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Abstract

We study anti-unification under the condition that some mismatches in the names of function
symbols is tolerated. The mismatches are expressed by proximity relations, which are reflexive,
symmetric, but not transitive fuzzy binary relations. Their crisp version corresponds to undirected
graphs. Computing all maximal clique partitions in them is needed to compute least general gen-
eralizations with respect to proximity relations. We report about our progress in developing both
all-clique-partitions and anti-unification algorithms.

1 Introduction
In this paper we study anti-unification under the condition that some mismatches between function
symbol names is tolerated. Names which are ‘close to each other’ should not be distinguished. Such
a treatment of symbols is adequate in situations where one has to manage imprecise information, for
example, for detecting clones in copied and slightly modified software code.

The relation of ‘being close’ is not transitive: For instance, if one considers two cities being close to
each other if the distance between them is not more than 200 km, then Salzburg is close to Linz (133 km)
and Linz is close to Vienna (185 km), but Salzburg is not close to Vienna (300 km). Nontransitivity has
to be dealt in a special way. Proximity relations (reflexive symmetric fuzzy binary relations) characterize
the notion of ‘being close’ numerically. They become crisp once we fix the threshold from which on the
distance between the objects can be called ‘close’.

We consider a first-order language where function symbols are in a proximity relation with each
other. To compute generalizations in this language, we assume that the threshold (so called λ-cut) is
fixed and we know which symbols are close to each other and which are not. The obtained crisp relation
can be represented as an undirected graph, and symbols that belong to a complete subgraph (a clique) of
it should be considered ‘close’ to each other. But the same symbol might belong to two or more cliques,
and we need to choose one of them to which the symbol is assigned. Hence, we essentially need to
partition the graph into maximal cliques, treat the symbols in the same clique as being the same, and
apply the first-order anti-unification algorithm to compute generalizations.

This approach leads to two problems. First, while one can easily compute one maximal vertex-clique
partition of a graph [7, 4], computing all maximal ones is more involved. But we need them to compute
least general generalizations. We were not able to find an appropriate algorithm in the literature and,
therefore, decided to design and implement one ourselves. It is optimal in the sense that each maximal
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clique partition is computed only once, and generating and discarding false answers is avoided. We
briefly describe the algorithm in this paper.

The second problem is related to the anti-unification algorithm. Computing all maximal clique parti-
tions of the given proximity relation at the beginning and then switching to the standard anti-unification
would be an overkill, because many non-minimal answers will be computed, or the same answers might
be returned many times. Therefore, it is more reasonable to incorporate the clique partitioning procedure
into the anti-unification algorithm and perform partitions only on demand. The algorithm described in
this paper works in this way.

In related work, Aı̈t-Kaci and Pasi [1] studied anti-unification with respect to similarity relations,
which differ from proximity relations by being transitive and, in this way, are more specific. On the other
hand, they allow arity mismatch between symbols, which we do not consider in this paper. Unification
with proximity relations has been studied in [6], from which we take the basic definitions.

This work is still in progress. We are currently in the process of a detailed investigation of the
properties of presented algorithms, and implementing anti-unification. The latter, after implementation,
will be included into our online open-source library of unification and anti-unification algorithms [3].

2 Terms, Substitutions, Proximity Relations
We consider first-order terms defined as usual: t ∶= x ∣ f(t1, . . . , tn), where x is a variable and f is
an n-ary function symbol with n ≥ 0. We use the letters f, g, h, a, b, c, d and e for function symbols,
x, y, z, u, v and w for variables, and s, t, l, and r for terms.

For a term t, its set of positions pos(t) is a set of sequences of positive integers defined as follows:
If t is a variable, then pos(t) = {ε}, where ε is the empty sequence; If t = f(s1, . . . , sn), then pos(t) =
{ε}∪⋃ni=1{i.p ∣ p ∈ pos(si)}. By t[p] we denote the symbol in t at position p. The notation t∣p denotes
the subterm of t at position p.

