
A Logic of Information Flows
(Preliminary Report)

Eugenia Ternovska
Simon Fraser University, Canada

ter@sfu.ca

Abstract

We propose a KR formalism for combining heterogeneous
components – web services, knowledge bases, declarative
specifications such as Integer Liner Programs, Constraint Sat-
isfaction Problems, Answer Set Programs etc.. The formal-
ism is a family of logics, where atomic modules – formally,
classes of structures – are combined using operations of ex-
tended Relational algebra, or, equivalently, first-order logic
with a least fixed point construct. Inputs and outputs of atomic
modules indicate directionality of the information flows. As a
result of this small addition, an interesting modal logic, sim-
ilar to Dynamic Logic, is obtained. Many binary operations,
including those studied in the calculi of binary relations and
the standard constructs of imperative programming become
definable. We study properties of this logic and identify an
efficient fragment where the main computational task is solv-
able in deterministic polynomial time.

Introduction
Our goal is to introduce a Logic of Information Flows. We
do it in two stages. The first idea is that we can use first-
order logic as a versatile language for applying and com-
bining modules – which are classes of structures – web ser-
vices, declarative specifications with associated solvers, In-
teger Liner Programs, Constraint Satisfaction Problems etc.1
While the syntax of our formalism is first-order, the seman-
tics is second-order because variables range over relations.
We use a version of Codd relational algebra instead of first-
order logic, but the idea is the same. We also add least fixed
points. Essentially, we redefine FO(LFP) over a vocabulary
of modules that replaces a relational vocabulary. This gives
us the first logic.

The second stage is adding information flows, to develop
a logic where modules are input-output relations. Toward
this goal, we describe the Model Expansion task (Mitchell
and Ternovska 2005a; Kolokolova et al. 2010), a funda-
mental computational task solved in many declarative ap-
proaches to constraint solving.

Model Expansion initiates information flows. To take in-
formation propagation into account, we partition the rela-
tional variables of atomic modules into inputs and outputs,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In database terminology, a module is a boolean query.

thus viewing the modules as solving model expansion tasks.
Input-output partitioning turns formulae of classical logic
into binary in terms of generalized variables ranging over
structures. We obtain an algebra of binary relations.

Algebras of binary relations have been studied before.
A calculus of binary relations was first introduced by De
Morgan. It has been extensively developed by Peirce and
then Schröder. It was abstracted to relation algebra RA in
(Jónsson and Tarski 1952). More recently, relation algebras
were studied by Fletcher, Van den Bussche, Surinx and their
collaborators in a series of paper, see, e.g. (Surinx, den Buss-
che, and Gucht 2017; Fletcher et al. 2015). The algebras of
relations consider various subsets of operations on binary re-
lations as primitive, and other as derivable. In another direc-
tion, (Jackson and Stokes 2011; McLean 2017) and others
study partial functions and their algebraic equational axiom-
atizations.

The main contributions of this paper are as follows. We
identify a single component – information flows, which is
responsible for a rich variety of definable operations – those
studied in the algebras of binary relations and partial func-
tions. It is quite surprising that, by a simple step of adding
a specification of inputs and outputs to classical logic, we
obtain a multitude of such operations. Our work shows that
information propagation is a basic and a fundamental con-
cept. We study many properties of the operations we obtain.

Information flows also turn classical logic into modal,
similar to the mu-calculus and Dynamic Logic. The modal
logic is stronger than classical because e.g. it allows a new
kind of quantification – over information flows. Due to the
origin in classical logic and Model Expansion, the integra-
tion of processes and data is taken to the highest degree pos-
sible – both processes and states in the transition system are
structures over the same vocabulary.

Despite the high expressiveness of the formalism (com-
munication between modules happens through second-order
variables, and fixed points put us into the third order), we
identify a PTIME fragment of the language. The fragment
is natural because its second-order variables represent com-
puter registers, and the operations define the standard im-
perative programming constructs. The connection to binary
relations allows us to take advantage of the good proper-
ties of bounded-variable fragments in the complexity analy-
sis (Vardi 1995).

Model Expansion, Related Tasks
Model Expansion (Mitchell and Ternovska 2005b) is the
task of expanding a structure to satisfy a specification (a for-
mula in some logic). It is the central task in several declar-
ative programming paradigms: Answer Set Programming,
Constraint Satisfaction Problem, Integer Linear Program-
ming, Constraint Programming, etc. We discuss model ex-
pansion in the context of two related problems.

For a formula φ in any logic L with model-theoretic se-
mantics, we can associate the following three tasks (all three
for the same formula), satisfiability (SAT), model checking
(MC) and model expansion (MX). We now define them for
the case where φ has no free object variables.
Definition 1 (Satisfiability (SATφ)). Given: Formula φ.
Find: structure B such that B |= φ. (The decision version
is: Decide: ∃B s.t. B |= φ?)

Definition 2 (Model Checking (MC)). Given: Formula φ,
structure A for vocab(φ). Decide: A |= φ?

There is no search counterpart for this task.
The following task (introduced in (Mitchell and Ter-

novska 2005b)) is at the core of this paper. The decision
version of it can be seen as being of the form “guess and
check”, where the “check” part is the model checking task
we just defined.
Definition 3 (Model Expansion (MXσφ)). Given: Formula
φ with designated input vocabulary σ ⊆ vocab(φ) and σ-
structure A. Find: structure B such that B |= φ and ex-
pands σ-structure A to vocab(φ). (The decision version is:
Decide: ∃B s. t. B |= φ and expands σ-structure A to
vocab(φ)?)

Vocabulary σ can be empty, in which case the input struc-
ture A consists of a domain only. When σ = vocab(φ),
model expansion collapses to model checking, MXσφ =
MCφ. Note that, in general, the domain of the input struc-
ture in MC and MX can be infinite.

Let φ be a sentence, i.e., has no free object variables.
Data complexity (Vardi 1982) is measured in terms of the
size of the finite active domain. For the decision versions of
the problems, data complexity of MX lies in-between model
checking (full structure is given) and satisfiability (no part
of structure is given):

MCφ ≤ MXσφ ≤ SATφ.

For example, for FO logic, MC is non-uniform AC0, MX
captures NP (Fagin’s theorem), and SAT is undecidable. In
SAT, the domain is not given. In MC and MX, at least, the
(active) domain is always given, which significantly reduces
the complexity of these tasks compared to SAT. The rela-
tive complexity of the three tasks for several logics (includ-
ing ID-logic of (Denecker and Ternovska 2008) and guarded
logics) has been studied in (Kolokolova et al. 2010).

Algebras: Static and Dynamic
For essentially the same syntax, we produce two algebras,
static and dynamic, by giving different interpretations to the
algebraic operations and to the elements of the algebras. In

the second algebra, atomic modules have a direction of in-
formation propagation, which corresponds to solving MX
task for those modules. The algebras correspond to classical
and modal logics, respectively.

