointing to private names

Furthermore, labels £,i, j range over natural numbers. In the “top-level” (i.e., the “programmers”)
process syntax — that we call static — the labels in a pair are equal; reduction produces dynamic
processes, where the pairs of labels become different.

The distinctive characteristic of our language is the use of labels to uniquely identify private names.
In this paper we show that the reduction semantics of our language indeed guarantees label uniqueness.

Definition 2.1 (Process Labels). Let the following sets be inductively defined by the given rule and by
homomorphic rules on the remaining process constructs.

1. seclLabs((newn : (h,i))P) = {i} UsecLabs(P)
2. labelPairs((newn : (h,i))P) = {(h,i)} UlabelPairs(P)

We work with well formed processes, where label pairs occur linearly. To define the concept pre-
cisely, we need to define the multiset of subprocesses of a process.

Definition 2.2 (Subprocesses). The multiset of the subprocesses of a process P is inductively generated
by the following rules.

subprocs(nil

~

= {nil}

subprocs(uv.P) = {uv.P} Wsubprocs(P)
subprocs(u ?x.P) = {u?x.P} Wsubprocs(P)
subprocs(xu 7x.P) = {*u?x.P} Wsubprocs(P)

= {(newn : (h,i))P}Wsubprocs(P)
= subprocs(P) Wsubprocs(Q)

subprocs((newn : (h,i))P
subprocs(P|| Q

~— — ~— ~— ~—

We are now ready to define what is a well-formed process.

Definition 2.3 (Well-Formedness). A process P is well-formed (and we write wf(P)) if when there is a
set & C subprocs(P) such that {(newn : (h,i))Q, (newn: (K, j))Q'} C P theni# j.

From now on we simply say ’P well-formed” whenever wf(P) holds. Notice that if a static (defined
below) and well-formed process uses labels (hy,h1),..., (hy,hy), then hy, ... h, are all distinctﬂ

Definition 2.4 (Static Processes). Let a process P be static if the predicate below, inductively defined by
the two rules and by homomorphic rules on the remaining process constructs, holds.
static(nil) = true and static((newn : (h,i))P) = (static(P) Nh =)

So, in well-formed static processes no label pair occurs more than once — well-formedness implies
that labels are used linearly. Therefore, if a process is well-formed, so are all its subprocesses.

Lemma 2.5 (Label freshness). Let wf(P) hold. Then,
1. if P= (newn: (h,i))Q then i ¢ secLabs(Q);
2. if P=(Q]||R) then secLabs(Q) NsecLabs(R) = 0;
3. wf(P[V/x]);
4. for any Q € subprocs(P), it holds that wf(Q);
5. for any Q and R such that {Q,R} C subprocs(P), it holds that wf(Q|| R);
6. if wf(Q) and secLabs(P) NsecLabs(Q) = 0 then wf(P || Q).
IThis result is an immediate consequence of Lemma|A.2]in Page|[7]
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Given the definition of well-formed processes, the proofs of the results above are straightforward.

Let 7; denote the first pair projection function. The set S contains the labels to avoid when renaming
the labels of the process.

Definition 2.6 (Process Relabelling). Let the (partial) binary function relabelling, taking a process and
a set of labels and returning a process and a set of labels, be inductively defined by the rules below (the
remaining cases being homomorphic). Consider a set of labels S.

1. ifS O {i} UseclLabs(P) and j ¢ S then
let (P',S") = relabelling(P,SU{j}) in

relabelling((newn : (h,i))P,S) = ((newn : (h, j))P',S')

2. let (P',S") = relabelling(P,S) and (Q',S") = relabelling(Q,S") in

relabelling(P || Q,S) = (P’ || Q',S")

Note that the first label in label pairs is not affected by relabelling. The relevant results are that
labels obtained by relabelling are fresh and relabelling preserves well-formedness. The proofs are in

Appendix[A.2]

Proposition 2.7 (Relabelling preserves label freshness). Let P be well-formed and S a set of labels such
that S O secLabs(P). Then,

1. relabelling(P,S) is defined;
2. secLabs(P) NsecLabs(m (relabelling(P,S))) =0

3. m(relabelling(P,S)) is well-formed.

3 Reduction semantics

Considering, as usual, processes indistinguishable up to a-conversion, the operational semantics of the
language is defined with two relations: structural congruence and reduction. Figure 2] presents the rules
inductively defining both relations.

Note that labels, being constants, are not subject to ¢-conversion (naturally, only variables are).
Labels are thus a mechanism to identify places where bound channels (variables) are used.

