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Abstract. The problem of text document obfuscation is to provide an
automated mechanism which is able to make accessible the content of a
text document without revealing the identity of its writer. This is more
challenging than it seems, because an adversary equipped with powerful
machine learning mechanisms is able to identify authorship (with good
accuracy) where, for example, the name of the author has been redacted.
Current obfuscation methods are ad hoc and have been shown to provide
weak protection against such adversaries. Differential privacy, which is
able to provide strong guarantees of privacy in some domains, has been
thought not to be applicable to text processing.
In this paper we will review obfuscation as a quantitative information
flow problem and explain how generalised differential privacy can be
applied to this problem to provide strong anonymisation guarantees in a
standard model for text processing.
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1 Introduction

Up until the middle of the nineteenth century it was common for British authors
to publish their work anonymously. There were many reasons for the practice,
and surprisingly many well-known authors practised it including (as we now
know) Alexander Pope, Jonathan Swift, Jane Austen and Daniel Defoe. But can
a work ever be entirely anonymous, in the sense that it is not possible to identify
the author with full certainty? Authors typically develop their own personal
style, and the famous example of the “Federalist papers” showed that the analysis
of word frequencies can be used to build compelling evidence to support the
identification of authors of anonymous works [22].

Koppel et al. [14] trace the development of techniques from that of Mosteller
and Wallace [22] (and earlier) to more recent machine learning methods, which
have taken advantage of the observation that many aspects of style — not only
word counts — in writing can be captured by statistical methods. For the last
decade, stylometric machine learners have been able to identify authors with
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accuracy better than 90% from a set of 50 candidates, and have been successfully
applied to identification tasks on sets of (anonymous) documents written by tens
of thousands of authors.

Methods related to these were employed by researchers working on the 2006
Netflix release of a “deidentified” database of movie reviews in order to allow
researchers to work on improving its recommendation systems. Unfortunately dei-
dentifying data (i.e. removing names) is very different from properly anonymising
it and, in this case, privacy researchers were able to demonstrate publicly that
Netflix’s data contained more information than intended leading to a lawsuit.

There remain many legitimate reasons why an author might want to disguise
his or her identity. Indeed could Netflix have done a better job to protect its
contributors whilst still preserving the information contained in the reviews well
enough to be useful to researchers working on improving Netflix’s recommendation
systems? In response to the Netflix lawsuit, and other such breaches of privacy,
“PAN” a series of scientific events and shared tasks on digital text forensics1
proposed a task to encourage research into creating systems which are able to
truly anonymise. The statement of the task is:

Given a document, paraphrase it so that its writing style does not match that of
its original author, anymore.

As an example, consider this extract from George Orwell’s Nineteen Eighty-
Four :

“The object of persecution is persecution. The object of torture is torture.
The object of power is power.”

It’s clear that Orwell’s intent was to evoke a sense of shock by the overwhelming
use of strong repetition. Another way of saying the same thing might be:

“The aim of persecution, abuse and power is respectively to mistreat, to
torture and to control.”

which, stripped of of its powerful stylistic ruse, has been rendered into a rather
dull opinion.

The range of approaches to “obfuscating” text documents automatically that
have been attempted up to and including the PAN task have had limited success.
Many of those approaches were inspired by k-confusability which articulates
the idea of “confusing” some secret with k other things, but turns out to be
susceptible to the well-known “linkage” and “intersection” attacks.

Methods based on differential privacy (DP) [10] — which provide some
protection from these attacks — have not been attempted to date for this
problem. There has been interest for some time in combining DP with machine
learning in general (for example, [7]), including recent “deep learning” approaches
[1], although applications to text are challenging because of its discrete, complex
1 http://pan.webis.de/index.html



and unstructured nature. Moreover, a key difference with our application of
interest is that we want to conceal the authorship of an individual released
document; the goal for DP with machine learning is typically to preserve the
privacy of members of the training dataset.

In this paper we link the original goals of the PAN obfuscation task to two
theoretical areas in computer science, with the aim of providing a solid foundation
for the enterprise and to enable new techniques in theoretical privacy to be applied
to this problem.

We explain how this task can be viewed as a problem of Quantitative Informa-
tion Flow where we describe the result of an obfuscation process as a “channel”. In
this way we can show upper bounds on the ability of any adversary to determine
the real author (whether or not the adversary is using machine learning).

Second, we describe how the novel metrics used in machine learning algorithms
for author identification can in fact be used after all to define obfuscators based
on differential privacy. The trick is to used Generalised Differential Privacy [6]
originally used in location-based privacy and which can be used for unstructured
data.