Syntax Assume we have a countable sequence Vars =
(X1, X2, . . .) of relational variables each with an associ-
ated finite arity. For convenience, we use X , Y , Z, etc. Let
ModAt = {M1,M2, . . . } be a fixed vocabulary of atomic
module symbols. EachMi ∈ ModAt has an associated vari-
able vocabulary vvoc(Mi) whose length can depend on Mi.
We may write Mi(Xi1 , . . . , Xik), (or Mi(X̄)), to indicate
that vvoc(M) = (Xi1 , . . . , Xik). Similarly, ModVars =
{Z1, Z2, . . . } is a countable sequence of module variables,
where eachZj ∈ ModVars has its own vvoc(Zj). Algebraic
expressions are built by the grammar:

α ::= id |Mi |Zj | α∪α | α− | πδ(α) | σΘ(α) | µZj .α. (1)

Here, Mi is any symbol in ModAt of the form Mi(X̄), δ
is any finite set of relational variables in Vars, Θ is any ex-
pression of the formX ≡ Y , for relational variables of equal
arity that occur in α, Zj is a module variable in ModVars
which must occur positively in the expression α, i.e., under
an even number of the complementation (−) operator.

Atomic modules can be specified in any formalism with
a model-theoretic semantics. Modules occurring within one
algebraic expression can be axiomatized in different logics.
They can also be viewed as abstract decision procedures.
But, as far as the algebra is concerned, their only relevant
feature is the classes of structures they induce.

Static (Unary) Semantics Fix a finite relational vocabu-
lary τ . A variable assignment s is a function that assigns,
to each relational variable, a symbol in τ of the same arity.
Now fix a domain Dom.2 The domain can be finite or in-
finite. Let U be the set of all τ -structures over the domain
Dom. Given a sub-vocabulary γ of τ , a subset V ⊆ U is
determined by γ if it satisfies

for all A,B ∈ U such that A|γ = B|γ we have
A ∈ V iff B ∈ V.

Given a well-formed algebraic expression α defined by
(1), we say that structure A satisfies α (or that is a model
of α) under variable assignment s, notation A |=s α, if
A ∈ [α], where unary interpretation [·] is defined as
follows. Given a variable assignment s, function [·] as-
signs a subset [Mi] ⊆ U and a subset [Zj] ⊆ U to each
Mi ∈ ModAt and each Zj ∈ ModVars, with the property
that [Mi] is determined by s(vvoc(Mi)) (respectively, [Zj]
is determined by s(vvoc(Zj))). The unary interpretation of
atomic modules [·] (parameterized with s) can be viewed
as a function that provides “oracles” or decision procedures.
We extend the definition of [·] to all algebraic expressions.

2Usually, in applications, domain Dom is the (active) domain
of an input structure for a task of interest such as MX. The se-
mantics of the algebra can also be given in terms of axiomatizing
classes of structures, but this is not necessary for this paper.

[id] := U.
[α1 ∪ α2] := [α1] ∪ [α2].
[α−] := U \ [α].
[πδ(α)] := {A ∈ U | ∃B (B ∈ [α] and A|τ = B|τ)}.
[σX≡Y (α)] := {A | A ∈ [α] and A|s(X) = B|s(Y)}.
[µZj .α] :=

⋂{
R ⊆ U | [α][Z:=α] ⊆ R

}
.

Here, [α][Z:=α] means an interpretation that is exactly like
[·], except Z is interpreted as α.

Example 1. LetMHC(N,X, Y) andM2Col(N,X,Z, T) be
atomic modules “computing” a Hamiltonian Circuit and a
2-Colouring, respectively. For example, MHC can be repre-
sented as an Answer Set Programming program, and M2Col

be an imperative program or a human child with two pencils.
The first module decides if Y forms a Hamiltonian Circuit
(represented as a set of edges) in the graph given by vertex
set N and edge set X . The second module decides if unary
relations Z, T specify a proper 2-colouring of the graph. The
following expression determines whether or not there is a 2-
colourable Hamiltonian Circuit.

α2Col−HC(N,X,Z, T) :=
πN,X,Z,T ((MHC(N,X, Y) ∩M2Col(N,Y, Z, T)).

To check whether a τ -structure A satisfies α2Col−HC, i.e.,
A |=s α, we need to use function s to match the variables
{N,X,Z, T} with predicate symbols {V,E,R,B} ⊆ τ ,
and then apply the semantics. In particular, we would need to
check whether graph (V A, EA) with verticies V A and edges
EA has some Hamiltonian Circuit according to MHC, and
that the graph with nodes V A and edges formed by the cir-
cuit is 2-colourable according to M2Col.

Note that communications between modules happen
through second-order variables. First-order variables can be
imitated by ensuring that second-order variables range over
singleton sets.

Dynamic (Binary) Semantics Let ModAtI/O denote the
set of all atomic module symbols M with all possible par-
titions of vvoc(M) into inputs and outputs, i.e., I(M) ∪
O(M) = vvoc(M) and I(M) ∩ O(M) = ∅.3 This set
is larger than the set ModAt (unless both are empty) be-
cause the same M can have several different input-output
assignments. Similarly, we define ModVarsI/O. The well-
formed algebraic expression α is defined, again, by (1), ex-
cept, in the atomic case, we have modules (resp. variables)
from ModAtI/O (resp. from ModVarsI/O). Inputs I(α) and
outputs O(α) of well-formed algebraic expression α are de-
fined as follows. Inputs and outputs of the atomic modules
in α must agree with I(α) and O(α) on the free variables,
and can be arbitrary on the other variables.4

Let s be as above. Given a well-formed α, we say that pair
of structures (A,B), satisfies α under variable assignment
s, notation (A,B) |=s α, if (A,B) ∈ JαK, where binary

3Either one of these sets, I(α), O(α), can be empty.
4Free variables are defined as in first-order logic, where ∃-

quantified variables are those that are not projected onto.

interpretation J · K is defined as follows. For atomic modules
in ModAtI/O, we have:

JMK :=
{

(A,B) ∈ U×U |
A|τ\s(O(M)) = B|τ\s(O(M)) and B ∈ [M]

}
.

(2)

Similarly, for Z ∈ ModVarsI/O. Intuitively, an atomic mod-
ule produces a replica of the current structure except the in-
terpretation of the output vocabulary changes as specified
by the action.5 An illustration of the binary semantics for
atomic modules is given in Example 2 below. We extend the
binary interpretation J·K to all expressions α:

JidK := {(A,B) ∈ U×U | A = B}.
Jα1 ∪ α2K := Jα1K ∪ Jα2K.
Jα−K := U×U \ JαK.
JµZj .αK :=

⋂{
R ⊆ U×U : JαK[Z:=R] ⊆ R

}
.

