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We study Topological Quantum Computation (TQC) from the perspective of computability theory
with the aim of definining a formal system which is able to capture the computational features of
TQC. We discuss the mathematical model for TQC, namely Modular Tensor Categories, and their
suitability for the construction of a domain of denotational objects similar to the Scott domain of the
λ -calculus. This leads us to believe that a formalism similar to the classical lambda calculus can be
defined also for TQC.

1 Introduction

Quantum Computing has changed the way of interpreting the Church-Turing thesis. While there seems
to be a unique notion of computability, it is still an open problem whether or not the notion of efficiently
computatble can be referred to a (classical) Turing machine. The promise of quantum computing is
an enormous speed-up in processing classical information using quantum media. However, qubits (the
quantum embodiment of bits in quantum mechanics) are very fragile systems that only work in complete
isolation from the outside world and therefore difficult to realise. Recently, the 2016 Nobel prize in
physics has evidenced the possibility of realising a more robust version of quantum computing that
solves the fragility of the qubits by using topological invariants of quantum systems. Thus, this new way
of computing quantum mechanically is called Topological Quantum Computation (TQC).

The subject of the 2016 Nobel prize winning result are some generalisations of bosons and fermions
in two dimensions, called anyons, and their manifestation as some topological quantum fields. One way
to model anyon systems is to consider the fusion and braiding structure of all elementary excitations in the
plain, i.e. to identify the anyon system with an equivalent unitary modular tensor category (UMTC) [11,
8]. In TQC, space-time trajectories of anyons are represented by braids; algebraically these correspond
to morphisms in the UMTC associated to the anyon system, which can then be thought of as circuits for
computation.

In this paper we aim to show that UMTC can be used to construct a model for TQC à la Scott
(see [1]), namely a (non-syntactical) λ -model where the domain contains both functions and function
arguments. This will be the base to define TQC as a λ -calculus where terms represent anyons and term
re-writing their braiding.

2 Modular tensor categories

The two basic notions in TQC are anyons and braiding. Abstractly, the position of n identical particles
living in a space X form a Hilbert space of quantum states of such n particles. If the particles are anyons
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then moving from one state to another only depends on the homotopy of the trajectories giving rise to
different representations of the state space (statistics of the n particles). Space-time trajectories of n
anyons form the n strands braid group Bn. These two basic notions are well represented by modular
tensor categories, i.e. semisimple ribbon categories with only a finite number of isomorphism classes of
simple objects (and with some additional properties related to the modularity condition, cf [2]).

Essentially, tensor categories are linear monoidal categories with two bifunctors ⊕ and ⊗ which
are the categorification of the sum and multiplication of a ring. They define two coherently co-existing
structures: a rigid braided monoidal category with bifunctor ⊗, and an abelian category with bifunctor
⊕. Objects in an MTC C are of the form

⊕
j S j, where S j are called simple objects and represent those

labels that did not undergo any splitting (fusion): any morphism between two such objects are either an
isomorphism (if they are the same) or the zero morphism. Morphisms f :

⊕
j S j→

⊕
k S′k are matrices of

morphisms between the summands.
The fact that C is both abelian and tensor monoidal gives its homsets the structure of complex vector

spaces (in fact Hilbert spaces), that we can represent as follows. Suppose that i⊗ j = ∑k Nk
i, jk is a fusion

rule of the anyon system. Then

Hom(Sk1 ,Si⊗S j)⊕ . . .⊕Hom(Skn ,Si⊗S j) (1)

is the vector space representing for each fusion result k the vector space of all fusions of i and j resulting
in k. Multiple applications of the fusion rules give rise to more complex vector spaces such as

Hom(Sl1 ,A1), with A1 = Hom(Sl2 ,A2) . . .Am = Hom(Slm ,Si⊗S j).

Note that each homset can represent a direct sum of vector spaces as in (1), each with its own
dimension given by the multiplicity of the corresponding result in the fusion rule. Physically these
vector spaces represent so-called fusion spaces.

As a braided monoidal category, C has a tensor product that allows for modeling a compound system
of charges while braiding allows us to model their movements. The two operators must interact according
to some axioms expressed in the category by natural isomorphisms. One such axiom is the hexagon
diagram which says for example that (A⊗B)⊗C) is the same as B⊗ (C⊗A) [12, 9, 2].