Notice that reduction preserves the first label in any label pair.

Lemma 3.1 (Label preservation). Let P —* Q. For any (h, j) € labelPairs(Q) there is an i such that
(h,i) € labelPairs(P).

Proof. Straightforward. O
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Static Process Syntax

P,Q.R € PrROC ::=nil (inert) | (P]O) (composition)
| u?x.P (input) | *u?x.P (replication)
| ulv.P (output) | (newn: (h,h))P (hiding)
Dynamic Process Syntax Let i € N.
P,Q,R € PROC ::=... | (newn: (h,i))P (hiding)

Figure 1: The process language: syntax
Structural Congruence
SNIL  P|/nil = P sCom P|Q = QJ|P sAss Pl (Q||R) = (P||Q)|IR
sSwp  (newn: (h,i))(newn’: (I',j))P = (newn': (K, j))(newn: (h,i))P
SEXT Pl (newn: (h,i))Q = (newn: (h,i))(P| Q) if n ¢ fn(P)
Reduction system

Q' = m (relabelling(Q, secLabs(P || Q[V/x])))

n.P||n?x.Q — P| Q[V/x| Rer n.P|| «n?x.Q — P|| Q[V/x] || xn?x.Q’
P—Q P — Q secLabs(Q)NsecLabs(R) =0
RES PAR
(newn : (h,i))P — (newn: (h,i))Q P||R— Q||R

P=P P —Q (0=0
P—Q

STR

Figure 2: The process language: operational semantics

Relabelling at work. A simpler mechanism to generate fresh labels would be to increase the second
label each time a new thread is spawned. The idea, however, does not guarantee label uniqueness.

Example 3.2 (Why increment doesn’t work).
xa?.xb?.(newn: (I,1))nil||a!.nil||al.nil|| b!.nil —
xb?.(newn: (1,1))nil||xa?.xb?.(newn : (1,2))nil||a!.nil|| b!.nil —
xb?.(newn : (1,1))nil||xb?.(newn : (1,2))nil||xa?.xb?.(newn : (1,3))nil|| b!.nil —
(newn : (1,1))nil||xb?.(newn : (1,2))nil|| xb?.(newn : (1,2))nil|| xa?.x*b?.(newn : (1,3))nil
O

The relabelling mechanism defined actually guarantees that label uniqueness is preserved by reduc-
tion. An elaborate example is below.
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Example 3.3 (Relabelling works). Consider
P=al.(newn: (I;,1,))nil|| Qo with
Q() = *a ?.Q()o and Qo() ==xb ?.(newn : (l(),l()))ni/

By rule REP, we have P — Q, where

QO = (newn: (I1,11))nil|| Qoo || *a ?.relabel(Qoo)

and relabel(Qoo) = *b?.(newn : (ly,ls))nil with a fresh label l4. Notice how

(secLabs((newn : (Iy,11))nil]| Qo) = {lo,11}) N ({l4} = secLabs(relabel(Qy)))) =0

Consider now
R=al.(newn: (Ip,1))nil||b!.(newn : (I3,13)nil)
Since secLabs(Q) = {lo, 1,14} and secLabs(R) = {l»,13} (they are disjoint), we conclude, by rule PAR,
PIR= {a!.(newn : (ll,ll))ni/“ xa?.xb?.(newn : (lo,.lo))nil
|a!.(newn : (Ip,1))nil||b!.(newn : (I3,13))nil
N
OR= {(newn: (li,L)nil) || %b2.(newn : (Lo, lo) ) nil || xa?.x b ?.(newn : (Iy,ls))nil
|

|al.(newn : (Ip, 1)) nil||b!.(newn : (I3,13))nil

The same reasoning applies now for the subsequent reduction step:

o Assuming relabel(xb?.(newn : (lo,ls4))nil) = xb?.(newn : (lp,ls))nil with Is fresh, by rule REP we
have:

xa?.xb?(newn: (lp,ls))nil||al.(newn: (L, ))nil —
xb?.(newn: (lo,ls))nil||*xa?.xb?.(newn : (ly,ls))nil|| (newn : (Lo, 1)) nil

e thus, by rule PAR, P' = Q||al.(newn : (I,1,))nil — Q', where

0= (newn : (I1,01))nil|| (newn : (I2,12))nil || b ?.(newn : (ly, o) ) nil
Il %b2.(newn : (I, 14))nil | xa?. % b?.(newn : (ly,I5) ) nil

