
20 Years of Real Real Time Model Validation ?

Kim G. Larsen, Florian Lorber, and Brian Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,florber,bnielsen}@cs.aau.dk

Abstract. In this paper we review 20 years of significant industrial ap-
plication of the Uppaal Tool Suite for model-based validation, perfor-
mance evaluation and synthesis. The paper will highlight a number of
selected cases, and discuss successes and pitfalls in achieving industrial
impact as well as tool sustainability in an academic setting.

1 Introduction

In 1995 the first release of the real-time verification tool Uppaal [43] was pre-
sented – together with a number of other emerging tools such as HyTeCH and
Kronos – at the very first TACAS conference [15]. Soon after the tool was used
for off-line verification of a number of real (i.e. industrially used) protocols, where
real-time aspects were of essence. Today, in 2018, the most recent branches of
Uppaal are applied for on-line optimization of home automation and traffic
control systems. In this short note, we aim to recall some of the success stories
of Uppaal over the years in terms of industrial applications, discuss what it
takes to achieve lasting industrial take-up as well as reflect on the influence on
the development of the tool from industrial feedback.

An overview of the most important case studies which will be discussed
whithin this paper can be found in Table 1.

The remainder of the paper will be structured as follows: first, in Section 2,
we will give an overview of the Uppaal tool family. Then, in Section 3 we
will present our major use cases in the context of verification. Afterwards, in
Section 4, we present our case studies in the area of testing and in Section 5
we will present cases in which we used Uppaal for scheduling and controller
synthesis. Finally, in Section 6, we will present the most important lessons we
learned while working on the presented case studies.

2 The Uppaal Tool Suite

This section will give an overview over the Uppaal tool family, its components
and their main purposes.

? Work supported by Innovation Center DiCyPS, DFF project ASAP, and the ERC
Advanced Grant Project Lasso.



Usecase Tool Goal Partners Outcome

PACP Uppaal Verification Philips Significant tool
improvement

BRP Uppaal Verification Philips, Twente
University

Protocol verified

BOP Uppaal Verification Bang & Olufsen Bug found and
corrected

BOPC Uppaal Verification Bang & Olufsen Frequency limits
identified

FR Uppaal Verification FlexRay
Consortium

Improved
fault-tolerance

guarantees

FW Uppaal Verification Radboud
University

Sound timing
restrictions
identified

GC Uppaal Verification MECEL,
Uppsala

University

Several
requirements

verified

HPS Uppaal Verification Herchel &
Planck

Schedulability of
task-set

established

NMN Uppaal Verification Neocortec Energy
performance of

protocol

D Uppaal TRON Testing Danfoss Demonstration
of feasibility of
online testing

NN Uppaal
Yggdrasil

Uppaal CORA

Testing Novo Nordic Two times
industrial takeup

G Uppaal
Yggdrasil

Modelling,
Testing

Grundfos Interest
provoked - new

collaboration

S Uppaal TIGA Controller
Synthesis

Skov Synthesis of
zone-based
controller

H Uppaal TIGA Controller
Synthesis

Hydac, ULB,
ENS Cachan

Improved
controller

BPNS Uppaal
Stratego

Scheduling GomSpace Batterty life
improvement of

a satellite

HA Uppaal
Stratego

Controller
Synthesis

Seluxit Intelligent floor
heating

ICTL Uppaal
Stratego

Controller
Synthesis

Municipality of
Køge

Efficient traffic
controller

Fig. 1. Industrial Use Cases using Uppaal.

2



Uppaal The underlying formalism of Uppaal is that of timed automata with
the tool providing support for model checking of hard real-time properties. Since
the introduction of the tool in 1995, significant effort have been put into devel-
opment and implementation of improved datastructures and algorithms for the
analysis of timed automata. Besides the several advances with respect to the
verification engine, significant effort has over the years been put on the graph-
ical interface of the tool (e.g. [8]), and on the modelling side the introduction
of user-defined, structured datatypes and procedures has undoubtedly made the
tool significantly more usable in modeling real control programs and communi-
cation protocols [7].

Uppaal CORA Motivated by the need for addressing (optimal) usage of re-
sources, priced timed automata were introduced in 2001. [9,4] (independently)
demonstrated decidability of cost-optimal reachability. Soon after, an efficient
priced extension of the symbolic datastructures used in Uppaal was imple-
mented in the branch Uppaal CORA. Combined with a symbolic A* algo-
rithm Uppaal CORA turned into a new generic tool for cost-optimal planning
which was competitive to traditional OR methods such as Mixed-Integer Linear
Programming [39].

Uppaal TRON In 2004 the branch Uppaal TRON was introduced offering
the possibility of performing on-line conformance testing of realistic real-time
systems with respect to timed input-output automata [45,41]. Uppaal TRON
implements a sound and (theoretically) complete randomized testing algorithm,
and uses a formally defined notion of correctness to assign verdicts: i.e. relativized
timed input/output conformance providing a timed extension of Jan Tretmans
ioco [52]. Using online testing, events are generated and simultaneously executed
on the system under test.

