
Translating P-log, LP MLN , LPOD, and1

CR-Prolog2 into Standard Answer Set Programs2

Zhun Yang3

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University4

[Arizona State University, P.O. Box 878809, Tempe, AZ 85287, United States]5

zyang90@asu.edu6

Abstract7

Answer set programming (ASP) is a particularly useful approach for nonmonotonic reasoning in8

knowledge representation. In order to handle quantitative and qualitative reasoning, a number9

of different extensions of ASP have been invented, such as quantitative extensions LPMLN and10

P-log, and qualitative extensions LPOD, and CR-Prolog2.11

Although each of these formalisms introduced some new and unique concepts, we present12

reductions of each of these languages into the standard ASP language, which not only gives us an13

alternative insight into the semantics of these extensions in terms of the standard ASP language,14

but also shows that the standard ASP is capable of representing quantitative uncertainty and15

qualitative uncertainty. What’s more, our translations yield a way to tune the semantics of16

LPOD and CR-Prolog2. Since the semantics of each formalism is represented in ASP rules, we17

can modify their semantics by modifying the corresponding ASP rules.18

For future work, we plan to create a new formalism that is capable of representing quantitative19

and qualitative uncertainty at the same time. Since LPOD rules are simple and informative, we20

will first try to include quantitative preference into LPOD by adding the concept of weight and21

tune the semantics of LPOD by modifying the translated standard ASP rules.22

2012 ACM Subject Classification Knowledge representation and reasoning23

Keywords and phrases answer set programming, preference, LPOD, CR-Prolog24

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.1725

Acknowledgements This work was partially supported by the National Science Foundation un-26

der IIS-1526301.27

1 Introduction and Problem Description28

In answer set programming, each answer set encodes a solution to the problem that is being29

modeled. There is often a need to express how likely a solution is, so several extensions of30

answer set programs, such as LPMLN [19] and P-log [7], were made to express a quantitative31

uncertainty for each answer set. LPMLN extends answer set programs by adopting the32

log-linear weight scheme of Markov Logic. P-log is a probabilistic extension of ASP with33

sophisticated semantics. Similarly, since there is often a need to express that one solution is34

preferable to another, several extensions of answer set programs, such as Logic Programs35

with Ordered Disjunction (LPOD) [8], CR-Prolog [5], and CR-Prolog2 [6], were made to36

express a qualitative preference over answer sets. In LPOD, the qualitative preference is37

introduced by the construct of ordered disjunction in the head of a rule: A × B ← Body38

intuitively means, when Body is true, if possible then A, but if A is not possible, then at39

least B. CR-Prolog2 also has order rules as in LPOD, and it introduces consistency-restoring40

rules – rules that can be added only when they can make an inconsistent program consistent.41

© Zhun Y. Public;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 17; pp. 17:1–17:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zyang90@asu.edu
http://dx.doi.org/10.4230/OASIcs.ICLP.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Research Summary

It remains an open question whether these formalisms can be reduced back to standard42

answer set programs. In other words, whether ASP is expressive enough to express the43

semantics of all these extensions? There were few attentions to this question where no44

positive answer had been proposed. Lee et al. [19] showed that a subset of P-log can be45

represented by LPMLN , which is very similar to ASP except the introducing of weight for46

each rule. However, the feature of dynamic probability assignment in P-log is not preserved,47

and the reduction from LPMLN to ASP was still unclear. Proposition 2 from [8] states that48

there is no reduction of LPOD to disjunctive logic programs [17] based on the fact that the49

answer sets of disjunctive logic programs are subset-minimal whereas LPOD answer sets are50

not necessarily so. However, this justification is limited to translations that preserve the51

underlying signature. Indeed, our paper “LPMLN , Weak Constraints, and P-log” [20] and52

our ICLP paper that is being evaluated provides a positive answer to this question.53