2 Text document processing

Text documents are processed in many different ways depending on the objective.
For example a document might need to be classified in terms of its topic which
can be helpful for cataloging in document repositories; or documents can be
paraphrased so that domain professionals are able to determine which documents
are relevant for their research or report compilation. Statistical and machine
learning approaches are the standard way now to tackle these tasks [18]; most
recently, approaches falling within the “deep learning” paradigm, using neural
networks with many layers, have become dominant and produced state-of-the-art
results for many tasks [26].

All these approaches use very different algorithms and representations of
documents, but the basic idea is the same, even when the representations and
implementations differ: thousands of document samples are analysed to identify
important “features” depending on the specific goal of the task. This constitutes
the “learning phase” and the result is a “best possible” correlation between
categories and the discovered features. Learning algorithms (for classification
problems) are evaluated by subjecting the learned correlation to the identification
to datasets which are not part of the learning set, and typically counts of correct
identification or classification are used to rate the success of the method.

For us the aim is to determine how to obfuscate automatically according to
the following constraints:

The result of an obfuscated document must retain as much of the original
content in such a way that the author of the obfuscated document cannot
be identified.



As a simplification, we focus on the identification of author, and (separately)
topic classification (rather than full “content”) both of which are examples of
“classification problems” in machine learning.

2.1 Representing documents for topic classification and author
identification

In machine learning documents are transformed into representations that have
been found to enable the discovery of features which perform well on a particular
classification task. A very simple representation is to choose the word components
of a document, so for example,

“The object of persecution is persecution” can be represented by the set:

{“The”, “object”, “of”, “persecution”, “is”} . (1)

This, of course has lost some useful details such as the number of times that
words appear; an alternative richer representation is a “bag of words” which, in
this case, retains the repetition of “persecution”:

{|“The”, “object”, “of”, “persecution”, “persecution”, “is”|} . (2)

Even though it still loses a lot information from the original sentence, such
as word order, it turns out that the the bag of words representation is still very
useful in topic classification, where correlations between topics and the types and
frequency of words can be used to assign a topic classification to a document. It
can also be used in some stylometric analysis where authors can be correlated
with the number of times they use a particular word — in the identification of
the authors of the Federalist papers, it was discovered that Hamilton only used
“while” whereas Madison preferred “whilst”, and used “commonly” much more
frequently than did Hamilton.

More recent, widely used author identifiers use “character n-gram” represen-
tation for documents. The n-gram representation transforms a document into a
list of each subsequence of characters of length n, including (sometimes) spaces
and punctuation. Such a character 3-gram representation of our example is:

〈“The”, “he ”, “e o”, “ ob”, “obj”, “bje”, “jec”, “ect”, “ct ” . . . 〉 . (3)

This representation seems to capture things like systematic punctuation
and common word stems, all of which can characterise an author. A particular
character n-gram-based method of interest is the one developed by Koppel et
al. [15]. This method uses character 4-grams (but without spaces) to classify
authorship on a document set consisting of blog posts from thousands of authors,
and achieve in excess of 90% precision with 42% coverage for a 1000-author
dataset. On account of its strong performance and suitability for large author
sets, and the fact that it underpins the winning systems of PAN shared tasks
on author identification [24, 13], this algorithm is one of the standard inference



attackers used in the PAN obfuscation task. This is therefore the authorship
identification algorithm we use in the rest of this paper.

2.2 Privacy versus utility

Obfuscating a document means changing the words somehow, and with the use of
machine learning as an adversary (as in author identification) or as a friend (as in
topic identification) we can see that the bag of words (2) or n-gram representation
(3) will be affected.

What we would like is to be able to show that for any adversary whether
or not they are using the n-gram representation that the obfuscation method
reduces their ability to identify authors, whereas using a state-of-the-art method
based on a bag of words representation the topic identification remains almost as
it was before obfuscation.

To deal with the former, we shall follow Alvim et al. [2] to model a privacy
mechanism as an information flow channel; for the latter we will use generalised
differential privacy to show how to preserve topicality using an appropriate metric
for “meaning”.

3 Channels, secrets and information flow

A privacy mechanism produces observations determined by secret inputs; the
elements of the channel model for information flow are inputs of type X , ob-
servations of type Y and a description of how the inputs and observations are
correlated. For any set S we write DS for the set of discrete distributions on S.