Uppaal Yggdrasil is an off-line test case generator integrated into the main
Uppaal component. It aims at creating a test suite for edge coverage in a three
phase process, which includes testing according to user-specified test purposes,
random testing, and afterwards reachability analysis towards uncovered tran-
sitions. The tool enables the user to associate test code with transitions and
locations, which is integrated into the test case whenever a trace traverses them.
This enables Uppaal Yggdrasil to create test scripts in any desired language,
which can be executed directly by the chosen execution engine.

Uppaal TIGA In 2005 - encouraged by suggestions from Tom Henzinger – the
branch Uppaal TIGA was released, allowing for control strategies to be synthe-
sized from timed games, i.e. two-player games played on timed automata [16,6].
The branch implements an efficient symbolic on-the-fly algorithm for synthesiz-
ing winning strategies for reachability, safety as well as Büchi objectives and
taking possible partial observability into account [17]. The branch marks a dis-
ruptive direction with respect to development of control programs for embedded
systems: rather than manually developing the control program with subsequent

3



model checking (and correction), Uppaal TIGA provides a fully automatic
method for deriving a correct-by-construction control program.

Ecdar In 2010 the branch Ecdar was introduced supporting a scalable method-
ology for compositional development and stepwise refinenemet of real-time sys-
tems [30,29]. The underlying specification theory is that of timed I/O automata
being essentially timed games (with inputs being controllable, and outputs be-
ing uncontrollable) equipped with suitable methods for refinement checking (in
terms of an alternating simulation between two timed game specifications), con-
sistency checking, logical as well as structural composition. For a full account of
Ecdar we refer the reader to the tutorial [28].

Uppaal SMC One of the most recent branches of the Uppaal tool suite –
Uppaal SMC introduced in 2011 – allows for performance evaluation on the
expressive formalisms of stochastic hybrid automata and games [26,27], and has
by now been widely applied to analysis of a variety of case studies ranging from
biological examples [25], schedulability for mixed-critical systems [22,14], eval-
uation of controllers for energy-aware buildings [19], social-technical attacks in
security [31], as well as performance evaluation of a variety of wireless communi-
cation protocols [53,53]. For a full account of Uppaal SMC we refer the reader
to the recent tutorial [24].

Uppaal Stratego from 2014 [21,20] is the most recent branch of the Uppaal
tool suite that allows to generate, optimize, compare and explore consequences
and performance of strategies synthesized for stochastic priced timed games
(SPTG) in a user-friendly manner. In particular, Uppaal Stratego comes
with an extended query language, where strategies are first class objects that
may be constructed, compared, optimized and used when performing (statistical)
model checking of a game under the constraints of a given synthesized strategy.

3 Verification

The early development of Uppaal was highly driven by colleagues in the Nether-
lands using the tool for automatic verification of industrial protocols. During a
time-span of only a few years this resulted in a huge performance improvement
reducing both time- and space-consumption with over 99%.

Philips Audio Control Protocol (PACP) Before the release of Uppaal Bosscher,
Polak and Vaandrager had in 1994 modelled and verified a protocol developed by
Philips for the physical layer of an interface bus that connects the various devices
of some stereo equipment (tuner, CD player,...). Essentially – after a suitable
translation – the model of the protocol is a timed automata. Whereas the first
proof in [13] was manual, the first automated verification of the protocol was
done using the tool HyTech. Later, automated – and much faster – verifications
were obtained using Uppaal and Kronos. However, all these proofs were based

4



on a simplification on the protocol, introduced by Bosscher et. al. in 1994, that
only one sender is transmitting on the bus so that no bus collisions can occur. In
many applications the bus will have more than one sender, and the full version of
the protocol by Philips therefore handles bus collisions. Already in the autumn
of 1995 an automatic analysis of a version of the Philips Audio Control Protocol
with two senders and bus collision handling was achieved using Uppaal 0.96.
To make the analysis feasible a notion of committed location was introduced
(to remove unnecessary interleavings) and the analysis was carried out on a
super computer, a SGI ONYX machine [11]. The total verification time was
8.82 hrs using more 527.4 MB. It is interesting to note that using Uppaal 3.2
the same verification was reduced to only 0.5 sec using 2.5 MB of memory.
In any case, the success in 1996 was a true milestone in the development of
Uppaal as this version of the protocol was orders of magnitude larger than the
previously considered version with only one sender, e.g. the discrete state-spaces
was 103 times larger and the number of clocks and channels in the model was
also increased considerably.

Bounded Retransmission Protocol(BRP) In parallel with the collaboration with
the group of Vaandrager, a group from Twente University (D’Argenio, Katoen,
Reus and Tretmans) was also applying – and seriously testing – the first versions
of Uppaal. In particular, they successfully modelled and verified the Bounded
Retransmission Protocol, a variant of the alternating bit protocol introduced by
Philips. In [18] it is investigated to what extent real-time aspects are important to
guarantee the protocol’s correctness using Uppaal and the Spin model checker.