We present a reduction of P-log to LPMLN and a reduction of LPMLN to answer54

set programs with weak constraints. These translations show how the weights in the55

weak constraints can be used to denote quantitative uncertainty and, further, to represent56

probabilities. We also present a reduction of LPOD and CR-Prolog2 to standard answer set57

programs by compiling away ordered disjunctions and consistency-restoring rules. These58

translations show how qualitative uncertainty is handled by the “definition” rules in ASP.59

Since our research shows that ASP is capable of representing quantitative and qualitative60

uncertainty, it naturally follows a question that: can we combine quantitative uncertainty61

and qualitative preference in a single formalism? We are looking forward to answering this62

question in our future work.63

The paper will give a summary of my research, including some background knowledge64

and reviews of existing literature (Section 2), goal of my research (Section 3), the current65

status of my research (Section 4), the preliminary results we accomplished (Section 5), and66

some open issues and expected achievements (Section 6).67

2 Background and Overview of the Existing Literature68

We only review the syntax and semantics of LPMLN and LPOD. Please refer to [7] and [6]69

for the syntax and semantics of P-log and CR-Prolog2, whose semantics are all based on a70

long translation to answer set programs.71

2.1 Review: LP MLN
72

We review the definition of LPMLN from [19]. In fact, we consider a more general syntax of73

programs than the one from [19], but this is not an essential extension. We follow the view74

of [15] by identifying logic program rules as a special case of first-order formulas under the75

stable model semantics. For example, rule r(x)← p(x),not q(x) is identified with formula76

∀x(p(x)∧¬q(x)→ r(x)). An LPMLN program is a finite set of weighted first-order formulas77

w : F where w is a real number (in which case the weighted formula is called soft) or α78

for denoting the infinite weight (in which case it is called hard). An LPMLN program is79

called ground if its formulas contain no variables. We assume a finite Herbrand Universe.80

Any LPMLN program can be turned into a ground program by replacing the quantifiers81

with multiple conjunctions and disjunctions over the Herbrand Universe. Each of the ground82

instances of a formula with free variables receives the same weight as the original formula.83

For any ground LPMLN program Π and any interpretation I, Π denotes the unweighted84

formula obtained from Π, and ΠI denotes the set of w : F in Π such that I |= F , and SM[Π]85

denotes the set {I | I is a stable model of ΠI} (We refer the reader to the stable model86

Z. Y. Public 17:3

semantics of first-order formulas in [15]). The unnormalized weight of an interpretation I87

under Π is defined as LPMLN
88

WΠ(I) =

exp

(∑
w:F ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.
89

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as90

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J) .91

I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0.92

2.2 Review LPOD93

We review the definition of LPOD from [8], which assumes propositional programs.94

Syntax: A (propositional) LPOD Π is Πreg ∪Πod, where its regular part Πreg consists of95

usual ASP rules Head ← Body, and its ordered disjunction part Πod consists of LPOD rules96

of the form97

C1 × · · · × Cn ← Body (1)98

in which Ci are atoms, n is at least 2, and Body is a conjunction of atoms possibly preceded99

by not.1 Rule (1) says “when Body is true, if possible then C1; if C1 is not possible then C2;100

. . . ; if all of C1, . . . , Cn−1 are not possible then Cn”.101

Semantics: For an LPOD rule (1), its i-th option, where i ∈ {1, . . . , n}, is defined as102

Ci ← Body,not C1, . . . ,not Ci−1.103

Let Π be an LPOD. A split program of Π is obtained from Π by replacing each rule in Πod104

by one of its options. A set S of atoms is a candidate answer set of Π if it is an answer set of105

a split program of Π. A split program of Π may be inconsistent (i.e., may not necessarily106

have an answer set).107

A candidate answer set S of Π is said to satisfy rule (1)108

to degree 1 if S does not satisfy Body;109

to degree j (1 ≤ j ≤ n) if S satisfies Body and j = min{k | Ck ∈ S}.110

For a set S of atoms, let Si(Π) denote the set of rules in Πod satisfied by S to degree111

i. For candidate answer sets S1 and S2 of Π, [9] introduces the following four preference112

criteria.113

1. Cardinality-Preferred: S1 is cardinality-preferred to S2 (S1 >c S2) if there is a114

positive integer i such that |Si1(Π)| > |Si2(Π)|, and |Sj1(Π)| = |Sj2(Π)| for all j < i.115