A channel between X and Y is a (stochastic) matrix whose X -indexed rows
sum to 1. We write the type of such channels/matrices as X_Y and for C:X_Y
its constituents are elements Cx,y at row x and column y that gives the conditional
probability of output y from input x, the x’th row Cx,− and the y’th column
C−,y. Any row Cx,− of C:X_Y can be interpreted as an element of DY.

A secret is a distribution in DX ; initially we call such secrets priors, by which
we mean that the adversary might have some prior knowledge which means that
knows some secret values are more likely than others, however the fact that his
knowledge is represented as a distribution means that he does not know for sure.
The mechanism modelled by a channel C produces a correlation between the
inputs and the observables.

Given a channel C:X_Y and prior π:X the joint distribution J :D(X×Y) is
given by Jx,y:=πxCx,y. For each y the column J−,y, the adversary can update
his knowledge a-posteriori using Bayesian reasoning that revises the prior: i.e.
normalising J−,y 2 to give the posterior induced on π by that y. We write π〉C for
the joint distribution J , and

⇀

J :DY for the (right) marginal probability defined

2 If several distinct y’s produce the same posterior, they are amalgamated; if there is y
with zero marginal probability, it and its (undefined) posterior are omitted.



⇀

J y :=
∑
x:X Jx,y. For each observation y we denote the corresponding posterior

Jy:=
⇀

J /
⇀

J y.

There are two operations on channels which we will use to model two attacks
on privacy.

Definition 1. Let C:X_Y1 and D:X_Y2 be channels. We define the sequential
composition C;D:X _ (Y1×Y2) as follows:

(C;D)x,(y1,y2) := Cx,y1 ×Dx,y2 .

Sequential composition allows the adversary to amalgamate his knowledge
about the secret which is leaked from bth C and D.

The second operator models the situation where a channel leaks information
about a secret from X which has an interesting correlation wth a second secret
Z. The adversary can then use channel C:X _ Y to deduce some information
about the second secret!

Definition 2. Given channel C:X _ Y and joint distribution Z:D(Z×X ) ex-
pressing an interesting correlation between two secret types Z and X , we define
the Dalenius composition Z · C:Z _ Y defined by “matrix multiplication”:

(Z · C)z,y :=
∑
x:X

Zz,x × Cx,y .

Dalenius composition3 can be used the model the risk posed by mechanisms
that inadvertently release information about a second secret that is known to be
correlated with secrets associated with the mechanism.

3.1 Vulnerability induced by gain-functions

When a channel publishes its observables, the most important concern is to
determine whether an adversary can do anything damaging with the information
released. We can investigate an adversary’s ability to use the information effec-
tively using the idea of “vulnerability” [4], a generalisation of entropy, no longer
necessarily e.g. Shannon, and whose great variety allows fine-grained control of
the significance of the information that might be leaked [4, 5].

Given a secret-space X , vulnerability is induced by a gain function over that
space, typically g of type GWX = W→X→R, for some space of actions w:W.
When W is obvious from context, or unimportant, we will omit it and write just
g:GX . Given g and w (but not yet x) the function g.w is of type X→R 4 and
3 Named after Tore Dalenius who pointed out this risk in statistical databases [9]
4 We write dot for function application, left associative, so that function g applied to
argument w is g.w and then g.w.x is (g.w) applied to x, that is using the Currying
technique of functional programming. This convention reduces clutter of parentheses,
as we see later.



can thus be regarded as a random variable on X . As such, it has an expected
value on any distribution π over X , written Eπ g.w:=

∑
x:X g.w.x× πx.5

Once we have x, the (scalar) value g.w.x is simply of type R and represents
the gain to an adversary if he chooses action w when the secret’s actual value is
x. A particularly simple example is where the adversary tries to guess the exact
value of the secret. His set of actions is therefore equal to X , with each action a
guess of a value; we encode this scenario with gain function bv defined

bv.w.x = (1 if w=x else 0) , (4)

so that the adversary gains 1 if he guesses correctly and 0 otherwise. A special
case of this is when an attacker tries to guess a property of the secret (rather
than the whole secret). For example let ∼ be an equivalence class over secrets,
and suppose that the attacker tries to guess the equivalence class. The guesses
W now correspond to equivalence classes, and:

bv∼.w.x = (1 if x ∈ w else 0) . (5)

A gain function g:GX induces a g-vulnerability function Vg:DX→R so that
Vg[π] for π:DX is the maximum over all choices w:W of the expected value of
g.w on π, that is maxw(Eπ g.w). In the simple 1-or-0 case above, the vulnerability
Vbv is called the Bayes vulnerability ; it is one-minus the Bayes-Risk of Decision
Theory, and it gives the maximum probability of an adversary guessing the secret
if his prior knowledge about it is π.

