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1 Introduction

Topological logics (TLs) are formalisms for reasoning about topological relations (contact, con-
nectedness, etc) between regions [5, 13, 14, 15]. Their languages are obtained from the language
of Boolean algebras by the addition of predicates representing these relations. Interpreted over
mereotopological spaces, the formulas of these languages describe configurations of concrete ob-
jects. Recently, the validity problem determined by different classes of mereotopological spaces
has been intensively investigated [8, 9, 10].
In this paper, we introduce a new inference problem for TLs, the unifiability problem, which
extends the validity problem by allowing one to replace variables by terms before testing for
validity. For example, within the context of the mereotopology of all regular closed polygons
of the real plane, the formula C(p, q)→ x 6≡ 0 ∧ x ≤ p ∪ q, read “if p is in contact with q then
x is nonempty and x is contained in p ∪ q”, is not valid but can be made valid after replacing
x either by p ∪ (q ∩ x), or by q ∪ (p ∩ x).
There is a wide variety of situations where unifiability problems arise. Suppose the for-
mula ϕ(p1, . . . , pm) describes a given geographic configuration of constant regions p1, . . . , pm
and the formula ψ(x1, . . . , xn) represents a desirable geographic property of variable regions
x1, . . . , xn. It may happen that ϕ(p1, . . . , pm) → ψ(x1, . . . , xn) is not valid in the considered
geographic environment. Hence, one may ask whether there are n-tuples (a1, . . . , an) of terms
such that ϕ(p1, . . . , pm) → ψ(a1, . . . , an) is valid in this environment. Moreover, one may
be interested to obtain, if possible, the most general n-tuples (a1, . . . , an) of terms such that
ϕ(p1, . . . , pm)→ ψ(a1, . . . , an) is valid.
In this paper, we adapt to the problem of unifiability with constants in TLs (interpreted over the
mereotopology of all regular closed polygons of the real plane) the line of reasoning developed
by Balbiani and Gencer [4] within the simpler context of the problem of unifiability without
constants in Boolean Region Connection Calculus (interpreted over Kripke models). This adap-
tation is far from obvious. Our main result is that, within the context of the mereotopology of
all regular closed polygons of the real plane, unifiable formulas always have finite complete sets
of unifiers.

2 Syntax

Terms Let CON be a countable set of constants (p, q, etc) and V AR be a countable set
of variables (x, y, etc). Let (p1, p2, . . .) be an enumeration of CON without repetitions and
(x1, x2, . . .) be an enumeration of V AR without repetitions. An atom is either a constant, or a
variable. The Boolean terms (a, b, etc) are defined by the rule

• a, b ::= p | x | 0 | a? | (a ∪ b).

The other Boolean constructs for terms (for instance, 1 and ∩) are defined as usual. Read-
ing terms as regions, the constructs 0, ? and ∪ should be regarded as the empty region, the
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complement operation and the union operation. As a result, the constructs 1 and ∩ should be
regarded as the full region and the intersection operation. For all m,n ≥ 0, let TERm,n be
the set of all terms whose constants form a subset of {p1, . . . , pm} and whose variables form a
subset of {x1, . . . , xn}. Let TER be the set of all terms.

Formulas The formulas (ϕ, ψ, etc) are defined by the rule

• ϕ,ψ ::= C(a, b) | a ≡ b | ⊥ | ¬ϕ | (ϕ ∨ ψ).

Here, a and b are terms whereas C is the predicate of contact and ≡ is the predicate of equality.
We use the notation a ≤ b for a ∪ b ≡ b. For C(a, b) and a ≡ b, we propose the readings “a
is in contact with b” and “a is equal to b”. As a result, for a ≤ b, we propose the reading “a
is contained in b”. The other connectives for formulas (for instance, > and ∧) are defined as
usual. A formula is equational iff ≡ is the only predicate possibly occurring in it. Let FOR be
the set of all formulas and FOReq be the set of all equational formulas. Note that FOR and
FOReq are denoted C and B in [8, 9, 10].

3 Semantics

Topological spaces A topological space is a structure of the form (X, τ) where X is a
nonempty set and τ is a set of subsets of X such that the following conditions hold:

• ∅ is in τ ,

• X is in τ ,

• if {Ai : i ∈ I} is a finite subset of τ then
⋂
{Ai : i ∈ I} is in τ ,

• if {Ai : i ∈ I} is a subset of τ then
⋃
{Ai : i ∈ I} is in τ .