A substitution is a mapping from variables to terms, which is the identity almost everywhere. We
will use the traditional finite set representation of substitutions. The lower case Greek letters are used to
denote substitutions, with the exception of the identity substitution for which we write Id . The related
notions such as substitution application, term instance, substitution composition, etc. are defined in the
usual way, see, e.g. [2].

A binary fuzzy relation on a set S is a fuzzy subset on S × S, that is, a mapping from S × S to the
real interval [0,1]. IfR is a fuzzy relation on S and λ is a number 0 ≤ λ ≤ 1, then the λ-cut ofR on S,
denotedRλ, is an ordinary (crisp) relation on S defined asRλ ∶= {(x, y) ∣R(x, y) ≥ λ}.

A fuzzy relationR on a set S is called a proximity relation on S iff it is reflexive, i.e.,R(x,x) = 1 for
all x ∈ S, and symmetric, i.e., R(x, y) = R(y, x) for all x, y ∈ S. A special class of proximity relations
are similarity relations, which are transitive proximity relations: R(x, z) ≥ min(R(x, y),R(y, z)) for
all x, y, z ∈ S.

A cut value of a proximity relation R on S is a number λ such that R(x, y) = λ for some x, y ∈ S.
The set of cut values ofR are called approximation levels ofR.

Given a proximity relation R on a set S and λ ∈ [0,1], a proximity block of level λ (or, shortly, a
λ-block) is a subset B of S such that the restriction of Rλ to B is a total relation, and B is maximal
with this property.

Below we consider proximity relations defined on the set of variables and function symbols and
assume that no variable is close to any function symbol and to any other variable. Hence, variables
always belong to singleton blocks of level 1. Also, function symbols of different arities are not close to
each other, i.e., each block consists of symbols of the same arity.

The notion of proximity is defined for terms. The intuition behind it, according to [6], is based on
the following idea: two terms t1 and t2 are λ-approximate when they have the same set of positions;



their symbols, in their corresponding positions, belong to the same λ-block; and a certain symbol is
always assigned to the same λ-block (throughout a computation). The following definition formalizes
this intuition:

Definition 1. Given a proximity relation R on F and λ ∈ [0,1], two terms t and s are λ-approximate
(or λ-close) with respect toR, written t ≈R,λ s, if the following conditions hold:

1. pos(t) = pos(s), i.e, the terms have exactly the same positions, hence, the same structure.
2. For all positions p ∈ pos(t), t[p] and s[p] belong to the same λ-block of the relationR.
3. For all positions p, p′ ∈ pos(t) with p ≠ p′,

(a) If t[p] = t[p′], then s[p] and s[p′] belong to the same λ-block ofR.
(b) If s[p] = s[p′], then t[p] and t[p′] belong to the same λ-block ofR.

WhenR is clear from the context, we will just write t ≈λ s. The relation ⪯R,λ modifies its classical
counterpart, the instantiation quasi-ordering ⪯ (see, e.g., [2]) by replacing equality with ≈R,λ: A term
t is more general than s at level λ with respect to R, written t ⪯R,λ s, iff there exists a substitution ϕ
such that tϕ ≈R,λ s.

The strict part of the ⪯R,λ relation is denoted by ≺R,λ. The fact that ≈R,λ is not a transitive relation
implies that ⪯R,λ is not a quasi-ordering.

Given a proximity relationR and a cut λ, a term r is a common (λ,R)-generalization of t and s iff
it is more general than both t and s at level λ with respect to R. It is a least general common (λ,R)-
generalization ((λ,R)-lgg) of t and s iff it is a common (λ,R)-generalization of t and s and there is no
term l such that l ≺R,λ r holds.

Below we assume that λ is fixed and, hence, consider crisp version of proximity relations. Such a
relation can be represented as undirected graph, whose maximal cliques (maximal complete subgraphs)
are counterparts to blocks. The goal is to design an algorithm which computes R-lggs for a given pair
of terms and the proximity relation R. We do not distinguish between R and the graph that represents
it.

