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Abstract. Inferring a minimal finite state machine (FSM) from a given
set of traces is a fundamental problem in computer science. Although
the problem is known to be NP-complete, it can be solved efficiently
with SAT solvers when the given set of traces is relatively small. On the
other hand, to infer an FSM equivalent to a machine which generates
traces, the set of traces should be sufficiently representative and hence
large. However, the existing SAT-based inference techniques do not scale
well when the length and number of traces increase. In this paper, we
propose a novel approach which processes lengthy traces incrementally.
The experimental results indicate that it scales sufficiently well and time
it takes grows slowly with the size of traces.
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1 Introduction

Occam’s razor is a problem-solving principle attributed to William of Ockham.
Also known as the law of parsimony, this principle states that among competing
hypotheses, the one with the fewest assumptions should be selected. This simple
and natural principle is the base of a lot of work in various areas.

A typical area where this principle is used is the model inference problem.
Model inference is the process of building a model consistent with a given set of
observations. Since there exists generally an infinite number of consistent models,
we choose the simplest following the law of parsimony. When the model to infer
is a finite states machine (FSM), we generally use the number of states as the
unit of measurement for the complexity. So, the inference in this context consists
in finding a minimal FSM consistent with a given set of observation.

Model inference problem has several useful applications such as model-based
testing when a model inferred from traces produced by a system executing tests
is used to assess the test quality, generate additional tests and model check
properties confirmed by the executed tests. The FSM inference from a set of
traces is a very active research domain which can be divided into two categories:
passive learning (learning from examples) [12,13] and active learning (learning
with queries) [4]. In the first category, we have only a set of examples and use
it to infer an FSM consistent with this set. Passive FSM inference problem is
stated by Kella in 1971 [16] as sequential machine identification. In the second
category, we use an oracle to ask queries and infer FSM incrementally. The work



by Walkinshaw et al. [22] has shown how passive inference algorithms can be
used to perform active inference. Based on these results, Smetsers et al. [19]
employ SMT solvers to infer DFAs, Mealy machines and register automata.

This paper belongs to the first category: “Given a sample T and n ∈ N, does
an FSM with n states consistent with T exist?”. Bierman and Feldman address
this question [7] by proposing to use a CSP (constraint satisfaction problem)
formulation. Later Gold [13] proves that the problem is NP-complete. More
than 20 years later Oliveira and Silva [17] develop an algorithm using generic
CSP or SMT solvers. Then Grinchtein, Leucker and Piterman [14] present a SAT
formulation which allows to solve the problem more efficiently, later enhanced by
Heule and Verwer [15] by adding auxiliary variables. The method of Grinchtein,
Leucker and Piterman is less efficient than that of Heule and Verwer, but their
incremental approach is interesting, as the time it takes to find a solution grows
slowly with the length of a given trace.

It combines the algorithms of Angluin [4] and Biermann and Feldman [7].
As a result, SAT clauses need to be completely rewritten each time new tables
as proposed by Angluin are modified. The approach can hardly scale on lengthy
traces.

The problem of dealing with long traces is that to infer an adequate model
of a component from a set of its execution traces, this set must cover numerous
use cases. Intuitively, the more and longer traces are collected from a component
under observation the higher the confidence that it is sufficiently representative.
Note that in the context of passive inference, we are not controlling the compo-
nent, as opposed to query learning, aka active inference of FSMs. Unfortunately,
multiple lengthy traces pose a problem for the model inference because they
significantly increase the time necessary to build a model.

Differently from the existing approaches, our approach does not use the An-
gluin’s tables and builds clauses incrementally, just adding them when a new
trace is considered. This allows to use SAT solvers in an incremental way [9]. In
incremental SAT solving, the solver processes only newly added formulas, as its
state is memorized to accelerate solving.

To process a set of traces incrementally we consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing the
whole counterexample trace.

The paper is organized as follows. Section 2 contains definitions. Section 3
provides an overview of passive inference of an FSM from a set of traces based
on SAT-solving. In Section 4 we present our incremental inference approach
together with preliminary experimental results. Section 5 briefly reports on our
experience in applying inference in industrial context and Section 6 concludes.



2 Definitions

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T ), where S is a finite
set of states with initial state s0; I and O are finite non-empty disjoint sets of
inputs and outputs, respectively; T is a transition relation T ⊆ S × I × O × S,
(s, a, o, s′) is a transition.