The subsets of X in τ are called open sets whereas their complements are called closed sets. In
this paper, we will interest with the topological space (RR2, τRR2), i.e. the real plane RR2 together
with its ordinary topology τRR2 .

Regular closed subsets Let (X, τ) be a topological space. Let Intτ and Clτ denote the
interior operator and the closure operator in (X, τ). A subset A of X is regular closed iff
Clτ (Intτ (A)) = A. Regular closed subsets of X will also be called regions. It is well-
known that the set RC(X, τ) of all regular closed subsets of X forms a Boolean algebra
(RC(X, τ), 0X , ?X ,∪X) where for all A,B ∈ RC(X, τ):

• 0X = ∅,

• A?X = Clτ (X \A),

• A ∪X B = A ∪B.

As a result, for all A,B ∈ RC(X, τ), 1X = X and A ∩X B = Clτ (Intτ (A ∩ B)). Since regions
are regular closed subsets of X, therefore two regions are in contact iff they have a nonempty
intersection. For this reason, we define the relation C(X,τ) on RC(X, τ) by

• C(X,τ)(A,B) iff A ∩B 6= ∅.

The following conditions hold for all A,B,A′, B′ ∈ RC(X, τ):

2



Unification in topological logics over Euclidean spaces Gencer

• if C(X,τ)(A,B) and A ⊆ A′ then C(X,τ)(A′, B),

• if C(X,τ)(A,B) and B ⊆ B′ then C(X,τ)(A,B′),

• if C(X,τ)(A ∪A′, B) then either C(X,τ)(A,B), or C(X,τ)(A′, B),

• if C(X,τ)(A,B ∪B′) then either C(X,τ)(A,B), or C(X,τ)(A,B′),

• if C(X,τ)(A,B) then A 6= ∅ and B 6= ∅,

• if A 6= ∅ then C(X,τ)(A,A),

• if C(X,τ)(A,B) then C(X,τ)(B,A).

Mereotopologies Let (X, τ) be a topological space. A mereotopology over (X, τ) is a Boolean
subalgebra M of RC(X, τ) such that for all P ∈ X and for all A ∈ τ , if P ∈ A then there
exists B ∈M such that P ∈ B and B ⊆ A. A mereotopological space over (X, τ) is a structure
(X, τ,M) where M is a mereotopology over (X, τ) [12]. Over the topological space (RR2, τRR2),
several mereotopologies can be considered. One can consider the mereotopology consisting of
the set RC(RR2) of all regular closed subsets of RR2. Nevertheless, as regions are supposed to be
parts of the real plane occupied by concrete objects, it is clear that some of the regular closed
subsets of RR2 cannot count as regions. For this reason, one can consider the more concrete
mereotopology consisting of the set RCS(RR2) of all regular closed semi-algebraic subsets of
RR2, i.e. those regular closed subsets of RR2 definable by a first-order formula in the language
of arithmetic interpreted over RR. The main property of this mereotopology is that any of its
elements is a finite union of semi-algebraic cells, i.e. semi-algebraic subsets of RR2 homeomorphic
to a closed disc. But RCS(RR2) is not the only candidate for a region-based model of space.
A simpler candidate is the mereotopology consisting of the set RCP (RR2) of all regular closed
polygons of RR2, i.e. those regular closed subsets of RR2 definable by a finite union of finite
intersections of closed half-planes. Although this mereotopology may seem overly simple, its
study from the perspective of the unifiability problem will turn out to be relatively interesting.

Models Let (X, τ,M) be a mereotopological space. A valuation on (X, τ,M) is a map asso-
ciating with every atom a regular closed subset of X in M . Given a valuation V on (X, τ,M),
we define:

• V̄(p) = V(p),

• V̄(x) = V(x),

• V̄(0) = ∅,

• V̄(a?) = Clτ (X \ V̄(a)),

• V̄(a ∪ b) = V̄(a) ∪ V̄(b).

As a result, V̄(1) = X and V̄(a ∩ b) = Clτ (Intτ (V̄(a) ∩ V̄(b))). Thus, V interprets every term
as a regular closed subset of X in M . A model on (X, τ,M) is a structure M = (X, τ,M,V)
where V is a valuation on (X, τ,M). The connectives ⊥, ¬ and ∨ being classically interpreted,
the satisfiability of ϕ ∈ FOR in M (in symbols M |= ϕ) is defined as follows:

• M |= C(a, b) iff C(X,τ)(V̄(a), V̄(b)),

• M |= a ≡ b iff V̄(a) = V̄(b).