B&O Protocol (BOP) In 1996, we were ourselves approached by Bang & Olufsen
with a request of “analysing their proprietary IR Link protocol”. The protocol,
about 2800 lines of assembler code, was used in products from the audio/video
company Bang&Olufsen throughout more than a decade, and its purpose was
to control the transmission of messages between audio/video components over a
single bus. Such communications may collide, and one essential purpose of the
protocol was to detect such collisions. The functioning was highly dependent on
real-time considerations. Though the protocol was known to be faulty (in the
sense that messages were lost occasionally), the protocol was too complicated in
order for the company to locate the bug using normal testing. However - after 4-5
iterations refining the model of the protocol - an error trace was automatically
generated using Uppaal and confirmed in the actual implementation of the
protocol. Moreover, the error was corrected and the correction was automatically
proven correct, again using Uppaal [36].

B&O Powerdown control (BOPC) [35] Our first collaboration with Bang &
Olufsen was very much characterized as a reverse engineering exercise of an
existing protocol: the only documentation of the protocol was the 2800 lines
of assembler code together with 3 flow-charts and a (very) knowledgeble B&O
engineer. In our second collaboration with the company, modelling and verifi-
cation in Uppaal was carried out in parallel with the actual implementation

5



of a new real-time system for power-down control in audio/video components.
During modeling 3 design errors were identified and corrected, and the following
verification confirmed the validity of the design but also revealed the necessity
for an upper limit of the interrupt frequency. The resulting design was later
(seamlessley) implemented and incorporated as part of a new product line.

Whereas the above collaborative projects with B&O were very successful,
neither Uppaal nor model-driven development were taken-up in the company.
An obvious reason could the immaturity (and lack of GUI) of the tool back then.
However, in retrospect, an other equally likely reason is the fact that we were
spending (all) our effort in collaborating with technicians in the company and
not on marketing our tool and “disruptive” methodology to decision-makers in
the company.

Flexray (FR) As part of the German DFG project AVACS 1 the FlexRay pro-
tocol was modeled and verified using Uppaal. Flexray is a standard, developed
by a cooperation of leading companies in the automotive industry, as a robust
communication protocol for distributed components in modern vehicles. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry. In [34] a timed automata model of its
physical layer protocol is presented, and Uppaal is used to automatically prove
fault tolerance under several error models and hardware assumptions. In partic-
ular, it is shown that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

Firewire (FW) The IEEE 1394-1995 serial bus standard defines an architecture
that allows several components to communicate at very high speed. Originally,
the architecture was designed by Apple (FireWire), with more than 70 com-
panies having been involved in the standardisation effort. In [50] a timed au-
tomata model of the leader election protocol is presented and its correctness is
established using Uppaal. In particular, it is shown that under certain timing
restrictions the protocol behaves correctly. The timing parameters in the IEEE
1394 standard documentation obey the restrictions found in this proof.

MECEL Gear Controller (GC) In [44] an application of Uppaal to the modelling
and verification of a prototype gear controller was developed in a joint project
between industry and academia. In particular, the project was carried out in
collaboration between Mecel AB and Uppsala University. Within the project,
the (timely) correctness of the controller was formalized (and verified) in 47
logical formulas according to the informal requirements delivered by industry.

1 http://www.avacs.org

6



Herchel & Planck Schedulatilibity (HPS) In the danish project DaNES, we col-
laborated with the company Terma on using timed automata model checking
as a more exact method for establishing schedulability of a number of periodic
tasks executing on a single CPU under a given scheduling policy. In particular a
fixed priority preemptive scheduler was used in a combination with two resource
sharing protocols, and in addition voluntary task suspension was considered. In
[46] schedulability was established under the assumption of exact computation
times of the tasks. In [23] non-deterministic computations times were considered;
depending on the size of the computation time interval, schedulability was either
verified (using Uppaal) or refuted (using the concrete search engine of Uppaal
SMC).

4 Testing

Our research on model-based test generation for timed (event recording) au-
tomata started with the thesis work around 1996-2000 in [47]. The approach
aimed at covering timed equivalence classes defined through the clock guards
of the timed automata. It assumed strictly deterministic systems, and its scal-
ability was limited by the analysis techniques of the time. It thus had limited
industrial applicability [48,49].

Later (2002-2004), inspired by [52,32], we developed the online testing tool
Uppaal TRON[3]. This approach could effectively handle non-determinism in
both the specification (due to abstraction) and system under test (due to uncer-
tainties in scheduling, execution times, timing, etc.), scaled to large models, and
provided response times low enough for many practical cases [42,5,51]. Online
testing generates effective randomized long tests, but coverage must be evalu-
ated post-mortem and cannot be guaranteed a priori. Moreover, it is difficult to
repeat the precise same test and inspect the set of test cases (might be required
by certification bodies).