M is completely specified if for each tuple (s, a) ∈ S × I there exists a tran-
sition (s, a, o, s′) ∈ T , otherwise M is incompletely specified. We use ∆(s, a) to
denote s′ and λ(s, a) to denote o. M is deterministic if for each (s, a) ∈ S×I there
exists at most one transition (s, a, o, s′) ∈ T , otherwise it is nondeterministic.
We consider in this paper only deterministic FSMs.

An execution of M from state s is a sequence of transitions forming a path
from s in the state transition diagram of M . The machine M is strongly con-
nected, if the state transition diagram of M is a strongly connected graph.

A trace of M in state s is a string of input-output pairs which label an
execution from s. Let Tr(s) denote the set of all traces of M in state s and TrM
denote the set of traces of M in the initial state. Let T be a set of traces, we say
that M is consistent with T if T ⊆ TrM . We also say that M is a conjecture for
T . If all FSMs with fewer states than M are not consistent with T , then we say
that M is a minimal FSM consistent with T .

We say that two states s1, s
′
1 ∈ S are incompatible, if for every two transitions

(s1, a, o, s2), (s′1, a, o
′, s′2) ∈ T it holds that: o 6= o′ or s2 and s′2 are incompatible,

denoted s1 � s′1. If s1 and s′1 are not incompatible, then they are compatible,
denoted s1 ∼= s′1.

3 Passive Inference

Two types of methods solving the problem of learning an automaton from a set
of sample traces can be distinguished.

One group constitutes heuristic methods derived from the algorithm of Gold
[13] which try to merge states in polynomial time. They are often used in practice
because of their efficiency, however, they provide no guarantee for the optimality,
since there may exist another way of state merging which provides a resulting
machine with a fewer states. Numerous existing heuristic methods allow to infer
Mealy machines [21], Moore machines [11] as well as DFA[18].

Another group includes exact algorithms to determine an FSM model with
a minimal number of states. This is a much more complicated problem, as it is
NP-complete [13], but the minimality may prove to be essential in certain cases.
Among existing algorithms for finding a minimal solution, we could mention the
algorithm of Heule and Verwer [15] which in our opinion, can be considered as
the most efficient currently existing method.

In this paper, we elaborate an approach for the exact FSM inference in an
incremental way. It is SAT-solving based and has the advantage of having a low
sensibility to the length and number of sample traces.

We rely on the SAT encoding of Heule and Verwer, which we overview in this
section, though any other SAT formulation could also be used in our approach.



3.1 Problem statement

Given a set of traces T generated by an unknown deterministic FSM, we want
to find a minimal FSM M consistent with T , i.e., T ⊆ TrM .

Given T , let W = (X,x0, I, O, T ) be a deterministic acyclic FSM such that
TrW = T . Clearly, W is incompletely specified because the FSM is acyclic. To
find an FSM with at most n states consistent with T amounts to determine a
partition π on the set of states X into compatible states such that the number
of blocks does not exceed n. Clearly, n should be smaller than |X|.

This problem can be cast as a constraint satisfaction problem (CSP) [7]. The
set of states X is represented by integer variables x0, ..., x|X|−1, such that

∀xi, xj ∈ X : if xi � xj then xi 6= xj

if ∃a ∈ I : λ(xi, a) = λ(xj , a) then

(xi = xj)⇒ (∆(xi, a) = ∆(xj , a))

(1)

Let B = {0, ..., n−1} be a set of integers where each integer represents a block of
a partition π. Assuming that the value of xi is in B for all i ∈ {0, ..., |X|−1}, we
need to find a solution, i.e., an assignment of values of variables in {x0, ..., x|X|−1}
such that (1) is satisfied. Each assignment implies a partition of n blocks and
thus an FSM with n states consistent with T .

3.2 Encoding as a SAT problem

The previous CSP formulas can be translated to SAT using unary coding for each
integer variable x ∈ X: x is represented by n Boolean variables vx,0, vx,1, ..., vx,n−1.
To identify the initial state we have the clause:

vx0,0 (2)

It means that the state x0 should be in the first block.

For each state x ∈ X, we have the clause:

vx,0 ∨ vx,1 ∨ ... ∨ vx,n−1 (3)

These clauses mean that each state should be in at least one block.

For each state x and ∀i, j ∈ B such that i 6= j, we have the clauses:

¬vx,i ∨ ¬vx,j (4)

These clauses mean that each state should be in at most one block.