As a result, M |= a ≤ b iff V̄(a) ⊆ V̄(b).
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Validity Let (X, τ,M) be a mereotopological space. A formula ϕ is valid in (X, τ,M) iff for
all valuations V on (X, τ,M), (X, τ,M,V) |= ϕ. Let C be a class of mereotopological spaces. A
formula ϕ is C-valid iff for all mereotopological spaces (X, τ,M) in C, ϕ is valid in (X, τ,M).
The C-validity problem consists in determining whether a given formula is C-valid. In this paper,
we will be interested in the polygon-based mereotopological space (RR2, τRR2 , RCP (RR2)) over

(RR2, τRR2). As a result, when we write “valid”, we mean “valid in the mereotopological space

(RR2, τRR2 , RCP (RR2))”.

Proposition 1. For all ϕ ∈ FOReq, the following are equivalent: (1) ϕ is valid; (2) for all
finite Boolean algebras B and for all valuations VB on B, (B,VB) |= ϕ; (3) for all Boolean
algebras B and for all valuations VB on B, (B,VB) |= ϕ.

4 Unification

Substitutions A substitution is a function σ : V AR −→ TER which moves at most finitely
many variables. The domain of a substitution σ (in symbols dom(σ)) is the set of variables σ
moves. Given a substitution σ, let σ̄ : TER ∪ FOR −→ TER ∪ FOR be the endomorphism
such that for all variables x, σ̄(x) = σ(x). The composition of the substitutions σ and τ is the
substitution σ ◦ τ such that for all x ∈ V AR, (σ ◦ τ)(x) = τ̄(σ(x)). For all m,n ≥ 0, let Σm,n
be the set of all substitutions σ such that dom(σ) ⊆ {x1, . . . , xn} and for all positive integers
i ≤ n, σ(xi) is in TERm,n. A substitution σ is equivalent to a substitution τ (in symbols
σ ' τ) iff for all variables x, σ(x) ≡ τ(x) is valid. Obviously, ' is reflexive, symmetric and
transitive on the set of all substitutions. A substitution σ is more general than a substitution τ
(in symbols σ � τ) iff there exists a substitution υ such that σ ◦υ ' τ . Obviously, � is reflexive
and transitive on the set of all substitutions. Moreover, it contains '. A set of substitutions is
small iff it contains finitely many non-pairwise equivalent substitutions modulo '.

Proposition 2. For all m,n ≥ 0, Σm,n is small.

Unifiable formulas A formula ϕ is unifiable iff there exists a substitution σ such that σ̄(ϕ)
is valid. In that case, we say that σ is a unifier of ϕ. The unifiability problem (in symbols
UNIF) consists in determining whether a given formula is unifiable [3]. A set of unifiers of
ϕ ∈ FOR is complete iff for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such that
τ � σ. An important question in unification theory is [6]: when a formula is unifiable, has it a
minimal complete set of unifiers? When the answer is “yes”, how large is this set?

Unification types A unifiable formula ϕ is finitary iff there exists a finite complete set of
unifiers of ϕ but there exists no with cardinality 1. A unifiable formula ϕ is unitary iff there
exists a unifier σ of ϕ such that for all unifiers τ of ϕ, σ � τ . In that case, we say that σ is a
most general unifier of ϕ.

Proposition 3. For all unifiable ϕ ∈ FOR, the following are equivalent: (1) ϕ is either
finitary, or unitary; (2) there exists a small set Σ of substitutions such that for all unifiers σ
of ϕ, there exists a unifier τ of ϕ in Σ such that τ � σ.

Proposition 4. Let ϕ ∈ FOR, n ≥ 2 and σ1, . . . , σn be substitutions. If the following hold
then ϕ is finitary: (1) for all positive integers i ≤ n, σi is a unifier of ϕ; (2) for all positive
integers i, j ≤ n, if i 6= j then σi 6� σj; (3) σ1, . . . , σn form a complete set of unifiers of ϕ.

For all a in TER, when we write “a0”, we mean “a?” and when we write “a1”, we mean “a”.
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5 Examples

For some formulas, if they are unifiable then they are finitary. Luckily, in many cases, this can
be easily proved. For example, let us consider the formula

ϕ01 := x ≡ 0 ∨ x ≡ 1.

