
On Software Safety, Security, and Abstract
Interpretation

Daniel Kästner, Laurent Mauborgne, Christian Ferdinand

AbsInt Angewandte Informatik GmbH

Abstract. Static code analysis can be applied to show compliance to
coding guidelines, and to demonstrate the absence of critical program-
ming errors, including runtime errors and data races. In recent years,
security concerns have become more and more relevant for safety-critical
systems, not least due to the increasing importance of highly-automated
driving and pervasive connectivity. While in the past, sound static ana-
lyzers have been primarily applied to demonstrate classical safety proper-
ties they are well suited also to address data safety, and to discover secu-
rity vulnerabilities. This article gives an overview and discusses practical
experience.

1 Introduction

In safety-critical systems, static analysis plays an important role. With the grow-
ing size of software-implemented functionality, preventing software-induced sys-
tem failures becomes an increasingly important task. One particularly dangerous
class of errors are runtime errors which include faulty pointer manipulations, nu-
merical errors such as arithmetic overflows and division by zero, data races, and
synchronization errors in concurrent software. Such errors can cause software
crashes, invalidate separation mechanisms in mixed-criticality software, and are
a frequent cause of errors in concurrent and multi-core applications. At the same
time, these defects are also at the root of many security vulnerabilities, including
exploits based on buffer overflows, dangling pointers, or integer errors.

In safety-critical software projects, obeying coding guidelines such as MISRA
C is strongly recommended by safety standards like DO-178C, IEC-61508, ISO-
26262, or EN-50128. In addition, all of them consider demonstrating the absence
of runtime errors explicitly as a verification goal. This is often formulated in-
directly by addressing runtime errors (e.g., division by zero, invalid pointer ac-
cesses, arithmetic overflows) in general, and additionally considering corruption
of content, synchronization mechanisms, and freedom of interference in concur-
rent execution. Semantics-based static analysis has become the predominant
technology to detect runtime errors and data races.

Abstract interpretation-based static analyzers provide full control and data
coverage and allow conclusions to be drawn that are valid for all program runs
with all inputs. Such conclusions may be that no timing or space constraints are



violated, or that runtime errors or data races are absent: the absence of these
errors can be guaranteed.

In the past, security properties have mostly been relevant for non-embedded
and/or non-safety-critical programs. Recently due to increasing connectivity
requirements (cloud-based services, car-to-car communication, over-the-air up-
dates, etc.), more and more security issues are rising in safety-critical software
as well.

Safety-critical software is developed according to strict guidelines which im-
prove software verifiability. As an example dynamic memory allocation and re-
cursion often are forbidden or used in a very limited way. Stronger code prop-
erties can be shown, so that also security vulnerabilities can be addressed in a
more powerful way.

The topic of this article is to show that some classes of defects can be proven
to be absent in the software so that exploits based on such defects can be ex-
cluded. Additional syntactic checks and semantical analyses become necessary
to address security properties that are orthogonal to safety requirements.

2 Security in Safety-Critical Systems

MISRA C aims at avoiding programming errors and enforcing a programming
style that enables the safest possible use of C. A particular focus is on dealing
with undefined/unspecified behavior of C and on preventing runtime errors. As a
consequence, it is also directly applicable to security-relevant code, which is ex-
plicitly addressed by Amendment 1 to MISRA C:2012. Other well-known coding
guidelines are the ISO/IEC TS 17961, SEI CERT C, and the MITRE Common
Weakness Enumeration CWE. The most prominent vulnerabilities at the C code
level which are addressed in all coding guidelines are the following: Stack-based
buffer overflows, heap-based buffer overflows, general invalid pointer accesses,
uninitialized memory accesses , integer errors, format string vulnerabilities, and
concurrency defects.