We can now use g-vulnerability to determine whether the information leaked
through a channel is helpful to the adversary.

Definition 3. Given a prior π ∈ DX , a channel C:X _ Y and gain function
g:GX , we define the average posterior vulnerability as

Vg[π〉C] :=
∑
y:Y

⇀

J y ×Vg[Jy] ,

where J := (π〉C).

For each observation, the posterior Jy is the adversary’s revised view of the
value of the secret; the posterior is actually more vulnerable because the adversary
can choose to execute a different action (compared to his choice relative to the
prior) to optimise the vulnerability Vg[Jy]. The posterior vulnerability Vg[π〉C]
is then his average increase in gain. Comparing Vg[π〉C] and Vg[π] then gives
an idea of how much information the adversary can usefully use relative to the
scenario determined by g.

In this paper we shall use the multiplicative g-leakage, defined by

Lg(C) := Vg[π〉C]/Vg[π] , (6)

5 In general we write Eπ f for the expected value of function f :X→R on distribution
π:DX.



which gives the relative increase in gain. Moreover the leakage measure exhibits
an important robust approximation which will be relevant for privacy mechanisms
in text processing.

Theorem 1. [4] Let C:X _Y be a channel, and let u:DX be the uniform prior
over X . Then for all priors π and non-negative gain functions g we have that:

Vg[π〉C]/Vg[π] ≤ Vgbv [u〉C]/Vgbv [u] .

A final theoretical idea which will be useful for our application to privacy
is that of security refinement. If C v D (defined below) then D is more secure
than C in any scenario, because D’s posterior vulnerability relative to any gain
function is always less than C’s and therefore the information D releases is less
useable than the information released by C.

Definition 4. Let C:X _ Y1, and D:X _ Y2 be channels. We say that C v D
if

Vg[π〉C] ≥ Vg[π〉D] ,

for all gain functions g and priors π.

We can use security refinement to express compositionality properties.

Theorem 2. [19, 3] Let C,D,E be channels and Z:D(Z×Y) be a correlation
between secret types Z and X . The following inequalities hold.

1. C v D ⇒ C;E v D;E
2. C v D ⇒ Z · C v Z ·D

3.2 Privacy mechanisms as channels

A privacy mechanism is normally modelled as a function K which, given a value
x from a secret set X , outputs some observable value y:Y. The exact output
could be determined by a probability distribution which, in an extreme instance
such as redaction, could be a point distribution without any randomness applied.

Traditional approaches to privacy are founded on a principle we call “con-
fusablity”. Roughly speaking a mechanism imbues privacy by ensuring that the
real value of the secret could be confused amongst several other values. In this
section we examine confusability in terms of information flow to show how simple
confusability mechanisms provide weak privacy.

3.3 Attacks on simple confusability

Traditional approaches to privacy in text programming use the idea of k-
anonymity [25], which is related to confusability.

Definition 5. A channel C ∈ X _ Y is k-confusable if for each column y
(observable), the entries Cx,y are non-zero for at least k distinct values of x.

Although k-confusable seems like a nice, straightforward property, it has some
problems when combined with prior knowledge, and k-confusable mechanisms
are susceptible to intersection and linkage attacks.



Intersection attacks A mechanism that is k-confusable separates the values
of the secret into two subsets (for each observation): one for secret values that
are still possible, and one for values which are not possible.

An intersection attack refers to the scenario where two different mechanisms
are used, one after another. An adversary is able to combine the information flow
from both mechanisms to deduce more about the value of the secret than he can
from either mechanism separately. For example define two channels as follows.
Let X := {x0, x1, x2, x3} and Y = {y0, y1}.

Cxi,yj := (i = jmod 2) (7)
Dxi,yj := 1 iff (j = 0 ∧ i < 2) ∨ (j = 1 ∧ i ≥ 2) . (8)

Both C and D are 2-confusable since C divides the secret into two equivalence
classes: {x0, x2} and {x1, x3}, whereas D divides it into {x0, x1} and {x2, x3}.
Thus if only C or D is used then indeed the secret is somewhat private, but if
both are used one after the other then the secret is revealed entirely, since the
adversary can identify the secret by locating it simultaneously in an equivalence
class of C and of D.

We can, model such a scenario by the sequential composition of the two
mechanisms separately, i.e. the mechanism of an intersection attack is modelled
by C;D. The susceptibility of k-confusable mechanisms to intersection attacks is
summed up by a failure of compositionality for k-confusability.