The clauses 3 and 4 encode the fact that each state should be in exactly one
block.



For every incompatible states x, x′ ∈ X and ∀i ∈ B, we have the clauses:

¬vx,i ∨ ¬vx′,i (5)

These clauses mean that two incompatible states should not be in the same block.

For every states x, x′ ∈ X such that λ(x, a) = λ(x′, a), and ∀i, j ∈ B, we have a
Boolean formula (which can be translated trivially into clauses):

(vx,i ∧ vx′,i)⇒ (v∆(x,a),j ⇒ v∆(x′,a),j) (6)

These clauses enforce determinism.

Note that the clauses (5) encode the first line of the CSP constraint (1) and
the clauses (6) encode the second line. An existing SAT solver [5,6,10,20] can be
used to check satisfiability of the obtained formula.

3.3 Auxiliary variables

Heule and Verwer [15] propose to use auxiliary variables, replacing formula (6)
and add some additional clauses. They provide experimental results which indi-
cate that their encoding is sufficiently efficient. Namely, for a ∈ I and 0 ≤ i, j <
n, variable ya,i,j is introduced for True value means that for any state in block
i, the next state reached with input a is in the block j. These variables are used
to form the following clauses.

For each transition (x, a, o, x′) ∈ T and for every i, j ∈ B:

ya,i,j ∨ ¬vx,i ∨ ¬vx′,j (7)

This means that blocks i and j are related for input a if state x is in the block
i and its successor x′ on input a is in the block j.

For each input symbol a ∈ I, for every i, h ∈ B and for each j ∈ {h+ 1, n− 1}:

¬ya,i,h ∨ ¬ya,i,j (8)

This means that each block relation can include at most one pair of blocks for
each input to enforce determinism.

For each input symbol a ∈ Σ and each i ∈ B:

ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 (9)

This means that each block relation must include at least one pair of blocks for
each input to enforce determinism.



For each transition (x, a, o, x′) ∈ T and for every i, j ∈ B:

¬ya,i,j ∨ ¬vx,i ∨ vx′,j (10)

This means that once blocks i and j are related for input a and state x is in the
block i then its successor x′ on input a must be in the block j.

Among these clauses, some are redundant. Nevertheless, their use improves
the performance of FSM inference as work in [15] suggests.

3.4 Symmetry Breaking

It is possible that for certain formulations of a SAT formula, some assignments
are equivalent, i.e., represent a same solution. In this case, we say that we have
a symmetry. A good practice is to break this symmetry [2,3,8] by adding con-
straints such that different assignments satisfying the formula represent different
solutions.

The above formulation can result in a significant amount of symmetry be-
cause any permutation of the blocks is allowed. This fact has already been no-
ticed in the literature and the strategy adopted in [1,15] consists in placing each
state in a certain subset to a fixed distinct block. To this end, we can use the
state incompatibility graph which has |X| nodes and two nodes are connected iff
the corresponding states of W are incompatible. Clearly, each state of a clique
(maximal or smaller) must be placed in a distinct block. Hence, we can add to
the SAT formula clauses for assigning initially each state from the clique to a
separate block.

Table 1. Summary for encoding passive inference from ISFSM W = (X,x0, I, O, T )
into SAT. n is the maximal number of states in an FSM to infer, B = {0, ..., n− 1}.

Ref Clauses Range

(2) vx0,0

(3) (vx,0 ∨ vx,1 ∨ ... ∨ vx,n−1) x ∈ X
(4) (¬vx,i ∨ ¬vx,j) x ∈ X; 0 ≤ i < j < n
(5) (¬vx,i ∨ ¬vx′,i) x � x′; i ∈ B
(7) (ya,i,j ∨ ¬vx,i ∨ ¬vx′,j) (x, a, o, x′) ∈ T ; i, j ∈ B
(8) (¬ya,i,h ∨ ¬ya,i,j) a ∈ I;h, i, j ∈ B;h < j
(9) (ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1) a ∈ I; i ∈ B
(10) (¬ya,i,j ∨ ¬vx,i ∨ vx′,j) (x, a, o, x′) ∈ T ; i, j ∈ B



4 Incremental Inference

To alleviate the complexity associated with large sets containing lengthy traces,
we propose an approach which, instead of attempting to process all the given
traces in the set T at once, iteratively infers an FSM from their subset (initially
it is an empty set) and uses active inference to refine it when it is not consistent
with one of the given traces. While active inference usually uses a black box as
an oracle capable of judging whether or not a trace belongs to the model, we
assign the role of an oracle to a set of traces T . Even if this oracle is restricted
since it cannot generate traces for all possible input sequences, nevertheless,
as we demonstrate, it leads to an efficient approach for passive inference from
execution traces.