Our first work on offline test-case generation (with Uppsala University) ap-
peared [37] in 2003. Here we showed how to interpret witness traces generated by
the Uppaal model-checker as test cases for the sub-class deterministic output
urgent timed automata. Specifically, we showed how to generate the test cases
with the minimum duration that satisfied a given test purpose formulated as
a reachability property by exploiting Uppaal’s fastest witness trace generation
feature. We furthermore formulated coverage as a reachability question, giving
the ability to generate (time optimal) tests that guarantee meeting common
coverage criteria. This work led to the Uppaal Cover tool (no longer developed)
and Uppaal Yggdrasil.

The Danfoss Case (D) We applied and evaluated Uppaal TRON on an em-
bedded controller supplied by the company Danfoss’ Refrigeration Controls Di-
vision around year 2003-2004 [42]. The target device was a stable product of
a refrigerator controller for industrial and large supermarket installations. As
computer scientists we did not have domain expertise, and it soon became clear

7



that the supplied documentation (high-level requirements and user manuals) was
insufficient for us to build accurate models. Hence, we ended up formulating a
hypothesis model, running the test, and refining the model when the test failed.
The final model consisted of 18 concurrent components (timed automata), 14
clock variables, and 14 discrete integer variables, and was thus quite large for
the time. When confronting the refined model with Danfoss engineers, they too
were surprised about certain aspects of its behavior, and needed to have that
confirmed by other developers. Although we found no confirmed defects, the case
showed that our techniques were practically applicable, and effective in finding
discrepancies between specified and observed behavior. Encouraged by these re-
sults, both parties continued the collaboration on automated testing. At the
end, our testing approach was not included in their new test setup that empha-
sized a new test harness for automated execution of manually defined scripts.
Retrospectively, the gap between our method and their established development
processes and tools was too big.

The Novo Nordic Case (NN) The first version of Uppaal Yggdrasil was
developed in 2007-2009 specifically to support a collaboration with Novo Nordic
for model-based GUI testing for medical devices. This version used Uppaal
CORA as back-end, and operated in a 3 step process inspired by the company’s
needs: 1) Generating a separate test sequence for each user defined (supposedly
critical) test purpose, 2) using Uppaal’s search heuristics for optimizing model
(edge) coverage considering constraints on the maximum lengths of the test
cases, and 3) generating targeted test cases for each of the remaining uncovered
transitions. The actual test case code was generated from model-annotations
that the test engineers added to the model issuing appropriate GUI commands
and assertions. Initially, the models were made using UML state-charts (and then
translated into the Uppaal syntax) due to the engineers familiarity with this
notation. It is important to remark that the engineers had no prior experience
with formal modelling, and models were made for illustrative purposes using
Microsoft Visio. Even then, making models that now had a tangible and formal
meaning required a substantial training period. First the models were jointly
developed assisted by the tool developer, and later only by company engineers
with ordinary support.

This approach reduced the time used on test construction from upwards of 30
days to 3 days spent modelling and then a few minutes on actual test generation.
At the same time, coverage was easier to establish than in the manual approach,
and script maintenance greatly reduced. Later again, the company started using
the Uppaal-editor directly, circumventing a heavy (and costly) UML tool. The
approach was thus successfully embedded within the company. Unfortunately,
that development team was dissolved as part of a company restructuring a year
later, and the competence was no longer used.

MBAT Since the original Uppaal Yggdrasil was tailormade for this collab-
oration, and since it used the Uppaal CORA engine that is also no longer
being developed, it ended up in a non-usable state. Recently, as part of the EU

8



Artemis MBAT (Combined Model-based Testing and Analysis) project, we re-
architected the tool, and integrated it into — and shipped with — the main
branch of Uppaal, such that it now 1) uses the normal search engine, and 2)
uses the graphical editor to create the needed annotations, and 3) provides a
GUI widget for creating the test case configurations.

Uppaal Yggdrasil was applied to a case-study [38], and evaluated posi-
tively by a few consortium member companies. However, the collaboration did
not result in commercial exploitation, partly because the project came to an
end, and partly because we did not have an established company that could sell
the licenses, and required maintenance, training, and consultancy.

MBAT also facilitated further developments for tool interoperability that is
seen as crucial for large companies owning hundreds of various software devel-
opment tools. That included prototyping of Open Services for Lifecycle Collab-
oration (OSLC)2 adaptors for Uppaal, and prototyping of Functional Mock-up
Interfaces (FMI)3 co-simulation interfaces. So it is regretful that this source of
funding for Artemis/ECSEL industrial collaboration at a European scale ceased,
as the Danish government halted national co-funding.

Grundfos (G) Grundfos is a major Danish company and world renowned for
its pump products. In a recent meeting in the context of the DiCyPS project4,
we discussed different possible topics for further evaluation, including model-
based testing. Based on our positive experiences with Danfoss (whose refrigerator
controllers at an abstract level are similar to Grundfos pump controllers) we
presented all the benefits/strengths of online model-based tested. However, it was
when we presented offline testing that their interest was really triggered. They
in particular liked our idea of modelling each of their requirements, using this
(combined) model to automatically generate test scripts, and executing these on
their existing test harness. Hence, there is a strong fit with their existing testing
process and equipment. Also they believed that the (formalized) requirement
models could be a valuable documentation complementing the existing design
documentation. Hence, we decided to focus the collaboration on this approach,
and postpone online testing.