2.1 Reflexivity of the objects

In a UMTC an object X is determined by the complex Hilbert space of morphisms Hom(X ,Y ) for all Y in
the category. Therefore it is natural to look at objects in such categories as certain special quantum states.
Morphisms between objects are then an abstraction of the quantum processes between those objects and
therefore of unitary transformations between Hilbert spaces.

Based on this fact we can easily switch from UMTC to the category of finite dimensional Hilbert
spaces for reasoning about the dynamic of anyonic computation. In particular, the homset

V i j
k ' Hom(Sk,Si⊗S j)

is the splitting (or dually fusion) space for the anyons Sk,Si,S j, whose vectors are the splitting (or dually
fusion) states

Hom(Sk,Sk)−→ Hom(Sk,Si⊗S j).

An important result from linear algebra states that every Hilbert space H is a reflexive domain; in
functional analysis this means that there is an isomorphism between H and its double dual H∗∗, that is
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the space of all linear bounded functionals on the dual space H∗, which in turn is the space of all linear
bounded functionals on H. Based on this we have shown in [3] that it is possible to construct a retract
for any H, that is a domain D and two linear maps F : D→ [D→ D] and G : [D→ D]→ D such that
F ◦G is the identity in [D→ D]. As a result, we can conclude that in any modular tensor category we
can construct a λ -model for TQC.

3 Computing with anyons

In TQC, information is encoded in multi-anyon quantum states and computation is carried out within
the ground state manifold Vn,x,t with x a non-abelian anyon type, n the number of anyons of that type,
and t is the total charge [4]. This computation essentially consists in the exchanges of the anyons of the
system as a process evolving in time, i.e. to braiding the threads (a.k.a. world-lines) starting from each
anyon of the system. Particle trajectories are braided according to rules specifying how pairs (or bipartite
subsystems) behave under exchange. Topological transformations that leave invariant braided trajectories
are turned into algebraic constraints (compatibility conditions), namely the pentagon equation (relating
5 fusions) and the Yang-Baxter or hexagon equation (relating 3 braidings and 3 fusions). The ground
state manifold Vn,x,t is also a non-trivial unitary representation of the n-strand braid group Bn, which
intuitively enforces the idea of a space where states and computation on them (arguments and functions
on them) live together. An initial state in a computation is given by creating anyons pairs from the vacuum
to encode the input. This corresponds to implementing a morphism in Hom(1,X⊕n) for some simple
object X of type x. The second step is a braiding followed at the end of the computation by measurement
which is achieved by fusing anyons together to observe the possible outcomes. This corresponds to the
implementation of a morphism in Hom(X⊕n,1). The computing result is a probability distribution on
anyon types obtained by repeating the same process polynomially many times.

4 Concluding Remarks

We have presented some initial ideas for the definition of a categorical model for TQC that lends itself
to an interpretation of this quantum computation paradigm as a ‘calculus of functions’ similar to the
classical λ -calculus. The general workplan is a revisitation of topological quantum computation from
the perspective of computability theory by defining a logical formalism equivalent to the existing physical
and mathematical models for TQC.

An important question is about the universality of our calculus and its model. Universality by braid-
ing can be achieved only if the fusion rules of the anyon system allow for the construction of braiding
patterns which are able to reproduce all the unitary matrices representing quantum circuits. While the
Fibonacci anyons have been shown to have this property [6], other anyon systems such as the Ising
anyons are not suitable for universal quantum compiling. Our model must therefore refer to the appro-
priate anyon system. For example, it is known that suitable models are the SU(2)k anyon models (for k
integer), i.e. “q-deformed” versions of the usual SU(2) for q = ei 2π

k+2 (roughly the special unitary 2× 2
matrices group where integers n are replaced by qn/2−q−n/2

q1/2−q−1/2 ) [10, 7]. These describe SU(2)k Chern-Simons
theories [9] and give rise to the Jones polynomial of knot theory. Their braiding statistics are known to
be universal for TQC for all k except k = 1,2,4 [5].
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