Example 1. If (a, b) and (a, c) both belong toR but (b, c) does not, then f(a, a) and f(b, b) are close
to each other, but f(a, a) and f(b, c) are not. The latter pair has twoR-lggs: f(a, x) and f(x, a).

A clique in an undirected graph G = (V,E) is a set of vertices W ⊆ V such that for each pair of
vertices in W there is an edge in E. A clique is maximal if it is not a proper subset of another clique. A
clique partition of a graph G is a set of its cliques {C1, . . . ,Cn} such that ⋃ni=1Ci = V and Ci ∩Cj = ∅
for all 1 ≤ i, j ≤ n, i ≠ j.

Let S1 = {C1, . . . ,Cn} and S2 = {D1, . . . ,Dm} be two sets of cliques of the same graph. We say
that S1 is subsumed by S2, written S1 ⊑ S2, iff for all 1 ≤ i ≤ n there exists 1 ≤ j ≤m such that Ci ⊆Dj .
If S1 and S2 are, in particular, partitions, then we also say that S1 is a subpartition of S2 if S1 ⊑ S2. A
clique partition of a graph is maximal if it is not properly subsumed by any other partition of the graph.
A graph may have several maximal clique partitions. We will use them in the anti-unification algorithm
in Sect. 3. In Sect. 4 we discuss an algorithm that computes all maximal clique partitions in a graph.

3 The Proximity-Based Anti-Unification Algorithm
Our anti-unification algorithm works on tuples A;C;S;R;G, called configurations. Here A, C, and
S are sets of anti-unification triples (AUTs, constructions of the form x ∶ s ≜ t, meaning that x is a
variable that generalizes s and t),R is a crisp version of a proximity relation, and G is a term. The rules
transform configurations into configurations. Intuitively, the problem set A contains AUTs that have not



been solved yet, the set C contains AUTs of the form x ∶ a ≜ b, where a and b are constants such that
(a, b) ∈ R and the AUTs are not solved yet. The store S contains the already solved AUTs, R is the
proximity relation which gets more and more refined during computation by identifying symbols that
belong to the same clique in some partition of R, and G is the generalization which becomes more and
more specific as the algorithm progresses by applying the rules.
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where (a) ki > 0 and (fi, gi) ∈ R for all 1 ≤ i ≤ n; (b) there exist a maximal vertex-clique partition
P of the subrelation Q = {(f1, g1), . . . , (fn, gn)} ⊆ R and the index 1 ≤ m ≤ n such that for each
(fj , gj), 1 ≤ j ≤ m, there is a clique Cl ∈ P with fj , gj ∈ Cl, and for no (fj , gj), m + 1 ≤ j ≤ n
there is such a clique; (c) R′ is obtained from R by replacing the subrelation Q by its partition P ;
(d) ϑ = {xj ↦ fj(y

j
1, . . . , y

j
kj
) ∣ 1 ≤ j ≤m}.

Sol: Solve
{x ∶ f(s̃) ≜ g(t̃)} ⊎A; C; S; R; GÔ⇒ A; C;{x ∶ f(s̃) ≜ g(t̃)} ∪ S; R; G, if (f, g) ∉R.

Post: Postpone
{x ∶ a ≜ b} ⊎A; C; S; R; GÔ⇒ A; {x ∶ a ≜ b} ∪C;S; R; G, if (a, b) ∈R.