Let σ0 and σ1 be the substitutions such that σ0(x) = 0, σ1(x) = 1 and for all variables y, if
x 6= y then σ0(y) = y and σ1(y) = y.

Proposition 5. • σ0 and σ1 are unifiers of ϕ01,

• neither σ0 � σ1, nor σ1 � σ0,

• σ0 and σ1 form a complete set of unifiers of ϕ01,

• ϕ01 is finitary.

Unfortunately, there are unifiable formulas for which the proof that they are finitary can be
more involved. For example, let us consider the formula

ϕpq := C(p, q)→ x 6≡ 0 ∧ x ≤ p ∪ q.

Let σp and σq be the substitutions such that σp(x) = p∪ (q ∩ x), σq(x) = q ∪ (p∩ x) and for all
variables y, if x 6= y then σp(y) = y and σq(y) = y.

Proposition 6. • σp and σq are unifiers of ϕpq,

• if p 6= q then neither σp � σq, nor σq � σp,

• if p 6= q then σp and σq form a complete set of unifiers of ϕpq,

• if p 6= q then ϕpq is finitary.

6 Monomials

The purpose of this section is to introduce definitions and properties about terms. These
definitions and properties are purely Boolean. They will be used later in Sections 7 and 8.
From now on, when we write “CPL”, we mean “Classical Propositional Logic”. Let k,m, n ≥ 0
be such that n ≤ k. An m-vector is a map ~s associating with every positive integer i ≤ m an
element ~s(i) of {0, 1}. A (k,m, n)-correspondence is a map f associating with every m-vector ~s a

surjective function f~s : {0, 1}k −→ {0, 1}n. An n-monomial is a term of the form xβ1

1 ∩ . . .∩xβn
n

where (β1, . . . , βn) ∈ {0, 1}n. For all m-vectors ~s, considering a term a in TERm,n as a formula

in CPL, let mon~s(n, a) be the set of all n-monomials xβ1

1 ∩ . . .∩xβn
n such that a is a tautological

consequence of p
~s(1)
1 ∩ . . . ∩ p~s(m)

m ∩ xβ1

1 ∩ . . . ∩ xβn
n .

Proposition 7. Let a ∈ TERm,n. Considered as formulas in CPL, the terms a and
⋃
{p~s(1)1 ∩

. . .∩p~s(m)
m ∩xα1

1 ∩ . . .∩xαn
n : ~s is an m-vector and xα1

1 ∩ . . .∩xαn
n ∈ mon~s(n, a)} are equivalent.

For all positive integers i ≤ n, let πi : {0, 1}n −→ {0, 1} be the function such that for all
(β1, . . . , βn) ∈ {0, 1}n, πi(β1, . . . , βn) = βi. Let f be a (k,m, n)-correspondence. For all m-
vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n, let f−1~s (β1, . . . , βn) be
the set of all (α1, . . . , αk) ∈ {0, 1}k such that f~s(α1, . . . , αk) = (β1, . . . , βn), ∆~s,i be the set of all
(α1, . . . , αk) ∈ {0, 1}k such that πi(f~s(α1, . . . , αk)) = 1 and c~s,i be the term

⋃
{xα1

1 ∩ . . .∩ x
αk

k :
(α1, . . . , αk) ∈ ∆~s,i}. Remark that ∆~s,i and c~s,i depend on f — more precisely, on f~s — too.
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Proposition 8. For all m-vectors ~s and for all (β1, . . . , βn) ∈ {0, 1}n, considered as formulas

in CPL, the terms
⋃
{xα1

1 ∩ . . .∩x
αk

k : (α1, . . . , αk) ∈ f−1~s (β1, . . . , βn)} and cβ1

~s,1 ∩ . . .∩ c
βn

~s,n are
equivalent.

7 Tuples of terms

Let k,m, n ≥ 0 be such that n ≤ k. Let (a1, . . . , an) ∈ TERnm,k. For all m-vectors ~s, we define

on {0, 1}k the equivalence relation ∼k,~s(a1,...,an)
by (α1, . . . , αk) ∼k,~s(a1,...,an)

(α′1, . . . , α
′
k) iff for all

positive integers i ≤ n, xα1
1 ∩ . . . ∩ x

αk

k ∈ mon~s(k, ai) iff x
α′

1
1 ∩ . . . ∩ x

α′
k

k ∈ mon~s(k, ai).