Lemma 1. k-confusability is not preserved by to sequential composition.

Proof. We use the counterexample described above: C and D defined respectively
at (7) and (8) are 2-confusable but C;D is not 2-confusable.

Lem. 1 implies that mechanisms based on k-confusability are vulnerable to
intersection attacks, a flaw that has been pointed out elsewhere [11].

Linkage attacks A linkage attack can be applied when the adversary has some
prior knowledge about how some secret Z is correlated to another secret X .
When information leaks about X through a channel C:X _ Y the adversary is
able to deduce something about Z. A simple example of this occurs when for
example secret z has value z0 exactly when x has value x1 or x2, and z has value
z1 otherwise. In this example z and x are linked through the correlation defined

Zzi,xj := (i = jmod 2) . (9)

In this case, since the mechanism C defined above at (7) leaks whether x is in
{x0, x2} or {x1, x3}, this information put together with correlation Z leaks the
value of z exactly. Even though C is 2-confusable.

Dalenius composition Z · C now models such linkage attacks, combining
correlations with information flows to yield a mechanism describing the leaks
about a correlated secrets. As for intersection attacks, we see that k-confusability
fails compositionality with respect to Dalenius composition.



Lemma 2. k-confusability is not preserved by Dalenius composition.

Proof. We observe that C defined above at (7) is 2-confusable but that Z · C is
not 2-confusable (for z), where Z is defined at (9).

Lem. 2 implies that privacy that relies on k-confusability is vulnerable to
attacks that can use prior knowledge.

3.4 Universal confusability

We can avoid intersection attacks and linkage attacks by strengthening k-
confusability to “universal confusability”.

Definition 6. We say that a channel C is universally confusable if it is k-
confusable for all k ≥ 1.

A channel is universally confusable if all its entries Cx,y are non-zero. This
means that for any posterior reasoning, the channel will maintain any extent of
confusability that was already present in the prior. In fact universal confusability
is (somewhat) robust against intersection and linkage attacks, because the strong
confusability property is compositional with respect to sequential and Delanius
composition. Universal confusability is particularly important for text processing
because all kinds of unforeseen and unexpected correlations can be learned and
used, even if they are too strange to understand.

3.5 Differential privacy

We turn to the question of how to implement mechanisms that are universally
confusable; the answer is given by differential privacy, which not surprisingly was
defined to defend against linkage and intersection attacks.

The definition of an ε-differentially private mechanism is normally described as
a function of type X → DY , satisfying the following constraint. Let dist:X×X →
R≥0 be a distance function, then for all x, x′ ∈ X with dist(x, x′) ≤ 1, and
properties α, we must have:

K.x(α)/K.x′(α) ≤ eε . (10)

In fact, as has been pointed out by Alvim et al. [2] the mechanism K corre-
sponds to a channel in CK:X_Y where the rows are defined by CKx,y:=K.x(Y =

y). From (10) it is clear that CK is strongly confusable because if any non-zero
entry was present, the multiplicative constraint would fail to hold.

Moreover we can also obtain an upper bound for the scenario of an attacker
trying to use the information leaked to guess the secret, in the sense that the
following leakage bound holds [4]. For any prior π,

The probability of correctly guessing the secret after applying K
≤ Vbv[π 〉 C

K]
≤ Sum of the column maxima of CK × Vbv[π] .



What this means is that even if the attacker uses machine learning to try to
deduce properties about the original data, its ability to do so is constrained by
this upper bound.

As an example, suppose there are three possible values a secret can take, drawn
from xa, xb, xc, each a distance 1 apart from eachother. 6 A differentially private
mechanism K could release three possible results, say a, b, c, with corresponding
channel:

CKxij = 1/2 if i = j , else 1/4 .

Here K is log 2-differentially private, since the maximum of K.x(α) is at most
maxj,i′∈a,b,c C

K
xij
/CKxi′ j

≤ 1
2/

1
4 = 2.

Unfortunately we cannot apply the original definition of differential privacy
(10) to text documents because, unlike databases, texts are highly unstructured.
Indeed the applicability of differential privacy to text documents has been dis-
missed [8, 23]. We propose instead to use a generalisation of differential privacy
that can apply to unstructured domains, suggesting that we can after all find
an obfuscation mechanism based on generalised differential privacy. The trick to
generalising differential privacy is to use a general distance function as follows.

Definition 7. [6] Let K:X → DY, and let dist:X×X → R≥0 be a distance
function on X . We say that K is ε-differentially private with respect to dist if,
for all properties α, we must have:

K.x(α)/K.x′(α) ≤ eε×dist(x,x′) .