The proposed approach is elaborated in two methods performing different
refinements of a conjecture inconsistent with a given set of traces. Refinement
needs to be performed when the shortest prefix ω of a trace in T which is
not a trace of the conjecture is found. The first type of refinement consists in
adding ω to the conjecture’s initial state which is achieved by formulating the
corresponding constraints. We present this method in Section 4.1. The second
type of refinement consists in adding not ω but its shortest suffix ω′ which is not
a trace of any state of the conjecture. The suffix ω′ is added to some state of the
conjecture which is achieved by formulating the corresponding constraints. This
method is elaborated in Section 4.2.

We provide the results of experimental evaluation of the two methods and
discuss them in Section 4.3.

4.1 Prefix-based method

Let T be a set of traces (generated by a deterministic FSM). We want to find a
minimal FSM consistent with T iteratively. To do that, we search for an FSM M
with at most n states satisfying a growing set of constraints (initially we do not
have any constraints). If no solution is found, it means that the state number
n is too low. In this case we increase n and start again. If a solution is found
and M is consistent with T , then we return this solution. Otherwise, we find the
shortest prefix of a trace ω in T not accepted by M . Then, we use SAT encoding
described in the previous section to formulate the constraint that ω has to be a
trace of the conjecture.

The approach is formalized in Algorithm 1.

Theorem 1. Given a set of traces T , Algorithm 1 returns an FSM consistent
with T if it exists or false otherwise.

Proof. If line 5 is reached, then T ⊆ TrM . So M is consistent with T . If line
10 is reached, then C encoding the fact that all traces of T have to be included
in an FSM with at most n states is not satisfiable. So, there is no FSM with
at most n states consistent with T . The termination is assured because in each
while loop, additional trace of T is considered. When all traces are considered



Algorithm 1 Infer an FSM from a set of traces

Input: A set of traces T and an integer n.
Output: An FSM with at most n states consistent with T if it exists.

1: C := ∅
2: while C is satisfiable do
3: Let M be an FSM of a solution of C
4: if T ⊆ TrM then
5: return M
6: end if
7: Let ω be the shortest trace in T \TrM
8: C := C∧Cω, where Cω is clauses encoding the fact that ω ∈ TrM using Table 1
9: end while

10: return false

then either there is a solution and T ⊆ TrM terminates the function, or there
is no solution and the while condition is no longer respected.

Corollary 1. Let T be a set of traces. If we call Algorithm 1 incrementally by
increasing n from n = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .

4.1.1 Example

We illustrate Algorithm 1 with a simple example of a small program, see
Algorithm 2.
Let w = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong
.pause/pause.ping/pause.pause/pong.ping/pause.ping/pause.pause/pause
.ping/pause.ping/pause.pause/ping.ping/pong.ping/pong... be the only trace
in T obtained by random execution of the program.

Algorithm 2

1: while true do
2: Event msg = receive();
3: if msg == ping then
4: send(pong);
5: end if
6: if msg == pause then
7: send(pause);
8: while receive() 6= pause do
9: send(pause);

10: end while
11: send(pong);
12: end if
13: end while



Initially, we consider as a conjecture the trivial FSM with the empty trace.
The shortest prefix trace inconsistent with this conjecture is ping/pong, and so,
some clauses are added to ensure that the trace ping/pong is accepted. A new
conjecture is an FSM with a single state having self-looping transition labeled
ping/pong. This time, the shortest prefix inconsistent with this conjecture is
ping/pong.pause/pause. This trace yields new constraints leading to a next con-
jecture with a single state having two self-looping transitions labeled ping/pong
and pause/pause. This conjecture is consistent with the two considered traces
ping/pong and ping/pong.pause/pause but still not with the whole w. The pro-
cess continues while the constraints are satisfiable. All the executed steps are
illustrated in Figure 1. A trace beneath a conjecture is a prefix used to obtain
the conjecture.

ping/pong

ω = ping/pong

ping/pong

pause/pause

ω = ping/pong.pause/pause

ping/pong

pause/pause

ping/pause

ω = ping/pong.pause/pause.ping/pause

ping/pong

pause/pause

ping/pause

ω = ping/pong.pause/pause.ping/pause.ping/pause

ping/pong

pause/pause

ping/pause

pause/pong

ω = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong

Fig. 1. Inferring an FSM from trace ping/pong.pause/pause.ping/pause.ping/pause
.pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong.pause/pause
.ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with Algorithm 1.