Proposition 9. For all m-vectors ~s, ∼k,~s(a1,...,an)
has at most 2n equivalence classes on {0, 1}k.

Proposition 10. There exists a (k,m, n)-correspondence f such that for all m-vectors ~s
and for all (α1, . . . , αk), (α′1, . . . , α

′
k) ∈ {0, 1}k, if f~s(α1, . . . , αk) = f~s(α

′
1, . . . , α

′
k) then

(α1, . . . , αk) ∼k,~s(a1,...,an)
(α′1, . . . , α

′
k).

A (k,m, n)-correspondence f is balanced iff for all m-vectors ~s and for all (α1, . . . , αk), (α′1, . . . ,

α′k) ∈ {0, 1}k, if f~s(α1, . . . , αk) = f~s(α
′
1, . . . , α

′
k) then (α1, . . . , αk) ∼k,~s(a1,...,an)

(α′1, . . . , α
′
k). By

Proposition 10, let f be a balanced (k,m, n)-correspondence. For all m-vectors ~s, by means
of f — more precisely, of f~s —, we define the n-tuple (b~s,1, . . . , b~s,n) of terms by setting for

all positive integers i ≤ n, b~s,i =
⋃
{xβ1

1 ∩ . . . ∩ xβn
n : xα1

1 ∩ . . . ∩ x
αk

k ∈ mon~s(k, ai) and
f~s(α1, . . . , αk) = (β1, . . . , βn)}. An n-tuple (b1, . . . , bn) ∈ TERnm,n of terms is properly obtained

from (a1, . . . , an) iff for all positive integers i ≤ n, bi =
⋃
{p~s(1)1 ∩ . . . ∩ p~s(m)

m ∩ b~s,i : ~s is an
m-vector}. For all m-vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n,
let f−1~s (β1, . . . , βn), ∆~s,i and c~s,i be as in Section 6. A substitution υ is properly obtained from
(a1, . . . , an) iff for all variables y, if y 6∈ {x1, . . . , xn} then υ(y) = y and for all positive integers

i ≤ n, υ(xi) =
⋃
{p~s(1)1 ∩ . . . ∩ p~s(m)

m ∩ c~s,i : ~s is an m-vector}.

Proposition 11. Let (b1, . . . , bn) ∈ TERnm,n and υ be a substitution. If (b1, . . . , bn) and υ are
properly obtained from (a1, . . . , an) then for all positive integers i ≤ n, considered as formulas
in CPL, the terms ai and ῡ(bi) are equivalent.

Proposition 12. Let σ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn}
then σ(y) = y and for all positive integers i ≤ n, σ(xi) = ai. Let (b1, . . . , bn) ∈ TERnm,n and
τ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn} then τ(y) = y and for all
positive integers i ≤ n, τ(xi) = bi. Let υ be a substitution. If (b1, . . . , bn) and υ are properly
obtained from (a1, . . . , an) then τ ◦ υ ' σ.

Proposition 13. Let (b1, . . . , bn) ∈ TERnm,n. If (b1, . . . , bn) is properly obtained from

(a1, . . . , an) then for all valuations V on RCP (RR2), there exists a valuation V ′ on RCP (RR2)
such that for all positive integers i ≤ n, V̄(bi) = V̄ ′(ai).

Proposition 14. Let σ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn}
then σ(y) = y and for all positive integers i ≤ n, σ(xi) = ai. Let ϕ ∈ FOR. Let (b1, . . . , bn) ∈
TERnm,n and τ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn} then τ(y) =
y and for all positive integers i ≤ n, τ(xi) = bi. If (b1, . . . , bn) is properly obtained from
(a1, . . . , an) then σ is a unifier of ϕ only if τ is a unifier of ϕ.
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8 Unification type

Now, we are ready to prove the main results of this paper.

Proposition 15. Let ϕ ∈ FOR. Let m,n ≥ 0 be such that ϕ’s constants form a subset of
{p1, . . . , pm} and ϕ’s variables form a subset of {x1, . . . , xn}. For all unifiers σ of ϕ, there
exists a unifier τ of ϕ in Σm,n such that τ � σ.