So, Q||R — Q' ||b!.(newn : (I3,13))nil, and again, reasoning as above, we get
Q' ||b!.(newn : (I3,13))nil —

(newn : (Iy,1y))nil|| (newn : (I, 1)) nil || (newn : (I3,13))nil
|| %b7.(newn : (ly,ls))nil|| xb?7.(newn : (lp,14))nil || *a?.xb?.(newn : (lo,ls))nil
Notice that all labelled pairs are different. O

Preservation of label uniqueness by reduction. A crucial property of our language is that the unique-
ness of labels is preserved by reduction. The precision of defect detection analysis might rely on this
fact. The proof of this fact (stated below) is in Appendix [A.3]

Lemma 3.4. If P is well-formed and P — Q then Q is well-formed.
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4 A standard reduction semantics.

Notice that, for well-formed processes, our semantics coincides with a standard one. To state this prop-
erty, consider the auxiliary function labErasure on processes that removes the label pairs from the hiding
constructor (hence producing standard 7-calculus processes). The function is inductively defined by
homomorphic rules on all process constructs but on hiding, where the function is defined by the rule

labErasure((newn : (h,i))P) = (newn)labErasure(P)

The usual relation — on standard processes is obtained by removing the side condition from rule
PAR and by replacing rule REP with the axiom

n.P||*n?x.Q — P || Q[V/x] || *n?x.Q

Obviously, labErasure(P) — labErasure(Q), if P — Q. The opposite direction does not work only due
to the side condition of the PAR rule.

5 Conclusions

We devised a simple mechanism to uniquely identify scoped names in the 7-calculus. This approach is
useful to support the analysis of properties of scoped names, examples being the identification of which
ones are leaked or deadlocked.

We implemented process relabeling (c.f. Definition [2.6| and Figure [2)) in OCaml by using a random
generator to replace a positive integer i in a new under replication with a fresh positive integer j, and by
throwing a clash exception in rule Par whenever the calculation of the redex of the hypothesis introduces
a label that is used by the parallel process.
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A On ensuring label uniqueness

A.1 No label clashes

Consider the following function, inductively defined by the given rules.

nLabels nLabels(nil) =0, nLabels(P|| Q) = nLabels(P) + nLabels(Q),
nLabels(u?x.P) = nLabels(xu?x.P) = nLabels(u!v.P) = nLabels(P), and
nLabels((newn : (h,h"))P) = 1+ nLabels(P)

Obviously, #labelPairs(P) < nLabels(P).

Let o be a substitution of a name for a variable. One easily sees that the sets labels and nLabels
are preserved by substitutions and by alpha-congruence on names and variables (i.e., labels are like
constants). Moreover, both sets might increase with reduction (labels are never removed).

Lemma A.1 (Reduction preserves labels). Let ¢ be a substitution [V/x].

nLabels(P) = nLabels(Pc) (1)

labelPairs(P) = labelPairs(Po) ()

(P=¢ Q) = (nLabels(P) = nLabels(Q) A labelPairs(P) = labelPairs(Q)) 3)

(P— Q) = (nLabels(P) C labelPairs(Q) A labelPairs(P) C labelPairs(Q)) 4)

Proof. Immediate. 0

Consider the following predicate, stating that all pairs of labels in a given process are different.
noLabelClashes(P) = (#labelPairs(P) = nLabels(P))

The predicate above provides an alternative characterisation of well-formedness.

Lemma A.2 (No label clashes). wf(P) if and only if noLabelClashes(P)

Proof. Immediate, due to the definition of well-formed processes. 0

A.2 Relabelling
Let m, denote the second pair projection functions.
Lemma A.3 (Monotonicity). If P is well-formed and S' = m(relabelling(P,S)) then S C S’ .

Proof. Immediate, due to the definition of well-formed processes. O

Lemma A.4 (Relabelling preserves label freshness). Let P be well-formed and S O secLabs(P). Then,
making (Q,R) = relabelling(P,S), the following results hold.

nLabels(Q) = nlLabels(P) (5)
SNsecLabs(Q) = 0 (6)
R C seclabs(Q) 7
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Proof. The proofs are by structural induction on P. The first equation is straightforward to prove — it
ensures that rellabelling preserves the number of labels.