In the first phase, we (university/tool provider/academics) perform the mod-
elling and test case generation in order to prepare the tool and evaluate the
method, for this particular case. We have identified an interesting, non-trivial
subsystem of a newly developed pump controller exhibiting core functionality. If
this stage is successful we plan to train selected Grundfos engineers and evaluate
their experiences. Since the collaboration is ongoing, we cannot report on the
outcome here.

2 https://open-services.net
3 http://fmi-standard.org
4 National Innovation Fund supported project on Data-Intensive Cyber-Physical Sys-

tems.

9

https://open-services.net
http://fmi-standard.org


5 Planning, Scheduling and Synthesis

Within its newer branches, the Uppaal tool suite allows for the usage of prices
and stochastic elements, in order to enable various features, such as cost-optimal
reachability, optimal scheduling or synthesis of strategies. The first practical step
in this direction was made in 2002, with the initial release of Uppaal CORA.
Uppaal CORA was developed as part of the VHS and AMETIST projects, and
uses linear priced timed auomata (LPTA) for reachability problems, searching for
paths with the lowest accumulated costs. The idea behind Uppaal Stratego
came up in the CASSTING project. It was released in 2014, and facilitates the
generation, optimization, comparison as well as consequence and performance
exploration of strategies for stochastic priced timed games (SPTGs) in a user-
friendly manner. The tools were since applied in several case studies, such as
optimal planning of missions for battery-powered nano-satellites [12], efficient
heating in home automation [40] or traffic light scheduling [33]. Below we will
give an overview of the three mentioned case studies.

Battery-Powered Nano-Satellites (BPNS) This case study focused on the battery
consumption of a GOMX-3 satellite built by the company GomSpace. It contains
several antennas, solar panels and a battery. Depending on the scheduling of
the different tasks of the satellite, the deterioration of the battery may vary
significantly, depending on, for instance, the depth the battery is discharged to
before reloading it. Uppaal Stratego was used to analyze different battery
usage profiles, to optimize the lifetime of the satellite. This was done via a
wear score function, which ranked the profiles according to their impact on the
battery life. Additionally, the satellite was modelled as an SPTG in an abstract
way. It could choose between the four different experiment types with different
strains on the battery. Using the reinforcement learning approach implemented
in Uppaal Stratego we could near-optimize the scheduling of the experiments
with respect to both the battery life and the number of experiments performed.

Home Automation (HA) In [40] we collaborated with the Danish company
Seluxit within the European project CASSTING. Our focus was on using timed
games to synthesize a controller for a floor heating system of a single family
house. Each room of the house has its own hot-water pipe circuit, which is
controlled based on the room temperature. The original system used a simple
”Bang-Bang”-like strategy, which turned the heating on if the temperature fell
below a certain threshold, and turned it back off if it exceeded another threshold.
Our goal was to use weather forecast information to synthesize an improved con-
trol strategy. Due to the state-space explosion caused by the number of control
modes, we could not apply Uppaal Stratego directly. To cope with this, we
proposed a novel online synthesis methodology, which is periodically called and
learns an optimal controller for a limited timeframe. We further improved this
approach by applying compositional synthesis, making it scalable enough for the
study. The controller could access the weather forecast for the next 45 minutes,

10



and used that information to shut down or start the valves much earlier than
other controllers, resulting in substantial energy savings and increased comfort.

Intelligent Control of Trafic Light (ICTL) Within the Innovation Center Di-
CyPS we used Uppaal Stratego for the synthesis of an efficient traffic control
strategy. The controller gains information about the traffic via radar detectors
and aims at optimizing the total traffic flow in a given traffic light junction. The
strategy optimizes the total delay, the queue length and the number of times the
vehicles have to stop. Again the synthesis is done online, this time in 5 second
intervals, during which the next operation of the traffic light is calculated. We
investigated an existing intersection in the municipality of Køge, Denmark, and
simulated it with the open source tool SUMO and the commercial tool VISSIM.
The strategy computed by Uppaal Stratego could be integrated into these
tools, to analyze the behaviour based on randomly generated traffic scenarios.
We evaluated the strategies in comparison to a static controller and a so called
Loop controller, under three types of traffic szenarios with low, medium and
maximal traffic. For low traffic, all controllers performed very similar, with the
Loop controller showing the best results and for medium traffic, all performed
equally. However, for high traffic, Uppaal Stratego outperformed both other
controllers significantly, essentially halving the expected waiting time [33].

6 Lessons Learned

Based on 20 years of practical experience in using Uppaal on industrial case
studies – as illustrated by the list of case studies given in the previous sections
– we believe that a number of lessons may be learned.