Proof. Let σ be a unifier of ϕ. Let σ′ be the substitution defined by σ′(xi) = σ(xi) for all
i = 1 . . . n and σ′(y) = y for all y not in {x1, . . . , xn}. Obviously, σ′ is a unifier of ϕ too.
Now, it may happen that for some i ∈ {1, . . . , n}, σ′(xi) contains extra constants which do not
appear in ϕ. If it is, then let q1, . . . , ql be the list of these extra constants. Take new variables
z1, . . . , zl and define σ′′ by uniformly replacing in σ′(x1), . . . , σ′(xn) each occurrence of q1, . . . , ql
by, respectively, z1, . . . , zl. Obviously, σ′′ is a unifier of ϕ too. As a result, for all constants q,
if q 6∈ {p1, . . . , pm} then for all positive integers i ≤ n, q does not occur in σ′′(xi) and for all
variables y, if y 6∈ {x1, . . . , xn} then σ′′(y) = y. Let k ≥ 0 and (a1, . . . , an) ∈ TERnm,k be such

that n ≤ k and for all positive integers i ≤ n, σ′′(xi) = ai. For all m-vectors ~s, let ∼k,~s(a1,...,an)

be as in Section 7. By Proposition 10, let f be a balanced (k,m, n)-correspondence. For all
m-vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n, let f−1~s (β1, . . . , βn),
∆~s,i and c~s,i be as in Section 6. Let (b1, . . . , bn) ∈ TERnm,n be an n-tuple of terms properly
obtained from (a1, . . . , an). Let τ be the substitution such that for all variables y, if y 6∈
{x1, . . . , xn} then τ(y) = y and for all positive integers i ≤ n, τ(xi) = bi. Remark that τ is
in Σm,n. Moreover, by Proposition 14, τ is a unifier of ϕ. Let υ be a substitution properly
obtained from (a1, . . . , an). By Proposition 12, τ ◦υ ' σ′′. Hence, τ � σ′′. By the construction
of τ , one can deduce that τ � σ.

Proposition 16. Let ϕ ∈ FOR. If ϕ is unifiable then ϕ is either finitary, or unitary.

Proof. By Propositions 2, 3 and 15.

Proposition 17. UNIF is in EXPSPACE.

Proof. Let ϕ ∈ FOR. Let m,n ≥ 0 be such that ϕ’s constants form a subset of {p1, . . . , pm} and
ϕ’s variables form a subset of {x1, . . . , xn}. By Proposition 15, the reader may easily verify that
ϕ is unifiable iff there exists a unifier σ of ϕ in Σm,n. Each σ in Σm,n is completely described by
the terms σ(xi) ∈ TERm,n, i ranging over {1, . . . , n}. Hence, by Proposition 7, each σ in Σm,n is

completely described by the disjunctions of conjunctions
⋃
{p~s(1)1 ∩. . .∩p~s(m)

m ∩xα1
1 ∩. . .∩xαn

n : ~s
is an m-vector and xα1

1 ∩ . . .∩xαn
n ∈ mon~s(n, σ(xi))}, i ranging over {1, . . . , n}. Obviously, the

size of these disjunctions of conjunctions is at most exponential in m + n. Since the validity
problem is in PSPACE [Kontchakov et al. (2008), Kontchakov et al. (2010), Kontchakov et
al. (2014)], therefore UNIF is in EXPSPACE.

9 Conclusion

In this paper, we have adapted to the problem of unifiability with constants in TLs the line
of reasoning developed by Balbiani and Gencer [4] within the simpler context of the problem
of unifiability without constants in Boolean Region Connection Calculus. Much remains to be
done. Firstly, about the choice of the mereotopological space RCP (RR2). It remains to see
whether the line of reasoning developed in this paper will still apply to RC(RR2) and RCS(RR2).
What happens if we consider mereotopological spaces over the topological spaces (RRn, τRRn),
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i.e. the real space RRn of dimension n together with its ordinary topology τRRn , when n ≥ 3?
Secondly, about the computability of the unifiability problem in TLs. By Proposition 17, this
problem is decidable. Nevertheless, its exact complexity is still unknown. In this respect, we
believe that arguments developed in [1] could be used. Thirdly, about adding to the language the
predicate of connectedness or the predicate of internal connectedness considered in [8, 9, 10].
The line of reasoning developed in this paper up to Proposition 16 will still apply to these
extended languages. Nevertheless, in that case, as proved in [8, 9, 10], the validity problem
becomes undecidable.
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