Jπδ(α)K := {(A,B) ∈ U×U |
∃ (A′,B′) ∈ JαK : A′|s(δ) = A|s(δ) and B′|s(δ) = B|s(δ)}.

JσX≡Y (α)K :=(A,B) ∈ JαK

∣∣∣∣∣∣∣
(s(X))A = (s(Y))A if {X,Y } ⊆ I(α),
(s(X))B = (s(Y))B if {X,Y } ⊆ O(α),
(s(X))A = (s(Y))B) if X ∈ I(α) and

Y ∈ O(α).

Operation id is sometimes called the “nil” action, or it can

be seen as an empty word denoted ε in the formal language
theory.

It is convenient to extend the selection operation to Θ ∈
{X ≡ Y,X 6≡ Y,X ≡ ∅, X 6≡ ∅}, although these cases
are already covered by the semantics above.

We now illustrate the fact that each atomic module is, si-
multaneously, (a) a set of structures, according to the unary
semantics, and (b) a set of pairs of structures, according to
the binary semantics. We also illustrate the Law of Inertia
used in the semantics of atomic modules (2).
Example 2. Consider a 3-Colouring module
M3Col(X,Y , Z, T,W). The inputs are underlined. Let
s(I(M3Col)) = (V,E) and s(O(M3Col)) = (R,G,B).
Let a domain Dom and an interpretation of edges (E)
and vertices (V) be given on the input of this module, and
colours (R, G, B) are obtained on the output. The MX task
can be represented as a set of all {V,E,R,G,B}-structures
which expand {V,E}-structures over this domain to satisfy
a specification Ψ of 3-Colouring in some logic.

First, consider the binary semantics (2) for this module.
On the input, we have a τ -structure A such that A|{V,E},
the interpretation of {V,E} ⊆ τ , is the graph of interest.
Each output structure B consists of: (a) B|{R,G,B}, that is
a proper 3-Colouring, (b) A|{V,E}, which is the input graph,
transferred from A to B by inertia, (c) the interpretation of
all other symbols of τ , also moved from A by inertia. In
Figure 1, L is the input graph, R is a particular 3-Colouring.

According to the unary semantics, the atomic module
is the set of τ -structures with the domain Dom, where
{V,E,R,G,B} ⊆ τ are interpreted according to the spec-
ification Ψ, and the interpretations of the symbols in τ \

5This is similar to the inertia law for primitive actions in the
Situation Calculus (Reiter 2001).

{V,E,R,G,B} are interpreted arbitrarily. In Figure 1, the
structure that describes the transition (shown horizontally)
corresponds to a particular 3-Colouring of a particular graph.

Preservation of unmodified parts of a structure is a fun-
damental law that we call the Law of Inertia. Figure 1 illus-
trates actions-as-structures and the Law of Inertia for atomic
modules.

M
L

R
τ τ

A B

Figure 1: An atomic module M as a set of τ -structures.
Let I(M) = σ, O(M) = ε, and s(σ) ∪ s(ε) ⊆ τ . The Fig-
ure shows a transition A

M−→ B of atomic module M(σ, ε)
according to one of its structures. The structure has in-
terpretation L = (s(σ))A, under the assignment s, of its
input relational variables σ on the left, and interpretation
R = (s(ε))B of its output variables ε on the right. By the
Law of Inertia, the interpretation of everything that is not
modified by this action (i.e., of what is in τ \ s(ε)) is trans-
ferred from structure A to structure B. Since, in general, M
can be non-deterministic, there is such a transition for each
of the structures in M . Thus, a module is both a set of struc-
tures, and a set of pairs of structures.

In the next example, we will use intersection (∩), which
is a definable operation. We will see this and many more
definable operations in the next section.
Example 3. Consider again α2Col−HC(N,X,Z, T). In each
atomic module, we underline designated input symbols:

πN,X,Z,T (MHC(N,X, Y) ∩M2Col(N,Y , Z, T)).

First, MHC(N,X, Y) makes a transition by producing
possibly several Hamiltonian Circuits. The interpretation
of the output Y changes, everything else is transferred by
inertia. Each resulting structure is taken as an input to
M2Col(N,Y , Z, T), where edges in the cycle, Y , are “fed”
to M2Col, although this is hidden from the outside observer.
The second module produces non-deterministic transitions,
one for each generated colouring, if they exist.

Note that, as in Codd’s relational algebra, relational vari-
ables can be omitted. That is, we can simply write:

πN,X,Z,T (MHC ∩M2Col).

The need for recursion can be seen from e.g. specifica-
tions of dynamic programming algorithms on tree decom-
positions, such as one for 3-Colouring, where a 3-Colouring
module is applied recursively. We do not have space for such
an example, but we illustrate the recursive constructs by two
shorter examples at the end of the paper.

In applications, we check whether a program α has a suc-
cessful execution, including a witness for its free relational
variables, starting from an input structure A. This is speci-
fied by A |=s |α〉T, where |α〉 is a right-facing possibility
modality. We explain this modality in the section on Modal
Logic. To evaluate α in A, we use s to match the vocabu-
lary of A with the relational input variables I(α) ⊆ vvoc(α)

of α, while matching the arities as well, and then apply the
semantics. One can think of an input vocabulary I(α) as of
just a vocabulary vocab(A) of an input structure A, in the
standard understanding as in model theory.

Definable Constructs
We now introduce several definable operations, and we
study some of their properties. All of those constructs are
studied as primitive in calculi of binary relations and partial
functions. It turns out that the only thing lacking in classical
logic to define all these constructs is information propaga-
tion. By adding it, we obtain a surprisingly rich logic.

In the following, we assume that all structures range over
universe U, and all pairs of structures over U×U.
Set-theoretic operations

di := id−, (diversity)
> := id− ∪ id, (all)
⊥ := >−, (empty)
α ∩ β := (α− ∪ β−)−, (intersection)
α− β := (α− ∪ β)−, (difference)
α ∼ β := (α− ∪ β) ∩ (β− ∪ α). (similar)

By these definitions,
JdiK = {(A,B) | A 6= B},
J>K = U×U,
J⊥K = ∅,
Jα ∩ βK = {(A,B) | (A,B) ∈ JαK and (A,B) ∈ JβK },
Jα− βK = {(A,B) | (A,B) ∈ (U×U) \ JαK or (A,B) ∈ JβK },
Jα ∼ βK = {(A,B) | (A,B) ∈ JαK and (A,B) ∈ JβK or

(A,B) ∈ (U×U) \ JαK and (A,B) ∈ (U×U) \ JβK }.
In particular, expression α ∼ β specifies the set of pairs
of structures such that each pair is either in both α and β,
or it is in neither α or β. That is, it is the set of pairs of
structures where α and β behave in exactly the same way
– both defined and produce the same outputs on the same
inputs, or are both undefined.
Projection onto the inputs (Domain)

Dom(α) := πI(α)(α).

