
Portfolio-Based Algorithm Selection for Circuit QBFs
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Abstract. Quantified Boolean Formulas (QBFs) are a generalization of propo-
sitional formulae that admits succinct encodings of verification and synthesis
problems. Given that modern QBF solvers are based on different architectures
with complementary performance characteristics, a portfolio-based approach to
QBF solving is particularly promising.
We define a natural set of features of circuit QBFs and show that they can be used
to construct portfolio-based algorithm selectors of state-of-the-art circuit QBF
solvers that are close to the virtual best solver. We further demonstrate that most
of this performance can be achieved using surprisingly small subsets of cheaply
computable and intuitive features.

1 Introduction

QBFs augment propositional formulas with existential and universal quantification over
truth values and can be exponentially more succinct. The flip side of this conciseness is
that the satisfiability problem of QBFs (QSAT) is PSPACE-complete [25], and in spite
of substantial progress in solver technology, practically relevant instances remain hard
to solve. The complexity of QSAT is also reflected in the fact that there is currently
no single best QBF solver—in fact, state-of-the-art solvers are based on fundamentally
different paradigms whose underlying proof systems are known to be exponentially
separated [3,10].

Thus portfolio-based approaches that leverage the complementary strength of multi-
ple QBF solvers, such as per-instance algorithm selection, have the potential to achieve
significant speedups over individual solvers, as demonstrated for QBF formulae in the
prenex CNF (PCNF) format [20]. Although any QBF can be converted to PCNF with
small overhead, this transformation is known to adversely affect solver performance [1];
moreover, it can obscure features of the original instance that might be strong predictors
of solver performance. In light of the first issue, researchers have developed a new
standard, QCIR, for representing quantified circuits, or circuit QBFs [12],3 while the
second issue is potentially relevant to per-instance algorithm selection.

In this work, present the first per-instance algorithm selector for QCIR formulae, built
from four state-of-the-art QBF solvers, and demonstrate that it achieves performance

3 We only consider “cleansed” QCIR instances in prenex normal form supported by the current
generation of solvers.
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substantially better than any of the individual solvers and close to the theoretical upper
bound given by the virtual best solver (VBS) both in terms of overall runtime and number
of solved instances. Following common practice, we developed and used a large set of
static and dynamic instance features for this purpose. To our surprise, we discovered
that, different from the situation for SAT, probing features are not helpful, and a set
of only three static instance features are sufficient to achieve 99% of the performance
gain obtained using our full set of features. Interestingly, these features are simple,
cheaply-computable and intuitively characterize the quantification and circuit structure
of the instance. Therefore, our work provides evidence that, at least in some cases, a
small set of easily implemented features is sufficient. This is a significant finding, since
it further lowers the barrier for researchers to effectively apply algorithm selection.

2 Setup

Our portfolios comprise the QBF solvers that participated in the prenex non-CNF track
of the 2017 QBF Evaluation4 (with the exception of the CQesto, which is not publicly
available; for all solvers, the default configurations provided by their authors were used):
QUABS [26], QFUN [8], QUTE [19], and GHOSTQ [13].

We use AUTOFOLIO [15] to construct a portfolio from these solvers. AUTOFO-
LIO is an algorithm selector that alleviates the burden of manually choosing the right
machine learning model for a problem domain and hand-tuning hyperparameters by
using algorithm configuration tools to automatically to make design choices and find
hyperparameter settings that work well for a particular scenario. AUTOFOLIO allows us
to construct a portfolio from the above solvers with little effort. In particular, it quickly
lets us create portfolios that are tuned to particular subsets of features (see Section 5).
Our main design choice consists in defining a set of features.

3 QCIR Instance Features

We consider circuit Quantified Boolean Formulas (QBFs) in prenex normal form encoded
according to the “cleansed” QCIR standard [12]. We compute 23 static features of QCIR
instances, such as:

1. The number of existential variables.
2. The number of universal variables.
4. The number of quantifier blocks.
7. The average quantifier block size.

13. The number of AND gates.
14. The number or OR gates.
19. The maximum gate depth.
20. The average gate depth.

Features that only depend on the quantifier prefix can be computed just as well for
PCNF instances, and indeed some of these features were already used in constructing
the portfolio solver AQME [20]. The main difference between PCNF and QCIR is in
the representation of the matrix and accordingly, this is where new features are required.
Some of the above features (such as the numbers of AND/OR gates) can be seen as

4 See http://www.qbflib.org.

http://www.qbflib.org
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generalizations of PCNF features (number of clauses). Others, such as the maximum
gate depth, only make sense for circuits. In addition to these static features, we use
several probing features computed by a short run of QUTE (probing features are crucial
for the performance of portfolios for SAT [29]).

4 Per-instance Algorithm Selection for QCIR

The experiments were conducted on a cluster where each node is equipped with 2
Intel Xeon E5-2640 v4 processors (25M Cache, 2.40 GHz) and 160GB of RAM. The
machines are running 64-bit Ubuntu in version 16.04.3.