2. Inclusion-Preferred: S1 is inclusion-preferred to S2 (S1 >
i S2) if there is a positive116

integer i such that Si2(Π) ⊂ Si1(Π), and Sj1(Π) = Sj2(Π) for all j < i.117

3. Pareto-Preferred: S1 is pareto-preferred to S2 (S1 >
p S2) if there is a rule that is118

satisfied to a lower degree in S1 than in S2, and there is no rule that is satisfied to a119

lower degree in S2 than in S1.120

1 In [8], a usual ASP rule is viewed as a special case of a rule with ordered disjunction when n = 1 but in
this paper, we distinguish them. This simplifies the presentation of the translation and also allows us to
consider LPOD programs that are more general than the original definition by allowing modern ASP
constructs such as aggregates.

ICLP 2018

17:4 Research Summary

4. Penalty-Sum-Preferred: S1 is penalty-sum-preferred to S2 (S1 >
ps S2) if the sum of121

the satisfaction degrees of all rules is smaller in S1 than in S2.122

A set S of atoms is a k-preferred (k ∈ {c, i, p, ps}) answer set of an LPOD Π if S is a123

candidate answer set of Π and there is no candidate answer set S′ of Π such that S′ >k S.124

2.3 Existing Literature125

There are quite a lot of formalisms made to represent quantitative uncertainty.126

LPMLN [19] is a probabilistic logic programming language that extends answer set127

programs [16] with the concept of weighted rules, whose weight scheme is adopted from that128

of Markov Logic [23], a probablistic extension of SAT. It is shown in [19, 18] that LPMLN is129

expressive enough to embed Markov Logic and several other probabilistic logic languages,130

such as ProbLog [13], Pearls’ Causal Models [22], and a fragment of P-log [7]. On the other131

hand, [2] proposed an embedding from LPMLN into P-log.132

Another famous quantitative extension of ASP are weak constraints [12], which are to133

assign a quantitative preference over the stable models of non-weak constraint rules: weak134

constraints cannot be used for deriving stable models.135

Many formalisms are made to represent qualitative uncertainty. Most of them are136

extensions of ASP, where their semantics or implementations are also based on answer set137

programs.138

In [11], LPOD is implemented using smodels. The implementation interleaves the139

execution of two programs–a generator which produces candidate answer sets and a tester140

which checks whether a given candidate answer set is maximally preferred or produces a141

more preferred candidate if it is not. An implementation of CR-Prolog reported in [3] uses a142

similar algorithm.143

[14] finds the “order preserving answer sets” of an ordered logic program (where a strict144

partial order is assigned among some rules) by meta-programming. Our translations are145

similar to the meta-programming approach to handle preference in ASP in that we turn146

LPOD and CR-Prolog2 into answer set programs that do not have the built-in notion of147

preference.148

In contrast, the reductions shown in this paper can be computed by calling an answer set149

solver one time without the need for iterating the generator and the tester. This feature may150

be useful for debugging LPOD and CR-Prolog2 programs because it allows us to compare all151

candidate and preferred answer sets globally.152

Asprin [10] provides a flexible way to express various preference relations over answer153

sets and is implemented in clingo. Similar to the existing LPOD solvers, clingo makes154

iterative calls to find preferred answer sets, unlike the one-shot execution as we do.155

In [1], Asuncion et al. extended propositional LPODs to the first order case, where the156

candidate answer sets of a first order LPOD can be obtained by finding the models of a157

second-order formula.158

3 Goal of the Research159

The following are our research objectives.160

Find a translation plog2asp from P-log to answer set programs We design a161

one-time translation plog2asp such that for any P-log Π, the answer sets of the answer162

set program plog2asp(Π) agree with (i.e., their explanation to the domain are the same)163

the possible worlds of Π.164

Z. Y. Public 17:5

Find a translation lpmln2asp from LPMLN to answer set programs We design165

a one-time translation lpmln2asp such that for any LPMLN program Π, the answer sets166

of the answer set program lpmln2asp(Π) agree with the probabilistic answer sets of Π.167