This operation is also called “projection onto the first el-
ement of the binary relation”. It identifies the states in V
where there is an outgoing α-transition. Thus,

JDom(α)K = {(B,B) | ∃B′ (B,B′) ∈ JαK}.
Projection onto the outputs (Image)

Img(α) := πO(α)(α).

This operation can also be called “projection onto the second
element of the binary relation”. It follows that

JImg(α)K = {(B,B) | ∃B′ (B′,B) ∈ JαK}.
Forward unary negation (Anti-Domain) Regular com-
plementation includes all possible transitions except α. We
introduce a stronger negation which is essentially unary (bi-
nary with equal elements in the pair) and excludes states
where α originates.

yα := (πI(α)(α))− ∩ id.

It says “there is no outgoing α-transition”. By this definition,
JyαK = {(B,B) | ∀B′ (B,B′) 6∈ JαK}.

Backwards unary negation (Anti-Image) We define a
similar operation for the opposite direction.

xα := (πO(α)(α))− ∩ id.

It says “there is no incoming α-transition”. We obtain:

JxαK = {(B,B) | ∀B′ (B′,B) 6∈ JαK}.

Each of the unary negations is a restriction of the regular
negation (complementation). Unlike regular negation, these
operations preserve determinism of the components. In par-
ticular, De Morgan Law does not hold for yand x .

Logical equivalence (equality of algebraic terms) We
say that α and β are logically equivalent, notation α = β
if

(A,B) |=s α iff (A,B) |=s β,

for all τ -structures A, B, for any variable assignment s.6

Proposition 1.

If α is a (partial) identity on U, then Dom(α) = Img(α),
yα = xα.

Proof. The statement is an immediate consequence of the
definitions of the operations.

Proposition 2.

yα = Dom(α)− ∩ id = Dom(α−)−Dom(α)
= yDom(α) = xDom(α),
xα = Img(α)− ∩ id = Img(α−)− Img(α)
= y Img(α) = x Img(α),
Dom(α) = yyα,
Img(α) = xxα,
id = y⊥ = x⊥,
⊥ = y id = x id = y> = x>,
> = yy id = xy id = yx id
= xx id = y⊥ = x⊥,
yyyα = yα,
xxxα = xα.

Proof. The logical equivalences follow directly from the
definitions of the operations.

Sequential composition The operation of sequential com-
position (α;β) is sometimes also called relative, dynamic, or
multiplicative conjunction as its properties are similar to the
properties of the logical (additive, static) conjunction (α∩β).
The semantics of sequential composition is given as follows.

Jα;βK := {(A,B) | ∃C((A,C) ∈ JαK and (C,B) ∈ JβK)}.

If O(α) = X̄ and I(β) = Ȳ , then α;β is expressible as

σX̄≡Ȳ (α ∩ β).

The following two propositions summarize several prop-
erties of sequential composition, intersection and union.

6The reason we use the equality symbol (‘=’) for the meta-
logic notion of logical equivalence (instead of, say, ‘≡’) is that ‘=’
is traditionally used to specify equivalence of algebraic terms.

Proposition 3. Identities and zeros:

Intersection :
> ∩ α = α ∩ > = α,
⊥ ∩ α = α ∩ ⊥ = ⊥,

Composition :
α; id = id;α = α,
α;⊥ = ⊥;α = ⊥.

Union :
> ∪ α = α ∪ > = >,
⊥ ∪ α = α ∪ ⊥ = α.

Proposition 4. Distributivity:

Intersection :
α ∩ (β ∪ γ) = (α ∩ β) ∪ (α ∩ γ),
(α ∪ β) ∩ γ = (α ∩ γ) ∪ (β ∩ γ),

Composition :
α; (β ∪ γ) = (α;β) ∪ (α; γ),
(α ∪ β); γ = (α; γ) ∪ (β; γ),

Unary Negations: y(α ∩ β) = yα ∩ yβ,
x(α ∩ β) = xα ∩ xβ.

Relative Disjunction Just as logical disjunction (∪) is a
De Morgan dual of logical conjunction (∩), relative (or dy-
namic) disjunction (+̀) is a De Morgan dual of relative con-
junction (;):

α +̀ β := (α−;β−)−.

Iteration (Kleene star) This operator is the iteration oper-
ator, also called Kleene star. The expression α∗ means “ex-
ecute α some nondeterministically chosen finite number of
times. We define it as follows.

α∗ := µZ.(id ∪ Z;α). (3)

Maximum Iterate This operation is a determinization of
Kleene star. It outputs only the longest transition out of all
possible transitions produced by Kleene star.

α↑ := µZ.(yα ∪ α;Z).

By this definition, α↑ =
⋃

1≤n<ω α
n, where

α1 := yα, αn+1 := α;αn. (4)

Notice that, if α is a function, then α↑ is a function as well,
unlike α∗ which produces a relation.

Preferential union This operation is defined as follows.

α t β := α ∪ (yα;β).

By this definition,

Jα t βK =

{
(A,B)

∣∣∣∣∣ (A,B) ∈ JαK if (A,A) ∈ JDom(α)K,
(A,B) ∈ JβK if (A,A) 6∈ JDom(α)K

and (A,A) ∈ JDom(β)K.

}

Safe Projection Operation sπδ(α) is a “safe” version of
projection, where the set of symbols δ must include all of
the inputs I(α) of α. Since, in this case, none of the inputs
are existentially quantified, this operation does not introduce
non-determinism.

Converse This operation is equivalent to switching I(α)
and O(α). It changes the direction of information propaga-
tion. The semantics is as follows.

Jα`K := {(A,B) | (B,A) ∈ α}.

Converse is implicitly definable:

β = α` iff Dom(α) = Img(β),
Dom(β) = Img(α).

It is used in some Description and Dynamic Logics, graph
databases. Using Converse, one can also define Residua-
tion, which is an important operation in Lambek calculus
(Lambek 1958). Converse, together with complementation,
define linear negation, as in Linear Logic (Girard 1987):
α⊥ := α`−.

We have been able to define many other operations in-
cluding those studied in (McLean 2018). But we do not have
space to present them here. There are many theorems con-
necting the relations we defined here and in the previous sec-
tions, as is (Tarski 1941). But the operations have never been
defined and analyzed from the point of view of information
flows in classical logic.

Modal Logic
We call this logic Lµµ, since it is similar to the mu-calculus
Lµ, but has two fixed points, unary and binary.

Two-sorted Syntax, Lµµ
The algebra with information flows can be equivalently rep-
resented in a “two-sorted” syntax. This syntax gives us a
modal logic, similar to Dynamic Logic. The syntax is given
by the grammar:

α ::= id |Ma | Zj | α ∪ α |α− | πδ(α) | σΘ(α) | φ? | µZj .α
φ ::= T |Mp | Xi | φ ∨ φ | ¬φ | |α〉 φ | 〈α| φ | µXi.φ.