In the proof of the second equation, two cases matter. Let first P = (newn : (h,i))Q Since by hy-
pothesis wf(P), Lemma ensures [ ¢ secLabs(Q). Take j # i such that j ¢ secLabs(Q). Then,
as j ¢ ({i} UsecLabs(Q)) = secLabs(P), taking a set S D {i} UsecLabs(Q) where j ¢ S, the function
relabelling gives the following result.

let (Q',S") = relabelling(Q,SU{/}) in
relabelling(P,S) = ((newn: (h,j))Q',5) .
So, as § D secLabs(P), we have
secLabs(7; (relabelling(P,SU{;j}))) = {j} UsecLabs(Q’) .
Since wf(Q) by Lemma by induction hypothesis,
SU{j} NsecLabs(m; (relabelling(Q,SU{j}))) =0,

so, as § D {i} UseclLabs(Q) and Q' = m;(relabelling(Q,SU{j})) and furthermore j # i, we conclude
SN ({j}UsecLabs(Q')) = 0 as required.

Consider now P = (Q||R). As by hypothesis wf(P), by Lemma[2.52] secLabs(Q) NsecLabs(R) = 0.
As both wf(Q) and wf(R) by Lemma by induction hypothesis, we have S NsecLabs(Q’) = 0 and
S’ NsecLabs(R') = 0 where (Q',S") = relabelling(Q, S) and R’ = m; (relabelling(R,S")) . So, since S C §’
by Lemma([A.3] we conclude

SNsecLabs(Q'||R) =

SN (secLabs(Q') UsecLabs(R'))
(SNsecLabs(Q)) U (SNsecLabs(R'))
oud = 0

as required. O

Lemma A.5 (Relabelling preserves well-formedness). Let P be well-formed and consider a set of labels
S D secLabs(P). Then, m(relabelling(P,S)) is well-formed.

Proof. The proof is by structural induction on P. All homomorphic cases in the definition of relabelling
are either straightforward or following by the induction hypothesis, using Lemma So, two cases
matter. Let first P = (newn : (h,i))Q. As P is well-formed, so is Q (again, by the previous lemma). By
definition,

relabelling((newn : (,i))Q,S) = ((newn : (h, j))Q',5')

where (Q',S’) = relabelling(Q,SU{j}), considering i € S and j ¢ (S UsecLabs(P)). By induction
hypothesis, Q' is well-formed. Since by hypothesis, S O secLabs(P), obviously j ¢ S and i # j, so
(newn : (h,j))Q' is also well-formed.

Consider now P = (Q||R). As P is well-formed, by the same lemma, so are Q and R. By definition,

relabelling(Q||R,S) = (O’ ||R',S")
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where (Q',S") = relabelling(Q,S) and (R',S”) = relabelling(R, S"). Since by hypothesis S O secLabs(P),
obviously S D secLabs(Q), so by induction hypothesis, Q" is well-formed. It is also the case that § D
secLabs(R), and since by Lemma S’ 2 8, by induction hypothesis, R’ is also well-formed. Since
LemmalA.4][6|ensures that SN secLabs(Q') = 0 and ' NsecLabs(R’) = 0, and LemmalA.4|[7|ensures that
S’ D secLabs(Q’), we have secLabs(Q') NsecLabs(R’) = 0, thus by Lemma2.3][| we conclude that Q' || R’
is well-formed. O

A.3 Reduction preserves label uniqueness

Lemma A.6. If P is well-formed and P — Q then Q is well-formed.

Proof. Notice first that structural congruence preserves label uniqueness, as no relabelling happens. To
prove that well-formedness is preserved by reduction, we proceed by induction of the derivation of
P— Q.

Base cases. The only base case that changes the labels is the REP rule:

Q' = m (relabelling(Q1,secLabs(P; | 01[V/x])))

R b — (i, | +n7%.01) — (PL|| Q1] [+n7x.0) = O

By hypothesis P is well-formed, thus:

- by Lemma[2.54] both P; and Q; are well-formed;

- as Qg is well-formed, by Lemma also Q;[V/x] is well-formed;

- hence, by Lemma[2.5]j6] also Py || Q1[v/x] is well-formed.

Then, by Lemmal[A.3] Q' is well-formed as well.

Moreover, by definition of well-formedness, *xn?x.Q" is also well-formed.

Since by Lemmas and we conclude that secLabs(P; || Q;[V/x]) NsecLabs(Q') = 0, and

obviously secLabs(Q') = secLabs(xn?x.Q’), we attain the result using again Lemma [2.5]6)|
Inductive steps. The only relevant case is the PAR rule.

Let P = P, || P, and Q = P| || P». By hypothesis,

Py — P| and secLabs(P|) NsecLabs(P,) =0

Since by induction hypothesis, P; is well-formed, we attain the result — Q is well-formed — using
again Lemma [2.5][6]
O
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