Analyze how quantitative uncertainty can be expressed in standard answer168

set programs We compare the two translations plog2asp and lpmln2asp, and analyze169

how quantitative uncertainty represented by weight (in LPMLN) and sophisticated170

probability assignment (in P-log) can be expressed in standard answer set programs.171

Find a translation lpod2asp from LPOD to answer set programs We design a172

one-time translation lpod2asp such that for any LPOD Π, the optimal answer sets of the173

answer set program lpod2asp(Π) “report” all the candidate answer sets of Π in different174

name spaces and whether each of them is a preferred answer set.175

Find a translation crpt2asp from CR-Prolog2 to answer set programs We176

design a one-time translation crpt2asp such that for any CR-Prolog2 program Π, the177

optimal answer sets of the answer set program crpt2asp(Π) “report” all the generalized178

answer sets of Π in different name spaces and whether each of them is also a candidate179

answer sets or a preferred answer sets.180

Analyze how qualitative uncertainty can be expressed in standard answer set181

programs We compare the two translations lpod2asp and crpt2asp, and analyze how182

qualitative preference represented by ordered disjunction and consistency-restoring rules183

can be expressed in standard answer set programs.184

Design a single formalism to represent both quantitative and qualitative un-185

certainty We design a new formalism that can be used to represent quantitative and186

qualitative uncertainty at the same time. The semantics of the new formalism is defined187

as a reduction to standard answer set programs as we did for those four formalisms.188

4 Current Status of the Research189

This research is at a middle phase.190

The first 2 bullets of our goals are done in our paper accepted by AAAI 2017 [20], where191

we proposed a translation plog2lpmln from P-log to LPMLN , and a translation lpmln2wc192

from LPMLN to answer set programs with weak constraints. The translations lpod2asp and193

crpt2asp are also completed in our paper accepted by ICLP 2018 [21]. We also compared all194

these four translations and have some ideas about how standard answer set programs handle195

quantitative and qualitative uncertainty.196

Currently, we are testing our ideas by introducing quantitative uncertainty into LPOD.197

The experiments are based on our reduction from LPOD to answer set programs. We are198

tuning the semantics of LPOD by modifying on the translated rules.199

5 Preliminary Results Accomplished200

In this section, we will present our main theorems, along with some examples to illustrate201

how our translations work.202

5.1 From LP MLN to Answer Set Programs203

I Theorem 1. (from [20]) For any LPMLN program Π, the most probable stable models (i.e.,204

the stable models with the highest probability) of Π are precisely the optimal stable models of205

the program with weak constraints lpmln2wc(Π).206

ICLP 2018

17:6 Research Summary

I Example 2. Consider the LPMLN program Π1 in Example 1 from [19].207

α : Bird(Jo)← ResidentBird(Jo) (r1)
α : Bird(Jo)← MigratoryBird(Jo) (r2)
α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)
2 : ResidentBird(Jo) (r4)
1 : MigratoryBird(Jo) (r5)

208

The (simplified) translation lpmln2wc(Π1) is as follows, which simply removes α from each209

hard rule and turns each soft rule into a choice rule and a weak constraint.210

Bird(Jo)← ResidentBird(Jo)
Bird(Jo)← MigratoryBird(Jo)
⊥ ← ResidentBird(Jo),MigratoryBird(Jo)
{ResidentBird(Jo)}ch
{MigratoryBird(Jo)}ch

:∼ ResidentBird(Jo) [−2@0]
:∼ MigratoryBird(Jo) [−1@0]

211

There are three probabilistic stable models of Π1: ∅, {Bird(Jo),ResidentBird(Jo)}, and212