(5)
The first line is essentially our original syntax (1). In the
second line, we have two possibility modalities, |α〉 is a
forward “exists execution of α” modality, and 〈α| is its
backwards counterpart. We can also introduce their duals,
the two necessity modalities: |α] φ := ¬(|α〉 ¬φ) and
[α| φ := ¬(〈α| ¬φ). SymbolsMa stand for modules that are
“actions”. Symbols Mp stand for modules that are “propo-
sitions”. Operation T represents a proposition that is true in
every state. It replaces id under unary semantics.7 Test φ?
turns every unary operation in the second line into a binary
one by repeating the arguments, such as in e.g. going from
p(x) to p(x, x), i.e., they are (partial) identities on U.

The formulae in the first line of (5) are called process for-
mulae, and the formulae in the second line are called state
formulae. We will see that the state formulae “compile out”,
i.e., are expressible using the operations in the first line. De-
spite state formulae being redundant, they are useful for ex-
pressing properties of processes relative to states, as in other
modal temporal logics. In particular, they give an easy way
to express quantification over executions (sequences of tran-
sitions) by means of modalities.

Semantics of Lµµ. The modal logic is interpreted over a
transition system, where the set of states U is the set of all
τ -structures over the same domain Dom. 8

7Note that T is unary, as every other state formula in the second
line of (5), which makes it different from the binary > and id.

8The domain can be determined by the structure given as an
input to a Model Expansion task.

State Formulae (line 2 of (5)): Atomic modules Mp

(modules-propositions) and module variables Xi are inter-
preted exactly like in the unary semantics. That is, Mp are
Model Checking (MC) modules, i.e., those where the expan-
sion (output) vocabulary is empty. The rest of the formulae
are interpreted exactly as in the µ-calculus, except we have
a backwards modality in addition:

[T] := U,
[φ1 ∨ φ2] := [φ1] ∪ [φ2],
[¬φ] := U \ [φ],
[|α〉φ] := {A | ∃B ((A,B) ∈ JαK and B ∈ [φ]) },
[〈α|φ] := {B | ∃A ((A,B) ∈ JαK and A ∈ [φ]) },
[µZj .φ] :=

⋂{
R ⊆ U : [φ][Z:=R] ⊆ R

}
.

Process Formulae (line 1 of (5)): These formulae are in-
terpreted exactly as in the binary semantics. In particular,
modules-actions are interpreted as Model Expansion (MX)
tasks, since they have inputs and outputs. In addition, tests
are interpreted as in Dynamic Logic:

Jφ?K := {(A,A) | A ∈ [φ] }.

In particular, JT?K = JidK, where id is the relative multi-
plicative identity in the syntax of Lµµ (5).

Satisfaction Relation for Lµµ We say that state A, where
A ∈ U, satisfies φ under variable assignment s, notation
A |=s φ, if A ∈ [φ]. For process formulae α, the definition of
the satisfaction relation is exactly as in the binary semantics.

Note that, for each α ∈ Lµµ, its model is a Kripke struc-
ture where transitions represent MX tasks for all subformu-
lae of α, according to the binary semantics. In that Kripke
structure, states are Tarski’s structures, and transitions are
also Tarski’s structures, over the same vocabulary. Please see
Figure 1 for clarification of the atomic case.

Two-Sorted = Minimal Syntax
The two representations of the algebra (one-sorted and two-
sorted) are equivalent, as we show below.9 We show that
all operations in the second line of (5) are reducible to the
operations in the first line.

Theorem 1. For every state formula φ in two-sorted syntax
(5), there is a formula φ̂ in the minimal syntax (1) such that
B |=s φ iff (B,B) |=s Dom/Img(φ̂). For every process
formula α there is an equivalent formula α̂ in the minimal
syntax.

The notation Dom/Img above means that either of the two
operations can be used.

Proof. We need to translate all the state formulae into pro-
cess formulae. We do it by induction on the structure of
the formula. Atomic constant modules and module variables
remain unchanged by the transformation, except, monadic
variables are now considered as binary. Similarly, T is trans-
lated into binary as T̂ := id.
• If φ = φ1 ∨ φ2, we set φ̂ := φ̂1 ∪ φ̂2.

9The statement was inspired by a similar theorem for another
logic in (Abu Zaid, Grädel, and Jaax 2014).

• If φ = ¬φ1, we set φ̂ :=y(φ̂1). Equivalently, we can set
φ̂ :=x (φ̂1), since state formulae are unary and we are
dealing with self-loops.

• If φ = |α1〉 φ1, we set φ̂ := Dom(α̂1; φ̂1).
• If φ = 〈α1| φ1, we set φ̂ := Img(φ̂1; α̂1).
• If φ = µX.(φ1), we set φ̂ := µX.Dom(φ̂1). Equiva-

lently, we can set φ̂ := µX.Img(φ̂1), since, again, we are
dealing with unary formulae here.

Operations y, x, Dom and Img are expressible using the
basic operations of the algebra, under the binary semantics.
This gives us a transformation for the state formulae.

All process formulae α except test φ1? remain unchanged
under this transformation. For test, we have:
• If α = φ1?, we set α̂ := Dom(φ̂1). Equivalently, we can

set α̂ := Img(φ̂1).
It is easy to see that, under this transformation, the semantic
correspondence holds.

We now establish a connection with a well-known logic.
Proposition 5. Propositional Dynamic Logic (PDL) (Pratt
1976; Fischer and Ladner 1979)

α ::= id |Ma | α;α | α ∪ α | α∗ | φ?,
φ ::= T |Mp | φ ∨ φ | ¬φ | |α〉 φ. (6)

is a fragment of of the propositional version of the Logic of
Information Flows, and of the equivalent modal logic Lµµ.

Proof. Immediate from (3).

Unary negation is implicit in the process line of (6). This is
because, in our translation, if φ = ¬φ1, we set φ̂ :=y(φ̂1).

It is known that we can use non-deterministic operations
of union and Kleene star to define basic imperative con-EDIT
structs. But later, we show that some deterministic opera-
tions are sufficient to define the same imperative constructs.
Definition 4. DetRegular (While) programs are defined
by restricting the constructs ∪, ∗ and ? to appear only in the
following expressions:

skip := T?,
fail := (¬T)?,
if φ then α else β := (φ?;α) ∪ ((¬φ)?;β),
while φ do α := (φ?;α)∗; (¬φ)?.

(7)

An unrestricted use of sequential composition is allowed.
We can also define repeat α until φ := while ¬φ do α.

