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Presheaf semantics [Hof97, HS97] are an excellent tool for modelling relational preservation properties
of (dependent) type theory. �ey have been applied to parametricity (which is about preservation of rela-
tions) [AGJ14], univalent type theory (which is about preservation of equivalences) [BCH14, Hub15], and
directed type theory (which is about preservation of morphisms) [RS17]. Of course a�er going through
the endeavour of constructing a presheaf model of type theory, wewant type-theoretic pro�t, i.e. we want
internal operations that allow us to write cheap proofs of the ‘free’ theorems [Wad89] that follow from
the preservation property concerned. �ere is currently no general theory of how we should cra� such
operations. Cohen et al. [CCHM16] introduced the �nal type extension operation1 Glue, using which
one can prove the univalence axiom and hence also the ‘free’ equivalence theorems it entails. In previ-
ous work with Vezzosi [NVD17], we showed that Glue and its dual, the initial type extension operation1
Weld, can be used to internalize parametricity to some extent. Earlier, Bernardy et al. [BCM15, Mou16]
had introduced completely di�erent ‘boundary-�lling’1 operations to internalize parametricity. Each of
these operations has to our knowledge only been used in concrete models and hence their expressivity
has not been compared. We have done some work to �ll the hiatus: we consider and compare the various
operators in more general presheaf categories. In this �rst step, we do not consider �brancy requirements.

Universal extension operators �e Glue and Weld types have meaning in any presheaf category
[Nuy17] and do not by themselves internalize the speci�cs of the presheaf category. �is makes them
robust with respect to changes in the model, but also means that they can only be truly interesting in
combination with other operations, such as the unweld operation below.

Given a type Γ ` A type, an element of the subobject classi�er Γ ` P : Prop, a type Γ,p : P ` T [p] type
and a function Γ,p : P ` f [p] : T [p] → A, the la�er two de�ned only on the subobject (Γ,p : P), the
Glue operation yields the �nal extension (G, unglue) of (T [p], f [p]) to all of Γ,2 where by extension we
mean that both are equal when P holds. �e Glue-type can be viewed as a record type with projections
unglue : G → A, red : G → (p : P) → T [p] and coh : (д : G) → (p : P) → (f [p] (red p д) =A unglue д),
with the remarkable property that if P holds, thenG ≡ T [ ], unglue ≡ f [ ], red д ≡ д and coh д ≡ refl

de�nitionally. It is semantically a well-chosen pullback3 of A
a 7→λp .a
−−−−−−→ (P → A)

f ◦t←[t
←−−−−− ((p : P) → T [p]).

�eWeld operation takes the same input except that Γ,p : P ` f [p] : A→ T [p] points the other way,
and gives the initial extension (W ,weld) of (T [p], f [p]). It can be seen as a quotient inductive type with
constructors weld : A→W , incl : (p : P) → T [p] →W and coh : (p : P) → (a : A) → (incl p (f [p] a) =W
weld a), with the remarkable property that if P holds, then W ≡ T [ ], weld ≡ f [ ], incl t ≡ t and

coh a ≡ refl de�nitionally. It is semantically a well-chosen pushout3 of A
a←[(p,a)
←−−−−−− P × A

(p,a)7→(p,f a)
−−−−−−−−−−−→

(p : P) ×T .
1Our terminology.
2Cohen et al. [CCHM16] allow the use of non-�brant propositions P and therefore need to require f to be an equivalence so as

to guarantee �brancy ofG , i.e. composition and transport. �is obfuscates the �nality property and makes the extension unique up
to equivalence, although the Glue-extension is still �nal with respect to strict equality. When �brancy is not a requirement, any f
can be used andG is more clearly �nal. We emphasize that the presheaf construction of the Glue-type is identical in both contexts.

3Note that in a general presheaf category, there are no notions of homotopy (co)limits. By pullback/pushout, we mean the usual
1-categorical notions, de�ned up to isomorphism.
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An additional eliminator for theWeld type internalizes aspects of the chosen presheaf model. Let the
closed type I be semantically a representable object, i.e. a Yoneda-embedding of an object of the base
category.4 Assume thatW was de�ned as above and that Γ = (∆, i : I) and assume that (∀i .P) = ⊥. �en
the existence of a function unweld : (∀i .W ) → ∀i .A is sound, because elements of ∀i .W necessarily come
from theA-side of the pushout. A slightly more expressive operation which we calledmill (a�er a milling
cu�er) exists and is of interest when ⊥ , ∀i .P , >. Clearly, unweld is not sound when we replace I with
an arbitrary type; thus, it internalizes something interesting about the model.