Gen-Con: Generalize Constants
∅;{x1 ∶ a1 ≜ b1, . . . , xn ∶ an ≜ bn}; S; R; GÔ⇒ ∅; ∅; {xj ∶ aj ≜ bj ∣m + 1 ≤ j ≤ n} ∪ S; R′; Gϑ,

where (a) (ai, bi) ∈ R for all 1 ≤ i ≤ n; (b) there exist a maximal vertex-clique partition P of the
subrelation Q = {(a1, b1), . . . , (an, bn)} ⊆ R and the index 1 ≤ m ≤ n such that for each (aj , bj),
1 ≤ j ≤ m there is a clique Cl ∈ P with aj , bj ∈ Cl, and for no (aj , bj), m + 1 ≤ j ≤ n there is such a
clique; (c)R′ is obtained fromR by replacing Q by its partition P ; (d) ϑ = {xi ↦ ai ∣ 1 ≤ i ≤m}.

To anti-unify two terms s and t with respect to the proximity relation R, we create the initial tuple
{x ∶ s ≜ t};∅;∅;R;x and apply the rules in all ways as long as possible. In the search space, branching
is caused by all possible maximal clique partitions in Dec and Gen-Con. Generalizations in successful
branches form the computed result. We call this algorithm PR-AUlin. The subscript lin indicates that it
computes linear generalizations (i.e., those in which each generalization variable appears at most once).

Theorem 1. PR-AUlin terminates and computes a minimal complete set of linear generalizations.

Proof sketch. Termination follows form the fact that Gen-Con can be applied only once and the other
rules strictly reduce the number of symbols in A. In computed answers, no generalization variable ap-
pears more than once, because there is no rule that would merge them. Hence, computed generalizations
are linear. They are also lggs among linear generalizations, because (a) the algorithm decomposes the
terms as much as possible, and (b) it maximizes the number of nonvariable subterms appearing in gener-
alizations, which is done with the help of clique partitions of subrelations (not of the entire relation!) at
each decomposition and constant generalization steps. All linear lggs are computed, because branching
at Dec and Gen-Con rules explores all maximal clique partitions.



Example 2. For terms f(g1(g2(a)), g2(a), a) and f(g2(g3(b)), g3(c), b) and the relation R given
in the form of maximal clique set (not a partition) {{f},{g1, g2},{g2, g3},{a, b},{b, c}}, the algo-
rithm PR-AUlin returns two R-lggs: f(g1(z1), y2, a) and f(y1, g(y2), a) and misses the nonlinear one
f(g1(y2), y2, y3). We illustrate now how the algorithm works:

{x ∶ f(g1(g2(a)), g2(a), a) ≜ f(g2(g3(b)), g3(c), b)}; ∅; ∅; R; xÔ⇒Dec

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c), y3 ∶ a ≜ b}; ∅; ∅; R; f(y1, y2, y3)Ô⇒Post

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3).

At this stage, the subrelation {(g1, g2), (g2, g3)} of R can be partitioned in two ways, which gives two
new relations R1 = {{f},{g1, g2},{g3},{a, b},{b, c}} and R2 = {{f},{g1},{g2, g3},{a, b},{b, c}}.
Therefore, we can use the Dec rule and proceed in two different ways:

Alternative 1. Proceeding byR1.

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R11; f(g1(z1), y2, a).

where R11 = {{f},{g1, g2},{g3},{a, b},{c}}. Note that if we required in the condition of the
Gen-Con rule to partition the relation itself (instead of its subrelation), we would get also R12 =

{{f},{g1, g2},{g3},{a},{b, c}}, which would lead to another successful branch

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b), y3 ∶ a ≜ b}; R12; f(g1(z1), y2, y3).

However, the computed generalization is not an lgg, since it is more general than the previous one.

Alternative 2. Proceeding byR2.

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z2 ∶ a ≜ c}; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b))}; R2; f(y1, g(z2), y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b)), z2 ∶ a ≜ c}; R2; f(y1, g(y2), y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R21; f(y1, g(y2), a),

whereR21 = {{f},{g1},{g2, g3},{a, b},{c}}. Again, if we were allowed to partition the wholeR2 in
Gen-Con, we would get another partition R22 = {{f},{g1},{g2, g3},{a},{b, c}}, which would give
the following successful branch:

∅; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b)), z2 ∶ a ≜ c}; R2; f(y1, g(y2), y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), y3 ∶ a ≜ b}; R22; f(y1, g(y2), y3).