PTIME Fragment
Recall that PTIME is a class of all problems computable by
a deterministic polynomial time Turing machine. Our goal
is to identify a fragment of the Logic of Information Flows
(which is really a family of logics) for which MX task is in
PTIME. We demonstrate two closure properties. We show
that if atomic modules are partial function, then this property
is preserved after applying any of the operations of Deter-
ministic Fragment. We also show that, under a condition on
second-order variables, if MX for atomic modules are deter-
ministic polynomial time computable, then so are the results
of applying the operations of Deterministic Fragment.

Deterministic (Functional) Fragment
A grammar describing the Deterministic Fragment is:

α ::= id |M(X̄, Ȳ) | α;α |yα |xα | α t α | α↑ | α` |
sπδ(α) | σΘ(α),

(8)
where Θ ∈ {X ≡ Y,X 6≡ Y,X ≡ ∅, X 6≡ ∅} for re-
lational variables X and Y in α. The constructs are restric-
tions of the binary operations we introduced initially. No-
tice that the constructs of (8), except Converse, bear a strong
resemblance with the constructs of classical logic: con-
junction, negation, disjunction, existential quantifier, equal-
ity and limited recursion (Deterministic Transitive Closure).
However information flows are needed to define them. Thus,
the Deterministic Fragment is a relative and, as we show
next, function-preserving counterpart of classical logic.

Theorem 2 (Closure of partial functions). The set of all
partial functions on U is closed under the operations of the
Deterministic Fragment (8).

Proof. By the condition of the theorem, atomic modules are
partial functions on U. Assume that the statement holds for
α and β. Operations id and yare (partial) identities on U,
which clearly produce functions. Composition α;β of par-
tial functions is a partial function because when α is defined,
and β is defined on the output of α, then α;β is a function. If
either α or β are undefined, their composition is undefined as
well. Preferential union, αtβ, behaves as α, if α is defined,
otherwise it behaves as β. Thus, it is clearly a function. Safe
projection sπδ(α) is a function because it is exactly like α,
but has fewer outputs. Selection σΘα is a function because it
simply limits the domain and/or range of α by requiring that
some values are equal to each other (or not) or to the empty
relation. If α is a function, Maximum Iterate α↑ is also a
function because it was introduced as a determinization of
the non-deterministic operation of Kleene star.

DetRegular(While) ⊆ Deterministic Fragment We
show that imperative programming constructs introduced in
Definition 4 are definable in the Deterministic Fragment.

Proposition 6. Assume φ is any partial identity on U. Then

skip = id,
fail = y id,
if φ then α else β = (φ;α) t β,
while φ do α = (φ;α)↑; (yφ),
repeat α intil φ = ((yφ);α)↑;φ.

Modalities and the Deterministic Fragment By the fol-
lowing proposition, the possibility and the necessity modal-
ities are also expressible using the operations in the Deter-
ministic Fragment (8).

Proposition 7.

|α〉 φ = yy(α;φ),
|α〉 T = yyα,
|α〉 ¬T = ⊥,

|α] φ = y(α; yφ),
|α] T = id,
|α]¬T = yα.

Proof. Recall, from the translation from the two-sorted to
the one-sorted syntax that |α〉 φ = Dom(α;φ) =

yy (α;φ). Also, |α〉 T = yy (α;T?) = yy
(α; id) = yyα, and |α〉 ¬T = yy (α; (¬T)?) =
yy (α;⊥) = yy⊥ = ⊥. For the necessity modality,
we have: |α] φ = ¬|α〉 ¬φ = ¬Dom(α;¬φ) = yy
y (α; y φ) = y (α; y φ). For the more specific cases,
|α] T = y (α; (¬T)?) = y (α; y id) = y (α;⊥) =
y⊥ = id, and |α] ¬T = yDom(α; y(¬T)?) = y
Dom(α; id) = yDom(α) = yα.

Thus, if atomic modules are deterministic, then neither
modalities, nor deterministic regular (While) programs add
nondeterminism. By Propositions 6 and 7, we have:

Corollary 1. The set of partial functions on U is closed
under the operations of DetRegular (While) fragment and
the possibility and necessity modalities.

PTIME Complexity of the Deterministic Fragment
Recall that A |=s |α〉T means that program α has a
successful execution starting from an input structure A.
We show now that checking A |=s |α〉T corresponds to
the decision version of the MX task for process α. Re-
call that, by the translation in the proof of Theorem 1,
|α〉T = Dom(α) =yyα. Recall also that JDom(α)K =
{(B,B) | ∃B′ (B,B′) ∈ JαK}. Thus, we have: A |=s

|α〉T iff (A,A) ∈ JDom(α)K iff ∃B (A,B) ∈ JαK iff ∃B
over the same vocabulary as A s.t. if A|s(I(α)) interprets the
inputs of α, then B|s(O(α)) interprets the outputs of α. This
is an MX task. Thus, we formulate our problem as follows:

MX task for Processes (Decision Version)
Input: τ -structure A, formula α with free variables I(α) ∪
O(α), variable assignment s : vvoc(α)→ τ .
Question: A |=s |α〉T?

We will study data complexity of this task (Vardi 1982).
The theorem below uses computations over a set of registers
– monadic singleton-set relations. It turns out that in such
computations, the property of modules to be deterministic
polynomial time computable (on a Turing machine) is pre-
served under the operations of Deterministic Fragment.

Theorem 3 (Closure of PTIME MX tasks). Let α be in the
Deterministic Fragment (8), and let all second-order vari-
ables be monadic and interpreted by singleton-set relations.
Then if MX for all atomic modules is in PTIME, then MX for
α is in PTIME.

Proof. Suppose the conditions of the theorem hold. We ar-
gue that the operations of the Deterministic Fragment do not
put us outside of PTIME. By Theorem 2, the operations of
this fragment do not add non-determinism. We first consider
the recursion-free operations. Since the semantics is binary,
in terms of generalized variables ranging over structures, we
have a bounded-variable fragment, with the generalized for-
mula width at most 3. This implies that each intermediate
relation has generalized arity of at most 3. Since the defi-
nition of the language implies that all structures are essen-
tially l-tuples of domain elements, the size of each interme-
diate relation is at most n3l, where l = |vvoc(α)|, the size
of the variable vocabulary of α. The constant l depends on

teh formula, which is fixed when we study data complex-
ity. Similarly to the proof in (Vardi 1995) for the combined
complexity of FOk (which is PTIME-complete), we argue
that we can evaluate the expression bottom-up, and all inter-
mediate expressions are of bounded generalized arity, thus
of size at most n3l. Since combined complexity bounds data
complexity from above, and l is fixed, we obtain the desired
upper bound for the recursion-free fragment.