We work with the set of QCIR benchmark instances from the 2016 and 2017 QBF
evaluations solved by at least one of the above solvers within 900 seconds of CPU time
and 4GB of memory usage, a total of 731 instances. We split the 731 instances into a
training set of 549 instances and a test set of 182 instances, uniformly at random. On the
training set, we fixed a cross-validation split into 10 folds of the same size. When we
report performance of a selector on the training set, we in fact report cross-validation
performance on this fixed split, i.e., the selector trained once on each subset of 9 folds
and evaluated on the 10th one, results combined. On the other hand, when we report
performance on the test set, the respective selector is trained on the entire training set,
disregarding the CV-split, and then evaluated on the entire test set.

Results are shown in Table 1. Each of the selectors was trained using AUTOFOLIO
in self-tuning mode, with a budget of 42 000 wall-clock seconds and a bound of 50 000
runs for algorithm configuration. PFA, PFS, and PF3 use an XGBoost classifier, while
PF2 uses a random-forest regressor.

Training set (549) Test set (182)
solver PAR10 #solved %closed PAR10 #solved %closed

GhostQ 2228.92 414 — 2492.61 132 —
Qfun 1922.07 433 — 2384.68 134 —

QuAbS 1641.90 450 — 1747.40 147 0%
Qute (SBS) 1458.09 461 0% 1845.48 145 —

PFA 71.93 546 96.35% 171.03 179 91.01%
PF2 57.58 547 97.35% 217.16 178 88.34%
PF3 55.78 547 97.47% 165.97 179 91.30%
PFS 55.65 547 97.48% 167.53 179 91.21%
VBS 19.46 549 100% 15.35 182 100%

Table 1. Performance of component solvers and selectors on the training and test sets in terms of
penalized average runtime (PAR10), the number of solved instances, and for selectors the extent
to which they match the virtual best solver (VBS) measured as the percentage of the PAR10
gap between the single best solver (SBS) and the VBS that is closed by the selector. Training
performance of selectors is CV-performance. Selectors were configured using AUTOFOLIO in
self-tuning mode for each of the feature subsets reported. PF2 and PF3 are selectors configured for
the best feature subsets of sizes 2 and 3, and PFS only uses static features. PFA uses all features.
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5 Which Features Matter?

Since our full feature set for QCIR formulae gave rise to excellent selector performance,
we decided to investigate whether similarly good performance could be obtained with
fewer features. We first trained a selector using only our static features, using AUTOFO-
LIO, as described in the previous section. The resulting selector, denoted PFS in Table 1,
performed slightly better than the selector trained using the full set of static and probing
features. This was surprising in light of previous work on algorithm selection in which
probing features were found to be necessary (see, e.g., [14]). Since our full selector is
already very close in performance to the VBS, it cannot be the case that we simply didn’t
come up with the right probing features, but rather that in the scenario we consider, static
features are sufficient. Prompted by this finding, we decided to investigate the effect of
further reducing our static features set.

Forward/backward selection indicated that very good performance can be achieved
already with two or three features. Accordingly, we performed a brute-force search of
all subsets of size 2 or 3. This search confirmed that both the size-2 and size-3 subsets
found by forward selection were almost optimal (equal number of solved instances as
with the optimal set, PAR10 within 1%).

As an additional sanity check, we evaluated the performance of selectors trained
using these small sets of features on the same set of instances, but using only 3 out
the 4 participating solvers (for each subset of 3 solvers). This revealed that even for
different solver sets, these features are robust predictors of solver performance, closing
anywhere between 80 and 97% of the gap between SBS and VBS for each solver subset.
Afterwards, we configured AUTOFOLIO for these subsets, the results of which are shown
in Table 1 (entries PF2 and PF3). It is safe to say that especially these two features (we
note that due to the nature of forward selection, the 2-subset is a subset of the 3-subset)
are crucial for prediction of solver performance. These features are number of quantifier
blocks and maximum gate depth. Although one would expect these features to play an
important role, it is still striking that these two features suffice to build robust portfolios.

6 Conclusions and Future Work

With the availability of tools such as AUTOFOLIO [15] the task of constructing effective
per-instance algorithm selectors essentially boils down to designing and implementing
features that (jointly) permit to effectively identify which solver to run on any given
problem instance. This can still seem daunting in view of the fact that certain domains
require rich sets of quickly computable featuresin order to achieve good selector perfor-
mance [29]. Our results show that this need not be the case: for circuit QBFs, two or
three cheaply computable instance features are sufficient to realize most of the perfor-
mance potential of a (hypothetical) perfect selector. Moreover, these features include
properties of QBFs such as the number of quantifier blocks that are known to affect
solver performance. Apart from corroborating the notion that quantifier alternations
matter, our results show that circuit depth seems to be important. This warrants further
investigation.
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A Related Work

For many problems in AI, there is no single algorithm that is clearly superior to all other
algorithms. This may be due to algorithms implementing heuristics that work well on
some instance type but not on others. Per-instance algorithm selection (as originally
introduced by Rice [22]) attempts to mitigate this issue by choosing the algorithm that is
expected to solve a given instance most efficiently.