4.1.2 Evaluation

To the best of your knowledge, the approach of Heule and Verwer [15] is
currently the most efficient encoding of the FSM inference into SAT. In this
section, we provide results of experimental comparison of their approach with
ours.

We have implemented the encoding of the inference problem to SAT using
the Heule and Verwer’s formulas as described in Table 1. We use H&V and
Prefix-based to refer to the method of Heule and Verwer and Algorithm 1,
respectively.

The prototype was implemented in C++ calling the SAT solver Cryptomin-
isat [20]. The experiments were carried out on a machine with 8 GB of RAM
and an i7-3537U processor.

We randomly generate FSMs with seven states, two inputs a and b, and two
outputs 0 and 1. Each state si is linked to the state si+1 mod 8 by a transition with
input a and a random output to ensure that machines are strongly connected.
Then we complete an FSM in a random way. Fig. 2 shows an example of such a
construction.

s0

s1

s2

s3s4

s5

s6

a/0

a/1

a/1

a/0

a/1

a/0

a/0

b/1

b/1

b/0

b/0 b/1

b/1 b/0

Fig. 2. Example of a random FSM.

Given an FSM, traces of various length are randomly generated. Table 2 and
Table 3 show time used to infer an FSM from a single trace and 100 traces,
respectively. For each length of traces, we calculate the average time used to
infer a machine over ten instances.



Table 2. Seconds to infer an FSM from a trace.

Length H&V Prefix-based

1k 2.5 0.2
2k 7.3 0.2
4k 20 0.2
8k 53 0.2
16k 190 0.3
32k Out of Memory 0.5
64k Out of Memory 1.5

Table 3. Seconds to infer an FSM from 100 traces.

Length H&V Prefix-based

100 31 < 0.1
200 140 < 0.1
400 590 < 0.1
1k Out of Memory 0.1
10k Out of Memory 3.8

The results in Table 2 and 3 indicate that the proposed approach performs
much better than that of [15]. Moreover, they show that time used by Algo-
rithm 1 grows very slow when the size of traces increases. This is due to the
fact that the approach of [15] uses all the traces at once for inference while our
approach is incremental and requires a minimal prefix of a single trace among
the given traces in each iteration.

Table 4. Inferring FSM from a single trace with length 100k by Algorithm 1.

# States Checking T ⊆ TrM SAT Solving Total

5 3.33 sec. 0.003 sec. 3.46 sec.
6 3.28 sec. 0.02 sec. 3.42 sec.
7 3.28 sec. 0.076 sec. 3.48 sec.
8 3.27 sec. 0.57 sec. 3.98 sec.
9 3.28 sec. 7.23 sec. 10.7 sec.
10 3.28 sec. 28.6 sec. 32.0 sec.

Table 5. Inferring FSM from a single trace with 10 states by Algorithm 1.

Length Checking T ⊆ TrM Solving SAT Total

25k 0.17 sec. 22.9 sec. 23.2 sec.
50k 0.79 sec. 25.1 sec. 26.0 sec.
75k 1.83 sec. 26.4 sec. 28.3 sec.
100k 3.28 sec. 28.6 sec. 32.0 sec.



In Table 4 and Table 5, we show the results obtained when we push our
algorithm to its limits.

In Table 4, we increase the state number and set the length of generated
traces to 100k. In Table 5, we set the state number to 10 and increase the trace
length generated by this FSM.

We can see that the time (an average of 100 instances) used by the SAT
solver depends on the number of states of the machine to infer, but very little
on the length of the traces used. On the other hand, the time to test the trace
inclusion depends on the length of a trace, but not on the number of states in
the FSM to infer.

It is not surprising that overall time grows rapidly with the number of FSM
states to infer (because the problem remains NP-Complete), on the other hand,
it is interesting to notice that time grows almost linearly with the length of
traces.