It is important to have a dedicated team consisting of committed developers
and inquisitive researchers in order to develop efficient and usable tools. In ad-
dition, the tools developed must have an interface and functionality which fits
the use-case company’s tool-chain, development method, and knowledge.

Formal methods tools must fit development methodology applied by industry.

Having the tool developer applying it in close interaction with the industrial
user – e.g. through collaborative projects – gives a strong incentive for achieving
alignment with and impact on industrial methodology. The tool developer can
then strive to align the tool and the industrial verification workflow, both by
adapting the tool and by influencing the used methods.

Industrial impact requires an evolution of both their methods and our tools,
potentially in several iterations of collaboration.

The exact formal notations need not be a show-stopper, as long as the nota-
tion used is engineer friendly, and supported by a well-designed user-interface.
Using a familiar notation is helpful in reducing the entry barrier and learning
curve.

11



Use of engineer friendly, yet formal, notation increases chances of impact.

Sustaining use may be difficult in a dynamic industrial environment, and
requires several collaborations and/or repeated introduction. Follow-up projects
can benefit this greatly.

Sustained industrial use needs repeated committed collaboration.

Tool development needs to be continuously sustained beyond the first case-
study and paper-publication. This requires committed developers, continuous
maintenance including bug fixing, making enhancements of usability, functions,
performance, and performing testing, release management, license serving, . . ..
This is obviously time consuming and requires financial support. More impor-
tantly, because formal tools often require specialized expertise knowledge, few
of these tasks can be subcontracted to a generic software engineer. Hence, also
academic recognition and rewards are needed for such developments that do not
readily result in publications.

Tool development needs to be continuously sustained. This requires increased
academic recognition to tool developers.

On the other hand, we ourselves only made few serious attempts at commer-
cializing our tools beyond selling licenses. This is likely because we are researchers
at heart.

Industrial impact could be increased by offering tools and consultancy on
commercial terms through spin-out companies.

Finally:

A successful case study is not the same as industrial impact.

References

1. Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS ’97), Decem-
ber 3-5, 1997, San Francisco, CA, USA. IEEE Computer Society, 1997.

2. Third International Conference on the Quantitative Evaluation of Systems (QEST
2006), 11-14 September 2006, Riverside, California, USA. IEEE Computer Society,
2006.

3. Marius Mikucionis and Kim G. Larsen and Brian Nielsen. T-uppaal: Online model-
based testing of real-time systems. In P. Grunbacher, editor, 19th IEEE Interna-
tional Conference on Automated Software Engineering (ASE 2004) Proceedings,
pages 396–397, United States, 2004. IEEE Computer Society Press. ISSN ; 1068-
3062.

12



4. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Benedetto and Sangiovanni-Vincentelli [10], pages 49–62.

5. H. R. Asaadi, R. Khosravi, M. R. Mousavi, and N. Noroozi. Towards model-based
testing of electronic funds transfer systems. In F. Arbab and M. Sirjani, editors,
Fundamentals of Software Engineering - 4th IPM International Conference, FSEN
2011, Tehran, Iran, April 20-22, 2011, Revised Selected Papers, volume 7141 of
Lecture Notes in Computer Science, pages 253–267. Springer, 2011.

6. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In W. Damm and H. Hermanns, editors,
Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer
Science, pages 121–125. Springer, 2007.

7. G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In Third International Conference on the Quantitative
Evaluation of Systems (QEST 2006), 11-14 September 2006, Riverside, California,
USA [2], pages 125–126.

8. G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Developing
UPPAAL over 15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

9. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In
Benedetto and Sangiovanni-Vincentelli [10], pages 147–161.

10. M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, editors. Hybrid Systems:
Computation and Control, 4th International Workshop, HSCC 2001, Rome, Italy,
March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes in Computer Sci-
ence. Springer, 2001.

11. J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an audio protocol with bus collision using
UPPAAL. In R. Alur and T. A. Henzinger, editors, Computer Aided Verifica-
tion, 8th International Conference, CAV ’96, New Brunswick, NJ, USA, July 31 -
August 3, 1996, Proceedings, volume 1102 of Lecture Notes in Computer Science,
pages 244–256. Springer, 1996.

12. M. Bisgaard, D. Gerhardt, H. Hermanns, J. Krcál, G. Nies, and M. Stenger.
Battery-aware scheduling in low orbit: The gomx-3 case. In J. S. Fitzgerald, C. L.
Heitmeyer, S. Gnesi, and A. Philippou, editors, FM 2016: Formal Methods - 21st
International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings,
volume 9995 of Lecture Notes in Computer Science, pages 559–576, 2016.

13. D. Bosscher, I. Polak, and F. W. Vaandrager. Verification of an audio control proto-
col. In H. Langmaack, W. P. de Roever, and J. Vytopil, editors, Formal Techniques
in Real-Time and Fault-Tolerant Systems, Third International Symposium Orga-
nized Jointly with the Working Group Provably Correct Systems - ProCoS, Lübeck,
Germany, September 19-23, Proceedings, volume 863 of Lecture Notes in Computer
Science, pages 170–192. Springer, 1994.