{Bird(Jo),MigratoryBird(Jo)}. Among them, {Bird(Jo),ResidentBird(Jo)} is the most213

probable stable model of Π1 since it is associated with a highest weight. It is also an optimal214

stable model of lpmln2wc(Π1) since it has the least penalty −2 at level 0.215

5.2 From P-log to LP MLN
216

I Theorem 3. (from [20]) Let Π be a consistent P-log program. There is a 1-1 correspondence217

φ between the set of the possible worlds of Π with non-zero probabilities and the set of218

probabilistic stable models of plog2lpmln(Π).219

I Example 4. Consider a variant of the Monty Hall Problem encoding in P-log from [7] to220

illustrate the probabilistic nonmonotonicity in the presence of assigned probabilities. There221

are four doors, behind which are three goats and one car. The guest picks door 1, and Monty,222

the show host who always opens one of the doors with a goat, opens door 2. Further, while223

the guest and Monty are unaware, the statistics is that in the past, with 30% chance the224

prize was behind door 1, and with 20% chance, the prize was behind door 3. Is it still better225

to switch to another door? This example can be formalized in P-log program Π2, using both226

assigned probability and default probability, as227

∼CanOpen(d)← Selected=d. (d ∈ {1, 2, 3, 4})
∼CanOpen(d)← Prize=d.

CanOpen(d)← not ∼CanOpen(d).
random(Prize). random(Selected).
random(Open : {x : CanOpen(x)}).
pr(Prize=1) = 0.3. pr(Prize=3) = 0.2.
Obs(Selected=1). Obs(Open=2). Obs(Prize 6= 2).

228

Intuitively, the translation plog2lpmln(Π2) (i) reifies each atom c = v in Π2 into a form of229

Poss(c = v), PossWithAssPr(c = v), and PossWithDefPr(c = v); (ii) defines each of these230

reified atoms by hard rules, e.g., α : Poss(Prize = d)← not Intervene(Prize) ; and (iii)231

assigns the probabilities by soft rules, e.g., ln(0.3) : ⊥ ← not AssPr(Prize = 1) . The full232

translation is too long to be put here, please refer to Example 3 in [20] for details.233

Z. Y. Public 17:7

5.3 From LPOD to Answer Set Programs234

I Theorem 5. (from [21]) Under any of the four preference criteria, the preferred answer235

sets of an LPOD Π of signature σ are exactly the preferred answer sets on σ of lpod2asp(Π).236

I Example 6. Consider the following LPOD Π3 about picking a hotel near the Grand237

Canyon. hotel(1) is a 2-star hotel but is close to the Grand Canyon, hotel(2) is a 3-star hotel238

and the distance is medium, and hotel(3) is a 4-star hotel but is too far.239

close×med× far × tooFar.
star4× star3× star2.
1{hotel(X) : X = 1..3}1.
← hotel(1), not close.
← hotel(1), not star2.

← hotel(2), not med.
← hotel(2), not star3.
← hotel(3), not tooFar.
← hotel(3), not star4.

240

The translation lpod2asp(Π3) is based on the definition of the assumption program,241

AP (x1, x2), where x1 ∈ {0, . . . , 4} and x2 ∈ {0, . . . , 3}. Intuitively, the value of xi denotes242

an assumption about LPOD rule i: if xi = 0, the body of rule i is false, thus no atom will243

be derived by rule i; if xi > 0, the boy of rule i is true, and the xi-th atom will be derived244

by rule i (which requires that all atoms in the head of rule i with a index lower than xi245

must be false). An assumption program AP (x1, x2) is initialized by a choice rule and a weak246

constraint (which makes sure that all consistent assumption programs are considered).247

248
{ap(X1 ,X2): X1 =0..4 , X2 =0..3}. :~ ap(X1 ,X2). [-1, X1 , X2]249250

The assumption programs include all regular rules in Π. Note that (i) we turn each atom251

a in Π into a(X1, X2) so that the answer sets of assumption program AP (x1, x2) are in its252

own name space (x1, x2); (ii) we add ap(X1, X2) in the body of each rule so that these rules253

will not be “effective” if the assumption program AP (X1, X2) is inconsistent.254

