
Model-Based Testing for Avionics Systems?

Jörg Brauer and Uwe Schulze

Verified Systems International GmbH, Bremen, Germany
lastname@verified.de

Abstract. Model-based testing is considered state-of-the-art in verifica-
tion and validation of safety-critical systems. This paper discusses some
experiences of applying the model-based testing tool RTT-MBT for the
evacuation function of an aircraft cabin controller. One challenge of this
project was the parametric design of the software, which allows to tailor
the software to a certain aircraft configuration via application parame-
ters. Further challenges consisted of connecting hardware signals of the
system under test to abstract model variables, and handling incremental
test model development during an ongoing test campaign. We discuss
solutions that we developed to successfully conduct this test campaign.

1 Introduction

Over the past two decades, we have observed a wide-spread adoption of model-
based development techniques in industry. In parallel, the scientific community
has provided promising concepts and powerful solutions for the area of model-
based testing, in particular with respect to the automation of the test case gen-
eration process. SMT solvers, to name just one example, have advanced to the
state where they can easily solve problems involving thousands of variables, and
thus support the automated generation of test data for large test models. This
technological progress is a prerequisite for effective application of model-based
testing in industry. In practise, however, there is often some mismatch between
the scientific progress on the one hand and the industrial requirements on the
other hand. In particular, we have observed that the successful and not so suc-
cessful model-based testing projects often just differ in the supportive features
offered by the model-based testing frameworks.

This paper is about effective model-based testing for the avionics domain, and
the peculiarities that need to be taken care of, which in the end often make the
difference between success and failure of a project. For the cabin control system of
several Airbus aircrafts, our company has provided several hardware-in-the-loop
(HIL) test benches which traditionally execute hand-written tests. More recently,
the existing test infrastructure was extended by tests generated from test models
using RTT-MBT [3], which is based on simulation and SMT solving [1, 2]. Model-
based testing for the cabin control system poses some interesting challenges that
need to be taken care of:
? The work presented in this contribution has been partially funded by the German

Federal Ministry for Economic Affairs and Energy (BMWi) in the context of project
STEVE, grant application 20Y1301P.



2 Jörg Brauer and Uwe Schulze

– The runtime behavior of the system is highly configurable via application
parameters that need to be selected by the test case generator with the test
data. Trying out all admissible combinations of parameters is infeasible.

– The system uses numerous different I/O interfaces.
– The test case generator needs assistance for the creation of meaningful, de-

scriptive test cases which not just cover the requirements using some arbi-
trary inputs, but also trigger the standard use cases of the system.

2 Core Challenges

The emergency evacuation function of the cabin controller has some interesting
properties. First and foremost, the software is highly configurable at runtime,
using a configuration file, which allows to adapt the software to the layout of
and the devices installed in an aircraft. The logic implemented by the evacuation
function itself strongly depends on these parameters. This characteristic has been
investigated in recent years under the term product line testing. For instance,
contemporary aircrafts have a set of attendant panels, the number of which
is configurable. Attendant panels can be configured to indicate an evacuation
situation differently: either a flashing light or a steady light can be used for this
purpose. A test which examines the behavior of the evacuation function with
respect to the attendant panels thus needs to be run with a configuration file
that matches the prerequisites for the test. If the test objective is to examine
whether the flashing behaviour is correctly implemented, a configuration needs
to be created which (1) installs at least one attendant panel and (2) assigns the
flashing mode to the panel indication lights used by the evacuation function. For
testing the steady indication, another configuration and another test is needed.

2.1 Application Parameters

In our target system, the parameter configuration consists of roughly 100 C-
structures. The parameters defined in the structures can themselves be struc-
tured and can define dependencies on other system parameters. This provides
a very powerful way to customize the system, but also makes it virtually im-
possible to take all possible parameter settings into account when defining the
test model. The complexity of the system parameters is also a serious chal-
lenge in manual test campaigns, because manually calculating suitable system
parameters is complicated and error-prone. Normally only a small subset of the
parameters is directly related to the functionality addressed by a test model.
In case of the evacuation function, only 16 parameters defined in two of the
structures directly affect the behavior of the function. These parameters must
be adjusted to enable certain parts of the system behavior under consideration.