14. A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis, U. Nyman,
and A. Skou. Degree of schedulability of mixed-criticality real-time systems with
probabilistic sporadic tasks. In 2014 Theoretical Aspects of Software Engineering
Conference, TASE 2014, Changsha, China, September 1-3, 2014, pages 126–130.
IEEE Computer Society, 2014.

15. E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen, editors.
Tools and Algorithms for Construction and Analysis of Systems, First International
Workshop, TACAS ’95, Aarhus, Denmark, May 19-20, 1995, Proceedings, volume
1019 of Lecture Notes in Computer Science. Springer, 1995.

13



16. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In M. Abadi and L. de Alfaro, editors,
CONCUR 2005 - Concurrency Theory, 16th International Conference, CONCUR
2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653 of
Lecture Notes in Computer Science, pages 66–80. Springer, 2005.

17. F. Cassez, A. David, K. G. Larsen, D. Lime, and J. Raskin. Timed control with ob-
servation based and stuttering invariant strategies. In K. S. Namjoshi, T. Yoneda,
T. Higashino, and Y. Okamura, editors, Automated Technology for Verification and
Analysis, 5th International Symposium, ATVA 2007, Tokyo, Japan, October 22-
25, 2007, Proceedings, volume 4762 of Lecture Notes in Computer Science, pages
192–206. Springer, 2007.

18. P. R. D’Argenio, J. Katoen, T. C. Ruys, and J. Tretmans. The bounded retrans-
mission protocol must be on time! In E. Brinksma, editor, Tools and Algorithms for
Construction and Analysis of Systems, Third International Workshop, TACAS ’97,
Enschede, The Netherlands, April 2-4, 1997, Proceedings, volume 1217 of Lecture
Notes in Computer Science, pages 416–431. Springer, 1997.

19. A. David, D. Du, K. G. Larsen, M. Mikucionis, and A. Skou. An evaluation
framework for energy aware buildings using statistical model checking. SCIENCE
CHINA Information Sciences, 55(12):2694–2707, 2012.

20. A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Sørensen, and
J. H. Taankvist. On time with minimal expected cost! In F. Cassez and J. Raskin,
editors, Automated Technology for Verification and Analysis - 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceed-
ings, volume 8837 of Lecture Notes in Computer Science, pages 129–145. Springer,
2014.

21. A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist. Up-
paal stratego. In C. Baier and C. Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035
of Lecture Notes in Computer Science, pages 206–211. Springer, 2015.

22. A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Schedulability of herschel-
planck revisited using statistical model checking. In T. Margaria and B. Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation.
Applications and Case Studies - 5th International Symposium, ISoLA 2012, Her-
aklion, Crete, Greece, October 15-18, 2012, Proceedings, Part II, volume 7610 of
Lecture Notes in Computer Science, pages 293–307. Springer, 2012.

23. A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Schedulability of herschel
revisited using statistical model checking. STTT, 17(2):187–199, 2015.

24. A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen. Uppaal SMC
tutorial. STTT, 17(4):397–415, 2015.

25. A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, and S. Sedwards.
Statistical model checking for biological systems. STTT, 17(3):351–367, 2015.

26. A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van Vliet, and
Z. Wang. Statistical model checking for networks of priced timed automata. In
U. Fahrenberg and S. Tripakis, editors, Formal Modeling and Analysis of Timed
Systems - 9th International Conference, FORMATS 2011, Aalborg, Denmark,
September 21-23, 2011. Proceedings, volume 6919 of Lecture Notes in Computer
Science, pages 80–96. Springer, 2011.

14



27. A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang. Time for statis-
tical model checking of real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes
in Computer Science, pages 349–355. Springer, 2011.

28. A. David, K. G. Larsen, A. Legay, U. Nyman, L. Traonouez, and A. Wasowski.
Real-time specifications. STTT, 17(1):17–45, 2015.

29. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. ECDAR: an en-
vironment for compositional design and analysis of real time systems. In A. Boua-
jjani and W. Chin, editors, Automated Technology for Verification and Analysis
- 8th International Symposium, ATVA 2010, Singapore, September 21-24, 2010.
Proceedings, volume 6252 of Lecture Notes in Computer Science, pages 365–370.
Springer, 2010.

30. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O
automata: a complete specification theory for real-time systems. In K. H. Johansson
and W. Yi, editors, Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, April
12-15, 2010, pages 91–100. ACM, 2010.

31. N. David, A. David, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen, and C. W.
Probst. Modelling social-technical attacks with timed automata. In E. Bertino
and I. You, editors, Proceedings of the 7th ACM CCS International Workshop on
Managing Insider Security Threats, MIST 2015, Denver, Colorado, USA, October
16, 2015, pages 21–28. ACM, 2015.