In recent years, algorithm selection tools have been successfully applied to a variety
of AI problems, such as SAT, CSP, ASP, and QBF [29,18,5,20]. The most common
approach to algorithm selection involves picking an algorithm from a set of algorithms
called a portfolio. Since the relationship between properties of a problem instance and
algorithm performance is typically opaque and hard to capture formally, the construction
of a portfolio normally involves training a machine learning model to predict performance
and choose an algorithm [14].

In the context of QBF, multinomial logistic regression has been used to switch
between different branching heuristics in a search-based QBF solver based in instance
features, even at runtime [24]. The (PCNF) portfolio solver AQME incorporates several
models such as decision trees and nearest neighbor classification[20]. Moreover, it
is “self-adaptive” in the sense that it can modify its performance prediction model
to accommodate for instance types not seen during initial training. HORDEQBF is
a massively parallel QBF solver [2] that implements a parallel portfolio by running
multiple instances of the solver DEPQBF [16] with different parameter settings.

Automated parameter tuning is an area that is gaining popularity due to algorithms
increasingly having a large number of parameters that are virtually impossible to tune by
hand [6,7]. Parameter tuning can be combined with portfolio construction in order to
find algorithm configurations that complement each other well [28]. Algorithm selectors
typically have many options themselves (such as the choice of machine learning model
and its corresponding hyperparameters), and parameter tuning can also be used to
configure the selector [15].

B Detailed List of QCIR Instance Features

We consider circuit Quantified Boolean Formulas (QBFs) in prenex normal form encoded
according to the “cleansed” QCIR standard [12]. Each such formula is a pair F = Q.ϕ
consisting of a quantifier prefix Q and a Boolean circuit ϕ called the matrix of F . The
quantifier prefixQ is a sequenceQ1X1 . . . QkXk where eachQi ∈ {∀,∃} is a quantifier
for 1 ≤ i ≤ k such that Qi 6= Qi+1 for 1 ≤ i < k, and the Xi are pairwise disjoint sets
of variables called quantifier blocks.

The matrix ϕ is a Boolean circuit encoded as a sequence of gate definitions of the
form

g = ◦(l1, . . . , lr)

where ◦ ∈ {∧,∨}, each gate literal li is either an unnegated gate variable g′ (a positive
gate literal) or a negated gate variable ¬g′ (a negative gate literal), and g′ is a previously
defined gate or an input gate g′ ∈

⋃k
i=1Xi. We refer to r as the size of gate g. The

depth of a gate g is 0 if g is an input gate, and otherwise the maximum depth of a gate
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occurring in the definition of g plus one. A unique gate literal is identified as the output
of the circuit ϕ.

We consider the following static features of QCIR instances:

1. The number ne of existential variables.
2. The number nu of universal variables.
3. The balance ne/nu + nu/ne of existential and universal variables.
4. The number k of quantifier blocks.
5. The minimum size minb of a quantifier block.
6. The maximum size max b of a quantifier block.
7. The average size µb of a quantifier block.
8. The standard deviation σb of the quantifier block size.
9. The relative standard deviation σb/µb of the quantifier block size.

10. The total number pos of positive gate literals.
11. The total number neg of negative gate literals.
12. The balance pos/neg + neg/pos of positive and negative gate literals.
13. The number n∧ of AND gates.
14. The number n∨ or OR gates.
15. The maximum gate size max gs.
16. The average gate size µgs.
17. The standard deviation σgs of the gate size.
18. The relative standard deviation σgs/µgs of the gate size.
19. The maximum gate depth maxd.
20. The average gate depth µd.
21. The standard deviation σd of the gate depth.
22. The relative standard deviation σd/µd of the gate depth.
23. The number np of gates all of whose gate literals have the same polarity (all positive

or all negative).

In addition to these static features, we use several probing features computed by a
short run of QUTE:

1. The number of learned clauses.
2. The number of learned tautological clauses.
3. The number of learned terms.
4. The number of learned contradictory terms.
5. The fraction of variable assignments made by branching (the remaining assignments

are due to propagation).
6. The total number of backtracks.
7. The number of backtracks due to dependency learning (a feature of QUTE).
8. The number of learned dependencies as a fraction of the trivial dependencies.
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C Additional Figures
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Fig. 1. Dependence of solver performance on circuit depth and number of quantifier blocks. Each
point represents an instance/solver pair; the coordinates correspond to the number of quantifier
blocks and circuit depth of the instance, the shape and color of the data point indicate the solver
that is fastest on that instance. Only instances where the fastest solver is either the only one to
solve the instance, or at least ten times faster than the second fastest, are shown. This is to ensure
that the figure shows only solver choices that are crucial, and to avoid instances where the solver
choice is unimportant, because all of them run in similar time. Also note that GHOSTQ is not
present in this figure, because it is never substantially better than the other solvers.
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Fig. 2. Forward and backward selection on the static features; the plots show performance based on
the number of features included. Note that for the performance evaluation during forward/backward
selection, AUTOFOLIO was not automatically configured for the particular set of features, but
instead was once configured for the full set of static features at the beginning, and this configuration
of hyperparameters was subsequently used for all features sets.
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