However, the solution obtained in this branch is more general than the previous one.

As the next step, we extend the algorithm to add a rule for merging variables. It uses a partial
function refine({s1 ≈ t1, . . . , sn ≈ tn},R), which is supposed to refine the given relation R into a new
relationR′ so that si ≈R′ ti, 1 ≤ i ≤ n, if such a refinement ofR exists.



Mer: Merge
A; C; {x ∶ s1 ≜ t1, y ∶ s2 ≜ t2} ⊎ S; R; GÔ⇒ A; C; {x ∶ s1 ≜ t1} ∪ S; R

′; G{y ↦ x},

whereR′ = refine({s1 ≈ s2, t1 ≈ t2},R).

The obtained algorithm is denoted by PR-AU. The function refine is defined as follows:

refine(∅,R) =R. refine({t ≈ t} ⊎E,R) = refine(E,R).

refine({f(s1, . . . , sn) ≈ g(t1, . . . , tn)} ⊎E,R) = refine({s1 ≈ t1, . . . , sn ≈ tn} ∪E,R
′
),

if (f, g) ∈ R and R′ = R ∖ (S1 ∪ S2), where S1 = {(f, h) ∣ (g, h) ∉ R} ∪ {(h, f) ∣ (g, h) ∉ R} and
S2 = {(g, h) ∣ (f, h) ∉R} ∪ {(h, g) ∣ (f, h) ∉R}. Otherwise, refine is not defined.

From the specification of refine it follows that Mer is correct. It is also an alternative to the rules
above, meaning that it would introduce additional branching, because of which PR-AU might recompute
the same solution on different branches. For instance, in Example 2, when we proceed by R1, we get
two branches that compute the same result (recall thatR11 = {{f},{g1, g2},{g3},{a, b},{c}}):

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R11; f(g1(z1), y2, a)Ô⇒Mer

∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R11; f(g1(y2), y2, a)

and

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Mer

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(y2), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R11; f(g1(y2), y2, a).

However, we can not postpone Mer till the end, after A and C get empty (as it is usually done in
anti-unification algorithms), because in this case we will miss solutions, as the example below shows.

Example 3. Let R = {{f},{h1},{h2},{a},{g0, g1},{g0, g2}}, s = f(g0(a), h1(g0(a)), h1(g0(a))),
and t = f(g1(a), h2(g2(a)), h2(g0(a))). Then PR-AU computes two solutions: f(g0(a), y2, y3) and
f(y1, y2, y2). The first one is obtained by applying Sol before Mer, and the second one in the other way
around. However, if Mer is applied only at the very end, then the first solution is not computed.

Merging variables can significantly increase the size of the computed set of generalizations:

Example 4. Let the arity of f be n + 2,R = {{f},{h1},{h2},{a},{g0, g1}, . . . ,{g0, gn}} and

s = f(g0(a), h1(g0(a)), . . . , h1(g0(a)), h1(g0(a))),

t = f(g1(a), h2(g2(a)), . . . , h2(gn(a)), h2(g0(a))).

PR-AUlin computes only one generalization: f(g0(a), y2, . . . , yn, yn+1. With PR-AU, we have, in
addition, n − 1 other generalizations: f(y1, y2, . . . , yn, y2), . . . , f(y1, y2, . . . , yn, yn).

Theorem 2. PR-AU computes a minimal complete set of generalizations.
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P6 = {{1},{2,3,4},{5,6,7}}

Figure 1: All maximal clique partitions of a graph.

4 Computing All Maximal Clique Partitions in a Graph
The anti-unification algorithm in the previous section relies on the computation of all maximal clique
partitions in an undirected graph. We describe the corresponding algorithm here.