32. R. G. de Vries and J. Tretmans. On-the-fly conformance testing using SPIN. STTT,
2(4):382–393, 2000.

33. A. B. Eriksen, C. Huang, J. Kildebogaard, H. Lahrmann, K. G. Larsen, M. Muniz,
and J. H. Taankvist. Uppaal stratego for intelligent traffic lights. In ITS European
Congress, 2017.

34. M. Gerke, R. Ehlers, B. Finkbeiner, and H.-J. Peter. Model checking the flexray
physical layer protocol. In S. Kowalewski and M. Roveri, editors, Formal Methods
for Industrial Critical Systems, pages 132–147, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

35. K. Havelund, K. G. Larsen, and A. Skou. Formal verification of a power controller
using the real-time model checker UPPAAL. In J. Katoen, editor, Formal Meth-
ods for Real-Time and Probabilistic Systems, 5th International AMAST Workshop,
ARTS’99, Bamberg, Germany, May 26-28, 1999. Proceedings, volume 1601 of Lec-
ture Notes in Computer Science, pages 277–298. Springer, 1999.

36. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling and analysis
of an audio/video protocol: an industrial case study using UPPAAL. In Proceedings
of the 18th IEEE Real-Time Systems Symposium (RTSS ’97), December 3-5, 1997,
San Francisco, CA, USA [1], pages 2–13.

37. A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-optimal test
cases for real-time systems. In Proceedings of the 1st International Workshop on
Formal Modeling and Analysis of Timed Systems (FORMATS 2003), volume 2791,
pages 234–245, 2003. ISSN ; -.

38. J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen. Formal analysis
and testing of real-time automotive systems using uppaal tools. In M. Núñez
and M. Güdemann, editors, Formal Methods for Industrial Critical Systems, pages
47–61, Cham, 2015. Springer International Publishing.

15



39. K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,
and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In G. Berry, H. Comon, and A. Finkel, editors, Computer Aided
Verification, 13th International Conference, CAV 2001, Paris, France, July 18-
22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer Science, pages
493–505. Springer, 2001.

40. K. G. Larsen, M. Mikucionis, M. Muñiz, J. Srba, and J. H. Taankvist. Online
and compositional learning of controllers with application to floor heating. In
M. Chechik and J. Raskin, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of
Lecture Notes in Computer Science, pages 244–259. Springer, 2016.

41. K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems
using uppaal. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Soft-
ware Testing, 4th International Workshop, FATES 2004, Linz, Austria, September
21, 2004, Revised Selected Papers, volume 3395 of Lecture Notes in Computer Sci-
ence, pages 79–94. Springer, 2004.

42. K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In W. H. Wolf, editor,
EMSOFT 2005, September 18-22, 2005, Jersey City, NJ, USA, 5th ACM Inter-
national Conference On Embedded Software, Proceedings, pages 299–306. ACM,
2005.

43. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. STTT, 1(1-
2):134–152, 1997.

44. M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear con-
troller. STTT, 3(3):353–368, 2001.

45. M. Mikucionis, K. G. Larsen, and B. Nielsen. T-UPPAAL: online model-based
testing of real-time systems. In 19th IEEE International Conference on Automated
Software Engineering (ASE 2004), 20-25 September 2004, Linz, Austria, pages
396–397. IEEE Computer Society, 2004.

46. M. Mikucionis, K. G. Larsen, J. I. Rasmussen, B. Nielsen, A. Skou, S. U. Palm,
J. S. Pedersen, and P. Hougaard. Schedulability analysis using uppaal: Herschel-
planck case study. In T. Margaria and B. Steffen, editors, Leveraging Applications
of Formal Methods, Verification, and Validation - 4th International Symposium
on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21,
2010, Proceedings, Part II, volume 6416 of Lecture Notes in Computer Science,
pages 175–190. Springer, 2010.

47. B. Nielsen. Specification and Test of Real-Time Systems. PhD thesis, Aalborg
University, 2000.

48. B. Nielsen and A. Skou. Automated test generation from timed automata. In
T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 7th International Conference, TACAS 2001 Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings, volume 2031 of Lecture Notes in
Computer Science, pages 343–357. Springer, 2001.

49. B. Nielsen and A. Skou. Test generation for time critical systems: Tool and case
study. In 13th Euromicro Conference on Real-Time Systems, Delft, The Nether-
lands, June 2001, pages 155–162, 2001.

50. J. Romijn. A timed verification of the IEEE 1394 leader election protocol. Formal
Methods in System Design, 19(2):165–194, 2001.

16



51. C. Rütz. Timed model-based conformance testing – a case study using tron: Testing
key states of automated trust anchor updating (rfc 5011) in autotrust. b.sc. thesis,
2010.

52. J. Tretmans. A formal approach to conformance testing. C-19:257–276, 1993.
53. R. J. van Glabbeek, P. Höfner, M. Portmann, and W. L. Tan. Modelling and

verifying the AODV routing protocol. Distributed Computing, 29(4):279–315, 2016.

17


	20 Years of Real Real Time Model Validation 