255
1{ hotel(H,X1 ,X2): H =1..3}1 :- ap(X1 ,X2).256

:- ap(X1 ,X2), hotel (1,X1 ,X2), not close(X1 ,X2).257

:- ap(X1 ,X2), hotel (1,X1 ,X2), not star2(X1 ,X2).258

:- ap(X1 ,X2), hotel (2,X1 ,X2), not med(X1 ,X2).259

:- ap(X1 ,X2), hotel (2,X1 ,X2), not star3(X1 ,X2).260

:- ap(X1 ,X2), hotel (3,X1 ,X2), not tooFar (X1 ,X2).261

:- ap(X1 ,X2), hotel (3,X1 ,X2), not star4(X1 ,X2).262263

Besides, the assumption programs include all assumptions that we record in (x1, x2).264

265
% close * med * far * tooFar .266

body_1 (X1 ,X2) :- ap(X1 ,X2).267

:- ap(X1 ,X2), X1=0, body_1 (X1 ,X2).268

:- ap(X1 ,X2), X1 >0, not body_1 (X1 ,X2).269

270

close(X1 ,X2) :- body_1 (X1 ,X2), X1 =1.271

med(X1 ,X2) :- body_1 (X1 ,X2), X1 =2.272

far(X1 ,X2) :- body_1 (X1 ,X2), X1 =3.273

tooFar (X1 ,X2) :- body_1 (X1 ,X2), X1 =4.274

275

X1=1 :- body_1 (X1 ,X2), close(X1 ,X2).276

X1=2 :- body_1 (X1 ,X2), med(X1 ,X2), not close(X1 ,X2).277

X1=3 :- body_1 (X1 ,X2), far(X1 ,X2), not close(X1 ,X2), not med(X1 ,X2).278

X1=4 :- body_1 (X1 ,X2), tooFar (X1 ,X2), not close(X1 ,X2),279

not med(X1 ,X2), not far(X1 ,X2).280

281

% star4 * star3 * star2.282

ICLP 2018

17:8 Research Summary

body_2 (X1 ,X2) :- ap(X1 ,X2).283

284

:- ap(X1 ,X2), X2=0, body_2 (X1 ,X2).285

:- ap(X1 ,X2), X2 >0, not body_2 (X1 ,X2).286

287

star4(X1 ,X2) :- body_1 (X1 ,X2), X2 =1.288

star3(X1 ,X2) :- body_1 (X1 ,X2), X2 =2.289

star2(X1 ,X2) :- body_1 (X1 ,X2), X2 =3.290

291

X2=1 :- body_1 (X1 ,X2), star4(X1 ,X2).292

X2=2 :- body_1 (X1 ,X2), star3(X1 ,X2), not star4(X1 ,X2).293

X2=3 :- body_1 (X1 ,X2), star2(X1 ,X2), not star4(X1 ,X2),294

not star3(X1 ,X2).295296

To calculate the satisfaction degrees D1, D2 of two LPOD rules, lpod2asp(Π3) contains297

298
degree (ap(X1 ,X2), D1 , D2) :- ap(X1 ,X2), D1=# max {1; X1}, D2=# max {1; X2}.299300

Note that all answer sets of AP (x1, x2) will have a same satisfaction degree for each LPOD301

rule. Thus we also use ap(x1, x2) to denote an answer set of AP (x1, x2) in the following set302

of rules. To compare two candidate answer set S1 and S2 according to, say, Pareto-preference,303

and to determine whether an answer set of AP (x1, x2) is a Pareto-preferred answer set,304

lpod2asp(Π3) contains305

306
equ(S1 ,S2) :- degree (S1 ,D1 ,D2), degree (S2 ,D1 ,D2).307

308

prf(S1 ,S2) :- degree (S1 ,D11 ,D12), degree (S2 ,D21 ,D22), not equ(S1 ,S2),309

D11 <=D21 , D12 <= D22.310

311

pAS(X1 , X2) :- ap(X1 , X2), {prf(S, ap(X1 ,X2))}0.312313

5.4 From CR-Prolog2 to Answer Set Programs314

I Theorem 7. (from [21]) For any CR-Prolog2 program Π of signature σ, (a) the projections315

of the generalized answer sets of Π onto σ are exactly the generalized answer sets on σ of316

crp2asp(Π). (b) the projections of the candidate answer sets of Π onto σ are exactly the317

candidate answer sets on σ of crp2asp(Π). (c) the preferred answer sets of Π are exactly the318

preferred answer sets on σ of crp2asp(Π).319

I Example 8. (From [4]) Consider the following CR-Prolog2 program Π4:320

q ← t.