Def. 7 says that a mechanism imbues privacy by confusing the exact value of
a secret x with other values x′ with a level proportional to dist(x, x′). Thus if
x, x′ are “close” (as measured by dist) then it’s quite likely that they could be
confused, but if they are far apart, then they would be less likely, although still
possibly, be confused.

Putting this together with the channel theorem above, means if we choose ε so
that eε×d(x,x

′) is as close to 1 as we can make it, then the chance of distinguishing
x from x′ becomes extremely small.

Even if we do no know the channel matrix exactly, we are still able to obtain
a bound on the information leakage.

Theorem 3. Let K be an ε- generalised differentially private mechanism wrt.
metric d. Then for any gain function g,

Lg(CK) ≤ eε×d
?

,

where d?:= maxx,x′∈X d(x, x
′).

6 These could, for example, correspond to different possible data values in a database.



3.6 Privacy versus utility

Information leakage on its own, in the case that it is large, implies that the
probability of determining some property of the system will be high; if the
upper bound is small, then it implies the mechanism does not leak very much
information about anything. When we bring utility into the mix what we want
is that the mechanism leaks a lot of information about a property which is not
deemed sensitive, but keeps secret some other property that is deemed private.
Not surprisingly there are constraints as to how much both requirements can
be served simultaneously, however differential privacy can be used as a way to
randomise whilst preserving some modicum of utility. We first use some notions
from Quantitative Information flow to understand the trade-off between privacy
and utility.

Let ∼A and ∼T represent two equivalence classes on a set of (secret) data
S. We want to release the equivalence class ∼T but keep ∼A private using some
mechanism M . We can determine how successful we are by measuring the leakage
with respect to the two equivalence classes, where we use a specialised version
of vulnerability based on the scenario where an adversary tries to guess which
equivalence class.

Definition 8. M is ε-hiding wrt. ∼A if

Lbv∼A
(M) ≤ 1 + ε ,

where bv∼A
is defined at (5) and leakage is defined at (6).

The maximum chance of an adversary guessing which equivalence class of ∼A
the secret is for an ε-hiding mechanism is bounded above by (1 + ε)× Vbv∼A

[π],
giving a robust privacy guarantee on ∼A.

Definition 9. M is ∆-revealing wrt. ∼T if

1 +∆ ≤ Lbv∼T
(M) ,

where bv∼T
is defined at (5) and leakage is defined at (6).

The best chance of an adversary guessing which equivalence class of ∼T the
secret is for a ∆-revealing mechanism could therefore be as much as (1+∆)×
Vbv∼T

[π].

Theorem 4. If M1 vM2 then the following applies:

– If M1 is ε-hiding of ∼A then so is M2

– If M2 is ∆-revealing of ∼T then so is M1

Note that when data is provided to the user in a different representation,
such as character n-grams, this is called “post-processing”; as noted elsewhere
[4] post-processing is an instance of refinement, thus, as Thm. 4 indicates the
action of transforming documents into either character n-grams or some other
representation provides more privacy and less accuracy for utility.

Next we can look at some constraints between privacy and utility.



Theorem 5. If ∼A⊆∼T and M is both ε hiding for ∼A and ∆ revealing for ∼T
(both under a uniform prior) then ∆ ≤ ε.

Proof. Note that Lbv∼T
(M) is equal to V∼T

[u〉M ]/V∼T
[u]. But this is bounded

above by N ×V∼A
[u〉M ]/V∼T

[u], where N is the size of the maximum equivalence
class of ∼T . But now V∼T

[u] is equal to N/|S|, thus leakage of bv∼T
(M) is

bounded above by N × V∼A
[u〉M ]× |S| which is equal to Lbv∼A

(M). The result
now follows.

In particular if ∼A=∼T then revealing any of ∼T will reveal the same about
∼A. In general if ∼A is finer than ∼T (as equivalence relations) revealing the
equivalence class for ∼T almost exactly, already reveals quite a lot about the
equivalence classes of ∼A

Consider however the following example where there are four secret values:
{a, b, c, d}. Suppose we have equivalence classes of ∼T are {{a, b}, {c, d}} and for
∼T are {{a, c}, {b, d}}. The mechanism given by

Mx,y := 1 if
(

x∈{a, b} ∧ y = 0
∨ x∈{c, d} ∧ y = 1

)
else 0 .

has maximum leakage 2, and is 1-revealing wrt. ∼T and 0-revealing wrt. ∼A; this
means that the adversary has maximum chance of 1 of guessing ∼T , but minimal
chance of 1/2 of guessing ∼A.