4.2 Suffix-based method

In the prefix-based method, when a generated conjecture M is inconsistent with
T , we use the shortest prefix of a trace to refine the conjecture. Clearly, the
longer the prefix the more clauses are added to the constraints. This observation
motivates our second method which is using a different refinement.

The idea is that when we find the shortest trace ω which is in T but not
in M , we determine a suffix ω′ of ω such that ω′ is not a trace of any state of
the conjecture M . Then if we add the constraint that there exists a state s such
that ω′ must be accepted by M in state s, thus M is refuted and will be refined.
If a refined conjecture which accepts w′ does not accept the whole w yet then
a longer suffix is considered in the next iteration until w is in TrM . When the
suffix ω′ is shorter than ω, the number of added clauses can be smaller compared
to the use of ω.

Theorem 2. Given a set of traces T , Algorithm 3 returns an FSM consistent
with T if it exists or false otherwise.

Proof. If line 5 is reached, then T ⊆ TrM and so M is consistent with T . If line
14 is reached, then all the traces of T cannot be represented by an FSM with n
states. The termination is assured because in each while loop, additional suffix
of a trace of T is considered. When all suffixes of all traces are considered then
either there is a solution and T ⊆ TrM terminates the function, or there is no
solution and the while condition is no longer respected.

Corollary 2. Let T be a set of traces. If we call Algorithm 3 incrementally by
increasing n from n = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .



Algorithm 3 Infer an FSM from a set of traces.

Input: A set of traces T and an integer n.
Output: An FSM with a most n states consistent with T if it exists.

1: C := ∅
2: while C is satisfiable do
3: Let M be an FSM of a solution of C
4: if T ⊆ TrM then
5: return M
6: end if
7: Let ω be the shortest trace in T \TrM
8: if ∃ω′ the shortest suffix of ω such that ∀s, ω′ /∈ Tr(s) then
9: C := C ∧ C′ω, where C′ω is clauses encoding the fact that ∃s : ω′ ∈ Tr(s)

using Table 1 without the first constraint.
10: else
11: C := C ∧ Cω, where Cω is clauses encoding the fact that ω ∈ TrM using

Table 1.
12: end if
13: end while
14: return false

4.2.1 Example

We illustrate the suffix-based method with the example from Section 4.1.1.
We use the same trace w = ping/pong.pause/pause.ping/pause.ping/pause
.pause/pong.pause/pause.ping/pause.pause/pong.ping/pause.ping/pause
.pause/pause.ping/pause.ping/pause.pause/ping.ping/pong.ping/pong... as the
only trace in T obtained by executing Algorithm 2. Fig. 3 shows intermediate
conjectures with the suffixes added to obtain them.

4.2.2 Evaluation

Comparing the execution of the two methods on the same trace in Sections
4.1.1 and 4.2.1, one can notice that the suffix-based method uses instead of a
long trace with an event making a conjecture inconsistent just its much shorter
suffix with that event. An example of such an event in the trace is ping/pause.
Intuitively, all things being equal, a suffix could be shorter than a prefix when
an event causing inconsistence occurs seldom.

To check this hypothesis, we decided to extend the experiments reported in
the last row of Table 2, where a trace of the length 64000 belongs to an FSM
randomly generated as explained in Section 4.1.2. This time we vary the chances
for input b to appear. Table 6 contains the averages of ten instances for each
value of probability.

We can see that when all inputs are equiprobable (Line 1 of the Table 6), the
second algorithm is a little slower. On the other hand, time used by the prefix-



ping/pong

ω = ping/pong

ping/pong

pause/pause

ω′ = pause/pause

ping/pong

pause/pause

ping/pause

ω′ = ping/pause

ping/pong

pause/pause

ping/pause

ω′ = ping/pause ping/pause

ping/pong

pause/pause

ping/pause

pause/pong

ω′ = pause/pong

Fig. 3. Inferring an FSM from trace ping/pong.pause/pause.ping/pause
.ping/pause.pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong
.pause/pause.ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with Algo-
rithm 3

.

Table 6. Seconds to infer an FSM from a trace with different probabilities of input b.

Probability of b Prefix-based Suffix-based

50 % 1.5 2.4
25 % 1.4 1.4
10 % 1.4 1.4
1 % 3.5 1.4

0.5 % 6.0 1.5
0.3 % 16 1.4
0.2 % 90 1.5
0.1 % Out of Memory 1.6

closed method grows when an input rarely appears, but it remains constant with
the suffix-closed method, as expected in the hypothesis.