It remains to argue for the limited recursion case. Recall
that α↑ is computed by the process (4). The procedure al-
ways terminates because (a) the transition system generated
by executing the program is finite (for a finite input do-
main), and (b) the base case is “no outgoing α-transition”.
Thus, Maximum Iterate explicitly disregards cycles – if there
is an infinite loop, there is no model. Our fragment is in
the alternation-fragment of Lµ, but nested recursion can be
eliminated explicitly by (Gurevich and Shelah 1986) at the
price of increasing the arity by the factor of m, the degree
of nesting. The number of steps in computing α↑ is always
bounded by the size of the transition system, which is, since
we only use monadic singleton-set relations, at most nlm,
the number of tuples of length lm over the input domain
of size n. Because of this bound, Maximum Iterate requires
at most nlm iterations, where l and m are fixed since the
formula is fixed. Each iteration, by the recursion-free case,
requires at most n3l steps. Thus, the total number of steps is
n3lnlm or n(3+m)l, a polynomial in n.

Corollary 2. Theorem 3 also holds for DetRegular (While)
programs (7).

Notice that an atomic module does not have to be deter-
ministic to have a deterministic polynomial time computable
MX task. Consider, for example, a very simple module that
guesses and outputs one domain element. This is a non-
deterministic module. A Turing machine can perform this
computation in deterministic polynomial (even linear) time
in the size of the domain by simply writing, as an output,
say, the last element in the order they appeared on the in-
put tape. The use of such non-deterministic atomic modules,
that satisfy the conditions Theorem 3, is demonstrated by the
example EVEN below. The example uses atomic modules
axiomatized in non-recursive Datalog with limited guess-
ing expressed by means of Hilbert’s Epsilon quantifier. The
quantifier arbitrarily selects precisely one out of all possible
ways of instantiating an ε-quantified variable.

Atomic Tests Recall that tests are (partial) identities on U.
Atomic tests are (a) atomic modules-propositions (MC mod-
ules) and (b) expressions of the form πX(id) and σΘ(id).

Back Exists (BEα) and Back Globally (BGα) are modal
operators similar to F (Exists) G (Globally) of Linear Tem-
poral Logic (LTL), respectively. They face backwards in
time, in the same information flow as produced by the execu-
tion of α. We define BEα for atomic tests, denoted AtTest.
The program executes the actions of α “backwards” until
AtTest is found to be true.

BEα(AtTest) := repeat
σAct=〈m1〉(id);M c

1 t · · · t σAct=〈ml〉(id);M c
l

until AtTest.

The body of the loop says: if the last action was m1, execute
M c

1 , otherwise check if it was m2, and if yes, execute M c
2 ,

and so on. Constants mi represent the “names” of atomic
modules, and relational variable Act is silently present as an
output of every module. It outputs mi if the just-executed
module was Mi. The dual modality is:

BGα(AtTest) := xBEα xAtTest.

Example: EVEN
Given: A set represented by a structure A with an empty
vocabulary.
Question: Is |dom(A)| even?

We construct a 2-coloured path in the transition system
using E and O as labels. To avoid infinite loops, we make
sure that the elements never repeat. Each information flow
gives us an implicit linear order on domain elements. Define:

GuessP := { εx P (x) } ,

CopyPO :=
{
∀x (O(x)← P (x))

}
,

CopyPE :=
{
∀x (E(x)← P (x))

}
.

GuessNewO :=(
GuessP ; BGαE

(σP 6≡E(σP 6≡O(id)))
)

; CopyPO,

GuessNewE :=(
GuessP ; BGαE

(σP 6≡E(σP 6≡O(id)))
)

; CopyPE.

The problem EVEN is now axiomatized as:

αE := (GuessNewO;GuessNewE)↑.

The program is successfully executed if each guessed ele-
ment is different from any elements guessed so far in the
current information flow, and if E and O are guessed in al-
ternation. The expression does not depend on an input vo-
cabulary because there is no projection in front of it. Given
a structure A over an empty vocabulary, A |= |αE〉T, holds
whenever there is a successful execution of αE , that is the
size of the input domain is even.

Example: Same Generation αSG(E,Root, A,B)

Input: Tree represented by the binary edge relation E; the
root is contained in the unary singleton-set relation Root;
two nodes a and b represented by singleton-set relations A
andB. Question: Do a and b belong to the same generation
in the tree?

Again, we use non-recursive Datalog with limited guess-
ing. To illustrate the strength of the fragment, we capture re-
cursion by the constructs of the algebra, not within an atomic
module (of course, in general, recursion in atomic modules
is allowed). Note that the PTIME fragment does not allow
binary definable relations (binary inputs are allowed), so we
need to capture the notion of being in the same generation
through coexistence in the same structure.

Mbase case :=

{
∀x (ReachA(x)← Root(x))
∀x (ReachB(x)← Root(x))

}
,

We do a simultaneous propagation starting from the root:

Mind case :=

{
εy (Reach′A(y)← ReachA(x), E(x, y)),
εw (Reach′B(w)← ReachB(v), E(v, w))

}
,

This atomic module specifies that, if x and v coexisted in
the previous state, stored in the interpretations of ReachA
and ReachB , respectively, then y and w will coexist in the
successor state. Guessing a unique element is essential – if
there is a “fork” in the edges, only one branch is selected.

Copy :=

{
∀x (ReachA(x)← Reach′A(x)),
∀x (ReachB(x)← Reach′B(x))

}
.

The algebraic expression for the problem is:

αSG(E,Root, A,B) := sπ{E,Root,A,B} (Mbase case; (Mind case;
Copy;σReachA≡A(σReachB≡B(id)))↑).

An equivalent expression using definable constructs:

αSG(E,Root, A,B) := sπ{E,Root,A,B} (Mbase case;
repeat
Mind case ; Copy;
until σReachA≡A(σReachB≡B(id))).

These examples of PTIME programming use very simple
atomic modules. It is also possible to show that if modules of
any complexity above PTIME are combined using the oper-
ations of Deterministic Fragment (8), the overall complexity
does not increase.

Conclusion
In this paper, we introduced a Logic of Information Flows,
and showed its connections to binary relational calculi. Such
calculi have never been defined and analyzed from the point
of view of information flows in classical logic before. It turns
out that the only thing lacking in classical logic to define all
those constructs is information propagation.

The logic provides a connection of Model Expansion,
the main task solved in multiple Declarative programming
approaches, such as Constraint Satisfaction Problem, An-
swer Set Programming, Integer Liner Programming etc., to
Tarski’s et al. calculi of binary relations and a modal logic.

This direction of developing an algebra of modular sys-
tems started from our earlier work (Tasharrofi, Wu, and Ter-
novska 2011), and then Shahab Tasharrofi’s PhD thesis. An
approach to solving (a simpler version of) modular systems,
inspired by CDCL algorithm of SAT solving was proposed
in (Mitchell and Ternovska 2015). An approach based on an
algebra of propagators was recently developed in (Bogaerts,
Ternovska, and Mitchell 2017). We believe that the proposed
logic is applicable in multiple areas of KR – in business pro-
cess modelling, specifications of robot’s behaviour, specify-
ing goals of execution, eventual and extended in time.