First, we compute all maximal cliques of the given graph and give each of them a name. All maximal
cliques can be computed, e.g., by Bron-Kerbosch algorithm [5]. For the graph in Fig. 1, there are four
of them: C1 = {1,2,3},C2 = {2,3,4},C3 = {4,5,6},C4 = {5,6,7}. These cliques will get revised
during computation by removing elements from them. At the end, we report those which are not empty.

After computing the initial cliques, we collect all shared vertices and indicate among which cliques
they are shared. In the graph in Fig. 1, the shared vertices are 2, 3, 4, 5, and 6. We have 2 ∈ C1 ∩ C2,
3 ∈ C1 ∩C2, 4 ∈ C2 ∩C3, 5 ∈ C3 ∩C4, and 6 ∈ C3 ∩C4.

Our goal is to compute each solution exactly once. At the end, it can happen that some cliques
consist of shared vertices only. However, such cliques can have any of the names of the original cliques
they originate from. For instance, the node 4 alone can form a clique either as C2 or C3, giving two
identical partitions which differ only by the clique names:

C1 = {1,2,3}, C2 = {4}, C3 = ∅, C4 = {5,6,7},

C1 = {1,2,3}, C2 = ∅, C3 = {4}, C4 = {5,6,7}.

We want to avoid such duplicates. Therefore, for such alternatives we choose one single clique to which
they belong in this configuration, and forbid the others. For the example graph in Fig. 1, we can allow
the vertices 2 and/or 3 to form a clique as C2, the vertex 4 to form a clique as C3, and the vertices 5



and/or 6 to form a clique as C4. (Note that allowing does not necessarily mean that we will get result
cliques of that form.) Thus, the forbidden configurations are C1 ≠ {2},C1 ≠ {3},C1 ≠ {2,3},C2 ≠

{4},C3 ≠ {5},C3 ≠ {6},C3 ≠ {5,6}.
Starting from the initial set of cliques, our algorithm All-Maximal-Clique-Partitions performs the

following steps:

1. Compute the set of shared vertices and the forbidden configurations.

2. If the set of shared vertices is empty, return the current set of cliques and stop.

3. Select a shared vertex and nondeterministically assign it to one of the cliques it belongs to. Re-
move the vertex from the other cliques and from the set of shared vertices.

4. For each pair of cliques Ci,Cj , where Ci ⊆ Cj , make Ci empty and adjust the set of shared
elements. In addition, if Ci was the chosen clique for the shared elements, remove those elements
from the forbidden list of Cj .

5. If the union of two nonempty cliques is a subset of an original clique, or if a forbidden configura-
tion arises, stop the development of this branch with failure. Otherwise go to step 2.

Checking for the subset relations is needed to avoid computing cliques which are not maximal. For
instance, the partition C1 = {1,2}, C2 = {3}, C3 = {4}, C4 = {5,6,7} should be rejected because
{1,2} ∪ {3} is a subset of the original C1 clique. Step 5 helps to detect such situations early.

The partitions shown in Fig. 1 correspond to the following final values of cliques, computed by the
All-Maximal-Clique-Partitions algorithm:

P1 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,5,6}, C4 = {7}

P2 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,5}, C4 = {6,7}

P3 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,6}, C4 = {5,7}

P4 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4}, C4 = {5,6,7}

P5 ∶ C1 = {1,2}, C2 = {2,4}, C3 = ∅, C4 = {5,6,7}

P6 ∶ C1 = {1,2}, C2 = {3,4}, C3 = ∅, C4 = {5,6,7}

P7 ∶ C1 = {1}, C2 = {2,3,4}, C3 = ∅, C4 = {5,6,7}.

5 Conclusion
We designed and implemented an algorithm to compute all maximal vertex-clique partitions in an undi-
rected graph and used it in the computation of proximity-based least general generalizations. The next
steps are to study the properties of both algorithms in detail and to implement the one for anti-unification.
A more remote goal is to study applicability of proximity-based anti-unification in program analysis and
clone detection.
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