4.3 Discussion

We presented two methods for incremental inference of a minimal FSM con-
sistent with a given set of traces. As could be expected, experimental results
indicate that inference from an incrementally growing subset of traces has a big
advantage compared to the classical inference from all the given traces at once,
as in the method of Heule and Verwer [15] when the traces are rather long and
numerous. The reason for that is the proposed approach avoids as long as possi-
ble to generate constraints from the whole initial traces, and tries to find instead



their appropriate portions, prefixes, as in the prefix-based method or suffixes, as
in the suffix-based method.

Comparing the two proposed methods, we understand that their efficiency
depends on intricate properties of given traces. Preliminary experiments confirm
our hypothesis that rare key events in a trace may create favorable conditions
for the suffix-based method to perform more efficiently than its counterpart, the
prefix-based method.

5 Industrial Case Study

Our industrial partner provided us with logs of a flight simulator expecting us
to produce state machine models of some components involved in the logged
executions of the simulator. Models are considered as an important part of doc-
umentation, especially for legacy components and components from the third
party. They facilitate change impact analysis, regression testing and other tasks
of simulator development and maintenance.

The logs are normally collected while executing flight scenarios defined by
experts and come in the form of time series of at least 12000 steps.

Clearly, using traditional inference methods directly on time series is out of
the question; preprocessing we performed includes their partitioning into smaller
time series caused by inputs and replacing time series which are ”close” to others
such that a limited number of time series become outputs in a state machine
model. Vectors of values of input variables present in a log become inputs in the
model. In the processed traces their number reaches a dozen. The inferred FSMs
have up to ten states.

Flight simulator experts consider the resulting models sufficiently adequate
and useful. In this case study log preprocessing turns out to be more challenging
and time consuming than the model inference with the prototype we developed.
The scalability of the whole approach may, however, be an issue for processing
logs resulting from long flight scenarios. The latter need more aggressive prepro-
cessing, e.g., excluding parts where “not much happening”, this would favor our
suffix-based method which looks for turning events.



6 Conclusion

In this paper we considered the problem of inferring a minimal FSM consistent
with a set of long traces. Although this problem has extensively been studied, the
efficiency of the existing methods deteriorates quickly with the size of the given
traces. We proposed in this paper an approach aimed at dealing with long traces.
The need for it comes from the observation that the more and longer traces are
collected from a component under observation, the higher the confidence that
they are sufficiently representative and would yield an adequate model.

Addressing the scalability issue, we proposed an approach which does not
process all the given traces at once, instead it does this incrementally. The idea
of processing a set of traces incrementally is to consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing
the whole counterexample trace. The approach is SAT-solving based and has
the advantage of having a lower sensibility to the length and number of sample
traces compared to the existing approaches.

The experimental results indicate that the proposed approach is sufficiently
efficient especially for long traces where some inputs occur rather rarely. We plan
to perform more experiments to find other ways of improving efficiency.

Acknowledgements
This work was partially supported by MESI (Ministre de lconomie, Science

et Innovation) of Gouvernement du Qubec, NSERC of Canada and CAE.

References

1. Andreas Abel and Jan Reineke. Memin: SAT-based exact minimization of in-
completely specified mealy machines. In Computer-Aided Design (ICCAD), 2015
IEEE/ACM International Conference on, pages 94–101. IEEE, 2015.

2. Fadi A Aloul, Arathi Ramani, Igor L Markov, and Karem A Sakallah. Solving
difficult SAT instances in the presence of symmetry. In Proceedings of the 39th
annual Design Automation Conference, pages 731–736. ACM, 2002.

3. Fadi A Aloul, Karem A Sakallah, and Igor L Markov. Efficient symmetry breaking
for boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, 2006.

4. Dana Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and computation, 75(2):87–106, 1987.

5. Gilles Audemard and Laurent Simon. The glucose SAT solver, 2013.

6. Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4:75–97, 2008.

7. Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE transactions on Computers, 100(6):592–597,
1972.



8. Cynthia A Brown, Larry Finkelstein, and Paul Walton Purdom Jr. Backtrack
searching in the presence of symmetry. In International Conference on Applied Al-
gebra, Algebraic Algorithms, and Error-Correcting Codes, pages 99–110. Springer,
1988.
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