For future work, it will be interesting to study the con-
ditions for decidability of the satisfiability problem, for fi-
nite and infinite domains. It would also be interesting to in-
vestigate methods of simplifying systems described in the
formalism presented here. In particular, we can use known
equational and quasiequational axiomatizations of the bi-
nary operations such as (Jackson and Stokes 2011) and the-
orem proving to simplify algebraic expressions.

Acknowledgements
Many thanks to Brett McLean and Jan Van den Bussche for
useful discussions.

References
Abu Zaid, F.; Grädel, E.; and Jaax, S. 2014. Bisimulation
safe fixed point logic. In Goré, R.; Kooi, B. P.; and Ku-
rucz, A., eds., Advances in Modal Logic 10, invited and con-
tributed papers from the tenth conference on ”Advances in
Modal Logic,” held in Groningen, The Netherlands, August
5-8, 2014, 1–15. College Publications.
Bogaerts, B.; Ternovska, E.; and Mitchell, D. 2017. Prop-
agators and solvers for the algebra of modular systems. In
Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR).
Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM transactions on com-
putational logic (TOCL) 9(2):1–52.
Fischer, M. J., and Ladner, R. E. 1979. Propositional
dynamic logic of regular programs. J. Comput. Syst. Sci.
18(2):194–211.
Fletcher, G.; Gyssens, M.; Leinders, D.; Surinx, D.; den
Bussche, J. V.; Gucht, D. V.; Vansummeren, S.; and Wu, Y.
2015. Relative expressive power of navigational querying
on graphs. Information Sciences 298:390–406.
Girard, J. 1987. Linear logic. Theor. Comput. Sci. 50:1–102.
Gurevich, Y., and Shelah, S. 1986. Fixed-point extensions of
first-order logic. Annals of Pure and Applied Logic 32:265–
280.
Jackson, M., and Stokes, T. 2011. Modal restriction semi-
groups: towards an algebra of functions. IJAC 21(7):1053–
1095.
Jónsson, B., and Tarski, A. 1952. Representation problems
for relation algebras. Bull. Amer. Math. Soc. 74:127–162.
Kolokolova, A.; Liu, Y.; Mitchell, D.; and Ternovska, E.
2010. On the complexity of model expansion. In Proc.,
17th Int’l Conf. on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR-17), 447–458. Springer. LNCS
6397.
Lambek, J. 1958. The mathematics of sentence stucture.
Amer. Math. Monthly 65(3):154–170.
McLean, B. 2017. Complete representation by partial func-
tions for composition, intersection and anti-domain. J. Log.
Comput. 27(4):1143–1156.
Mitchell, D. G., and Ternovska, E. 2005a. A framework
for representing and solving NP search problems. In Proc.
AAAI, 430–435.
Mitchell, D. G., and Ternovska, E. 2005b. A framework
for representing and solving NP search problems. In Proc.
AAAI’05, 430–435.
Mitchell, D., and Ternovska, E. 2015. Clause-learning al-
gorithms for modular systems. In Francesco Calimeri, Gio-
vambattista Ianni, M. T., ed., Logic Programming and Non-
monotonic Reasoning, 13th International Conference, LP-
NMR 2015, Lexington, September 27-30, 2015. Proceed-
ings, Lecture Notes in Computer Science. Springer.
Pratt, V. R. 1976. Semantical considerations on floyd-hoare
logic. In 17th Annual Symposium on Foundations of Com-
puter Science, Houston, Texas, USA, 25-27 October 1976,
109–121. IEEE Computer Society.

Pratt, V. R. 1992. Origins of the calculus of binary rela-
tions. In Proceedings of the Seventh Annual Symposium on
Logic in Computer Science (LICS ’92), Santa Cruz, Cali-
fornia, USA, June 22-25, 1992, 248–254. IEEE Computer
Society.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Surinx, D.; den Bussche, J. V.; and Gucht, D. V. 2017. The
primitivity of operators in the algebra of binary relations un-
der conjunctions of containments. In LICS ’17.
Tarski, A. 1941. On the calculus of relations. J. Symb. Log.
6(3):73–89.
Tasharrofi, S.; Wu, X. N.; and Ternovska, E. 2011. Solving
modular model expansion tasks. In Proceedings of the 25th
International Workshop on Logic Programming (WLP’11),
volume abs/1109.0583. Computing Research Repository
(CoRR).
Vardi, M. Y. 1982. The complexity of relational query
language. In 14th ACM Symp.on Theory of Computing,
Springer Verlag (Heidelberg, FRG and NewYork NY, USA)-
Verlag.
Vardi, M. Y. 1995. On the complexity of bounded-variable
queries. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, May 22-25, 1995, San Jose, California, 266–276.
ACM Press.

Appendix
More Operations: Inclusion, Fixset, Tie
Inclusion We define the following operation implicitly,
using logical equivalence between algebraic terms.

α ≤ β iff (α ∩ β) = α.

The definition gives us:

Jα ≤ βK = {(A,B) | If (A,B) ∈ JαK then (A,B) ∈ JβK }.

Expression α ≤ β specifies a set of pairs of structures
such that if executing α produces such a pair, then executing
β produces such a pair as well. Thus, whenever α is a label
of a transition in TSα, then β is a label of the same transition.

Fixset This operation takes the diagonal of the fixed points
of α. It is defined as follows:

Fix(α) := α ∩ id.

By this definition, the semantics of this operation is

JFix(α)K = {(A,A) | (A,A) ∈ JαK}.

Tie This operation returns all the points where α and β
do not disagree, that is, if started from there, the images of
both processes are the same, or they are both undefined. We
define it as follows.

α on β := Dom(α ∼ β). (9)

Recall that α ∼ β is the set of pairs of structures where α
and β behave in exactly the same way – both defined and

produce the same outputs on the same inputs, or are both
undefined. The definition (9) gives us:

Jα on βK = {(A,A) | ∀B∀B′(If (A,B) ∈ JαK
and (A,B′) ∈ JβK then B = B′)
or neither of α, β is defined in A:

∀B(If B 6= A then (A,B) ∈ (U×U) \ JαK
and (A,B) ∈ (U×U) \ JβK)}.

Residuation With converse as a basic operation, several
more operations become definable. In particular, residua-
tion, which is now understood as a form of division, is de-
finable using Converse.

Right Residuation: α\β := (α`;β−)−,

Left Residuation: α/β := (α−;β`)−.

Left residuation is a “converse DeMorgan dual” of the right
residuation:

α/β = (α`\β`)`.

Residuation is an important operation in Lambek calculus
(Lambek 1958).

For earlier uses of the operations and a historic perspec-
tive please see Pratt’s informative overview paper (Pratt
1992). That work also discusses the historic and contempo-
rary notations for the operations, and we used the latter in
this paper.