Other parameters are still relevant, but do not need to be changed to reach
certain test goals. They do, however, define constraints to the system, and these
must be taken into account when designing the test model. For these parameters,
constants were defined in the model to represent the selected settings, and a



Model-Based Testing for Avionics Systems 3

fixed definition for this part of the parameter state space was used for all test
generations of the test suite. The configuration parameters cannot be changed at
runtime without restarting the system. This information is reflected in a model
via a UML stereotype called ”parameter”, which is assigned to the respective
model variables. The transition relation used by the test generator is augmented
with constraints to ensure that the parameters do not change during a single
test. This approach results in a significant improvement compared to manual
test development with manual calculation of the configuration parameters.

2.2 Interface Modules

Despite the improvements on SMT solving, generating test cases may still be
computationally infeasible on the concrete semantics of an application, which
naturally leads to the question of abstraction. Modelling the application be-
havior on the granularity of hardware interfaces leads to state explosion, which
entails that some kind of abstraction layer has to be introduced, which maps
model inputs to concrete hardware signals and vice versa. For instance, it is not
uncommon that some model input is represented by the conjunction of multiple
concrete hardware signals. The mapping between model variables and hardware
signals is implemented manually in a layer that resides between the device drivers
and the test driver, and requires significant expertise of the test engineers.

Fig. 1. A test scenario characterizes a family of stimulations



4 Jörg Brauer and Uwe Schulze

2.3 Test Scenarios

Model-based test generation often produces tests that are semantically correct,
but not very realistic, which may be an issue if the tests are used for certifica-
tion purposes. RTT-MBT provides a mechanism to restrict the test generator
by defining constraints for the test environment. Defining a complete test en-
vironment specification suitable for all tests generated from a model, however,
can require a lot of effort or even be practically infeasible. Simple test goals with
RTT-MBT can be defined as states or transitions to be covered, but complex
test goals must be specified in LTL, which is not intuitive to most users. Both
problems are addressed using additional state machines in the test models that
define so-called test scenarios. A test scenario defines a complex test goal trough
a sequence of sub-goals and excludes undesired behavior. An example of such a
test scenario is given in Fig. 1. This way, a test scenario combines the partial
definition of test environment restrictions that are tailored to a complex test goal
together with the intuitive step by step definition of the goal itself. Note that the
test generator is still used to calculate the concrete test data, but is restricted
through the constraints imposed by the additional scenario state machine.

3 Conclusion

We have described an approach to model-based testing of highly configurable
avionics control systems. To name one example, the approach has been used
for the verification of sub-systems of the Airbus A350 aircraft. Our strategy
relies on test models that describe the system behavior depending on application
parameters, which are integrated as model constraints. An interesting aspect
with respect to economic viability of model-based testing is the efficiency of
test model development. Significant reductions in efforts can be achieved with
regression campaigns, but the initial investment for the transition should not be
underestimated, which may be explained by the fact that model development
requires a different skill set than traditional test development. There are, of
course, open issues to be addressed in the future. For instance, the question of
sufficient configuration coverage needs to be answered. To this end, we currently
adapt an input equivalence class testing strategy with guaranteed fault detection
properties.

References

1. Lapschies, F.: SONOLAR homepage (Jun 2014), http://www.informatik.uni-
bremen.de/agbs/florian/sonolar/

2. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) Nasa Formal Methods, Third International Symposium, NFM 2011.
LNCS, vol. 6617, pp. 298–312. Springer, Pasadena, CA, USA (April 2011)

3. Verified Systems International GmbH: RTT-MBT: Model-Based Testing,
https://www.verified.de/products/model-based-testing