This suggests that where ∼A represents equivalence classes over authors, and
∼T represents equivalence classes over topics, if enough different authors write
on the same topic, there is a good chance of being able to disguise the writing
style whilst remaining in the same topic.

4 Generalised differential privacy and obfuscation

We can start to bring to bear the above observations to our simplified PAN
obfuscation task. In particular we explore whether there are mechanisms whose
properties can be understood from the perspective of generalised differential
privacy. In our simplified version we imagine that we are already working with a
bag-of-words (BoW ) representation and our mechanism K will produce another
(randomised) bag-of-words representation, i.e.

K : BoW → DBoW .

Unlike our example above, we can no longer work with clear, a priori equiva-
lence relations for authorship (∼A) and topic (∼T ). Instead we use, as is done in
machine learners, similarity relationships for categorising topics and identifying
authors. For topicality we use a metric based on a learned distance between
“Word2Vec word embeddings” and its lifting to documents via the “Earth Movers
distance” [16], and for authorship we use the “Ruzicka metric”. Both have been
found experimentally to provide good results in author identification and topic
classification.



Word2Vec [21] is a representation of words as a vector of values which, roughly
speaking, captures relationships between words in terms of their meanings. Since
this is a learned representation its accuracy depends very much on the quality of
the documents. Remarkably the representation supports a metric 7 which captures
similarity in meaning between words. For example Word2Vec embeddings put
“queen” and “monarch” close together, but “monarch” and “engineer” far apart.
Using the distance between words defined on Word2Vec representations as a
base, the Earth Mover’s distance can then be defined to compare documents for
topicality. An example is given at Fig. 1.

Definition 10. Let d, d′ be documents represented as bags of words. Define
|d − d′|T to be the word mover’s distance between the movement based on the
distance between Word2Vec word embeddings.

Informally, given two documents d, d′ represented as bags of words, we let
R be a “move relation” so that Rw,w′ ∈ [0, 1] represents the proportion of w ∈ d
that corresponds to w′ ∈ d′. R is set up so that for each w′ ∈ d′, we have∑

w∈dRw,w′ = 1, and for each w ∈ d, we have
∑
w∈dRw′,w = 1. The cost of the

move is given by
∑
w,w′ Rw,w′ × dist(w,w′), and the word mover’s distance is

then the minimum over all such move relations.

Fig. 1. Depiction of a move relation defining the Word Mover distance [16]

Definition 11. Let d, d′ be documents and dT be its representation as a a char-
acter n-gram vector. In this representation, the vector is composed of discovered
“features” which are experimentally found to be good for grouping similar writing
styles together. With this in place, we define |d− d′|A:= (1−

∑
i min |di−d′i|∑
j max |dj−d′j |

).

7 There are several ways to define distance between word embeddings, but “cosine
similarity” seems to be a popular one; this isn’t a metric, but can be used to define
one.



Documents close in the | · |A metric are likely to be authored by the same
author. To obtain a mechanism K which has a privacy guarantee on obfuscation,
we would have the following:

K(d)(α)/K(d′)(α) ≤ eε×dist(d,d′) ,

for dist an appropriate metric. Since this has the form of a differentially private
mechanism it would be somewhat resistant to linkage and intersection attacks.
Similar to Thm. 3, among distances no more than some fixed K, and ε ≈ 1/10K
then the right-hand side shows that the entries in each column of the channel for
those documents are approximately 1.1, thus suggesting that all such documents
would be confused with eachother.

It can also be shown [20] that using the Laplace distribution combined with
a given metric dist it is possible to define a mechanism M so that the output
remains close to the input x with high probability (proportional to ε) when
measured using dist.

4.1 Experiments

Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 71.1 - - -
Content-Words 68.5 67.9 67.9 41.7
BOW-1000 65.9 62.1 63.5 41.9
BOW-500 64.1 61.7 62.1 40.9
BOW-200 47.9 46.9 48.5 27.1
BOW-50 23.9 20.0 19.0 6.2
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 70.6 - - -
Content-Words 67.7 67.7 67.6 4.9
BOW-1000 48.0 35.3 40.2 2.0
BOW-500 46.1 34.3 34.3 5.9
BOW-200 36.3 19.6 18.6 8.8
BOW-50 13.7 4.9 4.9 1.0

Fig. 2. Results for authorship attribution over the various unobfuscated and obfuscated
test sets. Uniformly randomly assigning authorship would have an accuracy of 1% over
100 possible authors for the Fan fiction dataset, and 5% over 20 authors for the Reuters
dataset.