s← t.

p← not q.
r ← not s.
← p, r.

1 : t
+← .

2 : q × s +← .
321

The idea behind crp2asp is similar to that for lpod2asp. crp2asp(Π4) consists of322

(i) all consistent assumption programs323

324
{ap(X1 ,X2): X1 =0..1 , X2 =0..2}. :~ ap(X1 ,X2). [-1,X1 ,X2]325

326

q(X1 ,X2) :- ap(X1 ,X2), t(X1 ,X2).327

s(X1 ,X2) :- ap(X1 ,X2), t(X1 ,X2).328

p(X1 ,X2) :- ap(X1 ,X2), not q(X1 ,X2).329

r(X1 ,X2) :- ap(X1 ,X2), not s(X1 ,X2).330

:- ap(X1 ,X2), p(X1 ,X2), r(X1 ,X2).331

332

Z. Y. Public 17:9

% 1: t <+-.333

t(X1 ,X2) :- ap(X1 ,X2), X1 =1.334

335

% 2: q*s <+-.336

q(X1 ,X2) :- ap(X1 ,X2), X2 =1.337

s(X1 ,X2) :- ap(X1 ,X2), X2 =2.338339

(ii) the definition of dominate as well as the definition of candidate answer set340

341
dominate (ap(X1 ,X2), ap(Y1 ,Y2)) :- ap(X1 ,X2), ap(Y1 ,Y2), 0<X1 , X1 <Y1.342

dominate (ap(X1 ,X2), ap(Y1 ,Y2)) :- ap(X1 ,X2), ap(Y1 ,Y2), 0<X2 , X2 <Y2.343

344

candidate (X1 ,X2) :- ap(X1 ,X2), { dominate (SP ,ap(X1 ,X2))}0.345346

(iii) the definition of lessCrRuleApplied as well as the definition of preferred answer set347

348
lessCrRuleApplied (ap(X1 ,X2), ap(Y1 ,Y2)) :- candidate (X1 ,X2),349

candidate (Y1 ,Y2), 1{X1!=Y1;X2!=Y2}, X1 <=Y1 , X2 <=Y2.350

351

pAS(X1 ,X2) :- candidate (X1 ,X2), { lessCrRule (SP ,ap(X1 ,X2))}0.352353

6 Open Issues and Expected Achievements354

One issue is that, among the 4 translations, only lpmln2wc has an implemented compiler.355

So, for now, most translations must be done manually. However, we may not implement356

the compilers for the translations lpod2asp and crpt2asp, since they are exponential to the357

number of non-regular rules.358

Another issue is, currently, we are working on combining quantitative and qualitative359

uncertainty in a single formalism, but it is still not clear how these two kinds of uncertainty360

merge together. For example, if there is a preference rule saying “football > ping-pong >361

basketball” with a quantitative confidence 5, and there is another preference rule saying362

“indoor game > outdoor game” with confidence 10, what should be the order of these363

activities? To answer this question, we should first answer “how should the confidence364

be arranged in a rule without loss of generality?” The follow-up question is “what is the365

confidence of basketball if there is a probability of 70% that it is an indoor game?”366

As for the future work, we will check whether the recent approach, Asprin [10], can be367

used to implement LPOD, CR-Prolog2, LPMLN , and even P-log. At the meantime, we368

will start to combine quantitative and qualitative uncertainty from tuning the semantics of369

LPOD to include quantitative uncertainty in its syntax and semantics. After the formalism370

is created and well defined, we will prove its expressivity and implement a compiler for it.371