Cohen et al. [CCHM16] have onlyGlue andmake this operation interesting by providing an operation
for composition and transport. Our earlier work [NVD17] has Glue and Weld but not unweld/mill (for
the sole reason that unweld/mill had not been conceived yet); there we make these operations interesting
by internalizing the identity extension lemma of parametricity [Rey83].

Boundary-�lling operators Every representable object I has a largest subobject ∂I ( I which we
call its boundary; for interval types this typically contains just the endpoints. Bernardy et al.’s operators
[BCM15] allow us to extend data de�ned on (Γ, i : ∂I) to (Γ, i : I); we call the di� of this (i.e. the information
that is forgo�en when we restrict to the boundary) a �ller. �ere is an operator Φ for functions, which
allows us to extend Γ, i : ∂I ` f [i] : (a : A[i]) → B[i,a] to all of I by giving an extension of Γ,α : (i :
I) → A[i], i : ∂I ` f [i] (α i) : B[i,α i], i.e. by giving an action on �llers. Note that this internalizes
the interpretation of the function type in presheaf semantics and also corresponds closely to Reynolds’
relational interpretation of the function type [Rey83]. �e operator Ψ for types allows us to extend Γ, i :
∂I ` T [i] : U to all of I by giving a (proof-relevant) predicate P : ((i : ∂I) → T [i]) → U. If ∂I
contains just two endpoints, then P is simply a binary relation. Fillers of terms t : (i : ∂I) → T [i] to
(i : I) → Ψ (j .T [j]) P i are then in correspondence with elements of P t .

�ese operators are formulated in terms of representable objects and boundaries, which to a large
extent reveal the structure of the base category, making them more expressive than universal extension
operations, but also more bri�le with respect to changes in the model. Unfortunately, Φ and Ψ are at
odds with the contraction rule for I. Indeed, repeated use of Φ allows us to de�ne a square of functions
i, j : I ` f [i, j] : A[i, j] → B[i, j] by giving the four endpoints f [0, 0], f [0, 1], f [1, 0], f [1, 1]; specifying
how to act on lines of type (i : I) → A[i, 0], (i : I) → A[i, 1], (j : I) → A[0, j], (j : I) → A[1, j], as well as
on squares (i, j : I) → A[i, j]. �en contraction would allow us to form k : I ` f [k,k] : A[k,k] → B[k,k],
but we have not speci�ed how f [k,k] should act on a diagonal of type (k : I) → A[k,k].

�e solution is to disallow simultaneous substitutions in which the object substituted for i : I shares
any dependencies with variables on its le� [BCM15, Mou16]. �is can be formalized semantically using a
separated product [Pit13, BCH14], a concept that is unfortunately not de�ned in every presheaf category.

Similarly, Φ is incompatible with connections ∨,∧ : I2 → I as used by Cohen et al. [CCHM16]. �e Ψ-
operation is compatible, but becomes underspeci�ed in absence of Φ. We may then consider an initial and
a �nal Ψ-operation; isomorphism of these two types is implied by, but also seems to imply the existence
of Φ.

Results We proved a few theorems that clarify the expressivity of the aforementioned operators. First,
Glue,Weld and unweld/mill can be implemented using Ψ, Φ and meta-theoretic induction, provided that
the base category is in some sense well-founded. Secondly, the initial Ψ-operation can be implemented
using Weld, mill and a ‘freshness’ predicate that arises by viewing the separated product as a subobject
of the cartesian product. �irdly, Φ cannot be implemented even when Glue, Weld, unweld/mill and the
freshness predicate are all available. Fourthly, parametricity of a predicative System F universe de�ned
in MLTT, can be proven using Ψ and Φ and an interval with two endpoints, but a lemma that we likely
want to rely on, cannot be proven using Glue, Weld, unweld/mill, the freshness predicate and the same
interval.
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Mandate (resp.) from the Research Foundation - Flanders (FWO).

4In all applications that we are aware of, the only such types ever internalized are the relational/homotopy interval and, less
interestingly, the unit type.
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