Using the above observations as a guide, we designed a simple mechanism
using BoW representations based on Def. 10 designed therefore to preserve
topicality. The idea is to use an underlying Laplace mechanism combined with
the Word2Vec distance independently applied to each word in the input bag of
words.



Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 81.4 - - -
Content-Words 81.4 81.6 81.0 71.9
BOW-1000 80.4 80.8 80.8 75.2
BOW-500 79.2 79.4 79.4 70.7
BOW-200 76.0 76.0 76.0 66.7
BOW-50 66.3 67.9 68.1 61.7
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 82.4 - - -
Content-Words 83.3 79.4 79.4 54.9
BOW-1000 83.3 77.5 76.5 57.8
BOW-500 81.4 80.4 81.4 63.7
BOW-200 79.4 71.6 71.6 53.9
BOW-50 60.8 49.0 49.0 46.1

Fig. 3. Results for topic classification over the various unobfuscated and obfuscated
test sets. Classification accuracy is significantly lower for scale=0.5, which corresponds
to more obfuscation. However, accuracy is still well above the ‘random’ baseline of 20%.

Next we tested the results, both for privacy and for topicality; our hypothesis
was that randomising directly on words would mean that the character n-gram
representation would be changed sufficiently to hide stylistic traits. Moreover,
our theoretical approach shows only that where documents close in topicality
can be confused, so therefore can their authors. Authors that are only known
for their work on a single topic cannot be confused with authors who write on
entirely different subjects.

To test the results we needed large collections of documents written by
different authors, and representing a number of different topics. We were able to
use one standard dataset from the Natural Language Processing (NLP) literature;
a second data set was constructed by us.

1. The Reuters RCV1 dataset is a standard dataset used in language processing
tasks, and consists of over 800,000 Reuters news articles separated into various
topics [17]. Although not originally constructed for author attribution work,
it has been used previously in this domain by making use of the <byline>
tags inside articles which designate article authors [22]. The dataset was
chosen because it contains documents of reasonable length, which is required
for successful author identification. In addition, this dataset is similar to the
dataset on which the Word2Vec vectors used in this experiment were trained
on, and thus we would expect high quality outputs when using Word2Vec
with this data.

2. Our second data set consisted of “Fan fiction” samples8. This data set therefore
consists of stories collected over the 5 most popular book-based topics. Fan
fiction has been used previously in PAN author attribution tasks, and is

8 https://www.fanfiction.net



suitable for this task because of the content length of the texts and the
diversity of authorship styles present in these texts, as stylistic writing
qualities are important in this domain.

For each of the documents in the data sets we used our obfuscation mechanism
described above to a bag of words representation. We then used appropriate
machine learners to try to categorise the results by author and (separately) by
topic. In each case we applied the same machine learning techniques to the
original (bag of words representations) of the documents to provide a baseline
with which to compare.

In Fig. 2 we can see the result of obfuscation: with increasing randomness
(as measured by Scale) the ability to identify the author becomes harder, as
compared to the Baseline (i.e. unobfuscated documents). This is compared to
Fig. 3 which we can see preserves the topicality very well — which is to be
expected because of the use of the Laplace mechanism based on Word2Vec.

5 Conclusions and future work

This paper has brought two conceptual ideas together to provide some founda-
tions for privacy mechanisms in text document processing. We used generalised
differential privacy based on metrics used in machine learning as a way to create
a mechanism, and noted how to understand the privacy that it provides in
terms of generalised differential privacy cast in terms of channels for quantitative
information flow.

We also observed experimentally that the mechanism seems to preserve
topicality well, whilst achieving good privacy. We note here that although we
have not provided a mechanism that produces human-readable documents, the
mechanism still maintains a variety of words, which fits with the spirit of the
PAN obfuscation task.

There is, of course, a long way to go before we have a true summarisation
mechanism that is private; with this foundation we have the tools to understand
the extent of privacy in future obfuscation mechanisms as they become available.

While the approach outlined in this paper used a simple Word2Vec embedding
substitution mechanism over a bag of words representation, there is very promising
recent work that uses deep learning to generate paraphrased text, taking text as
input. For instance, [12] gives a method for producing syntactically controlled
adversarial paraphrases for text: paraphrases that have the goal of confounding
a machine learner, which in our context would be an inference attacker; an
alternative approach based on generative adversarial networks is described by
[27]. Incorporating a DP mechanism, along the lines of the one presented in
this paper, is one possible avenue to solving the original obfuscation problem
presented in Sec 2.
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