References372

1 Vernon Asuncion, Yan Zhang, and Heng Zhang. Logic programs with ordered disjunction:373

first-order semantics and expressiveness. In Proceedings of the Fourteenth International374

Conference on Principles of Knowledge Representation and Reasoning, pages 2–11. AAAI375

Press, 2014.376

2 Evgenii Balai and Michael Gelfond. On the relationship between P-log and LPMLN. In377

Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 915–378

921, 2016.379

ICLP 2018

17:10 Research Summary

3 Marcello Balduccini. Cr-models: an inference engine for cr-prolog. In Proceedings of the380

9th International Conference on Logic Programming and Nonmonotonic Reasoning, pages381

18–30. Springer-Verlag, 2007.382

4 Marcello Balduccini, Marcello Balduccini, and Veena Mellarkod. Cr-prolog with ordered383

disjunction. In In ASP03 Answer Set Programming: Advances in Theory and Implement-384

ation, volume 78 of CEUR Workshop proceedings, 2003.385

5 Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules.386

In International Symposium on Logical Formalization of Commonsense Reasoning, AAAI387

2003 Spring Symposium Series, pages 9–18, 2003.388

6 Marcello Balduccini and Veena Mellarkod. A-prolog with cr-rules and ordered disjunc-389

tion. In Intelligent Sensing and Information Processing, 2004. Proceedings of International390

Conference on, pages 1–6. IEEE, 2004.391

7 Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer392

sets. Theory and Practice of Logic Programming, 9(1):57–144, 2009.393

8 Gerhard Brewka. Logic programming with ordered disjunction. In AAAI/IAAI, pages394

100–105, 2002.395

9 Gerhard Brewka. Preferences in answer set programming. In CAEPIA, volume 4177, pages396

1–10. Springer, 2005.397

10 Gerhard Brewka, James P Delgrande, Javier Romero, and Torsten Schaub. asprin: Cus-398

tomizing answer set preferences without a headache. In AAAI, pages 1467–1474, 2015.399

11 Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Implementing ordered disjunction400

using answer set solvers for normal programs. In European Workshop on Logics in Artificial401

Intelligence, pages 444–456. Springer, 2002.402

12 Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by403

constraints. IEEE Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.404

13 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog405

and its application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.406

14 James P Delgrande, Torsten Schaub, and Hans Tompits. A framework for compiling pref-407

erences in logic programs. Theory and Practice of Logic Programming, 3(2):129–187, 2003.408

15 Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscription.409

Artificial Intelligence, 175:236–263, 2011.410

16 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-411

ming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic412

Programming Conference and Symposium, pages 1070–1080. MIT Press, 1988.413

17 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-414

ive databases. New Generation Computing, 9:365–385, 1991.415

18 Joohyung Lee, Yunsong Meng, and Yi Wang. Markov logic style weighted rules under the416

stable model semantics. In Technical Communications of the 31st International Conference417

on Logic Programming, 2015.418

19 Joohyung Lee and Yi Wang. Weighted rules under the stable model semantics. In Proceed-419

ings of International Conference on Principles of Knowledge Representation and Reasoning420

(KR), pages 145–154, 2016.421

20 Joohyung Lee and Zhun Yang. LPMLN, weak constraints, and P-log. In Proceedings of the422

AAAI Conference on Artificial Intelligence (AAAI), pages 1170–1177, 2017.423

21 Joohyung Lee and Zhun Yang. Translating lpod and cr-prolog2 into standard answer set424

programs. arXiv preprint arXiv:1805.00643, 2018.425

22 Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ426

Press, 2000.427

23 Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,428

62(1-2):107–136, 2006.429

	Introduction and Problem Description
	Background and Overview of the Existing Literature
	Review: LPMLN
	Review LPOD
	Existing Literature

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	From LPMLN to Answer Set Programs
	From P-log to LPMLN
	From LPOD to Answer Set Programs
	From CR-Prolog2 to Answer Set Programs

	Open Issues and Expected Achievements