Most of these vulnerabilities are based on undefined behaviors, and among
them buffer overflows seem to play the most prominent role. Most of them can be
used for denial-of-service attacks by crashing the program or causing erroneous
behavior. They can also be exploited to inject code and cause the program to
execute it, and to extract confidential data from the system. It is worth noticing
that from the perspective of a static analyzer most exploits are based on potential
runtime errors: when using an unchecked value as an index in an array the error
will only occur if the attacker manages to provide an invalid index value. The
obvious conclusion is that safely eliminating all potential runtime errors due to
undefined behaviors in the program significantly reduces the risk for security
vulnerabilities.

From a semantical point of view, a safety property can always be expressed
as a trace property. This means that to find all safety issues, it is enough to look
at each trace of execution in isolation.



This is not possible any more for security properties. Most of them can only
be expressed as set of traces properties, or hyperproperties [2]. A typical example
is non-interference [7]: to express that the final value of a variable x can only be
affected by the initial value of y and no other variable, one must consider each
pair of possible execution traces with the same initial value for y, and check that
the final value of x is the same for both executions. It was proven in [2] that
any other definition (tracking assignments, etc) considering only one execution
trace at a time would miss some cases or add false dependencies. This additional
level of sets has direct consequences on the difficulty to track security properties
soundly.

Finding expressive and efficient abstractions for such properties is a young
research field (see [1]), which is the reason why no sound analysis of such proper-
ties appear in industrial static analyzers yet. The best solution using the current
state of the art consists of using dedicated safety properties as an approxima-
tion of the security property in question, such as the taint propagation described
below.

3 Proving the Absence of Defects

In the following we will concentrate on the sound static runtime error analyzer
Astrée [3]. It reports program defects caused by unspecified and undefined be-
haviors and program defects caused by invalid concurrent behavior. Users are
notified about: integer/floating-point division by zero, out-of-bounds array in-
dexing, erroneous pointer manipulation and dereferencing (buffer overflows, null
pointer dereferencing, dangling pointers, etc.), data races, lock/unlock prob-
lems, deadlocks, integer and floating-point arithmetic overflows, read accesses to
uninitialized variables, unreachable code, non-terminating loops, and violations
of coding rules (MISRA C, ISO/IEC TS 17961, CERT, CWE).

Astrée computes data and control flow reports containing a detailed list-
ing of accesses to global and static variables sorted by functions, variables, and
processes and containing a summary of caller/called relationships between func-
tions. The analyzer can also report each effectively shared variable, the list of
processes accessing it, and the types of the accesses (read, write, read/write).

To deal with concurrency defects, Astrée implements a sound low-level con-
current semantics [5] which provides a scalable sound abstraction covering all
possible thread interleavings. In addition to the classes of runtime errors found
in sequential programs, Astrée can report data races, and lock/unlock problems,
i.e., inconsistent synchronization. After a data race, the analysis continues by
considering the values stemming from all interleavings. Since Astrée is aware of
all locks held for every program point in each concurrent thread, Astrée can also
report all potential deadlocks. Practical experience on avionics and automotive
industry applications are given in [3][6].

Sophisticated data and control flow information can be provided by two dedi-
cated analysis methods: program slicing and taint analysis. Program slicing aims



at identifying the part of the program that can influence a given set of vari-
ables at a given program point. Applied to a result value, e.g., it shows which
functions, which statements, and which input variables contribute to its com-
putation. Taint analysis tracks the propagation of specific data values through
program execution. It can be used, e.g., to determine program parts affected by
corrupted data from an insecure source. A sound taint analyzer will compute an
over-approximation of the memory locations that may be mapped to a tainted
value during program execution [4].

4 Conclusion

In this article, we have listed code-level defects and vulnerabilities relevant for
functional safety and security. We have shown that many security attacks can be
traced back to behaviors undefined or unspecified according to the C semantics.
By applying sound static runtime error analyzers, a high degree of security can be
achieved for safety-critical software. Security hyperproperties require additional
analyses to be performed which, by nature, have a high complexity. We have
given two examples of scalable dedicated analyses, program slicing and taint
analysis. Applied as extensions of sound static analyzers, they allow to further
increase confidence in the security of safety-critical embedded systems.

Acknowledgment: This work was funded within the project ARAMiS II by
the German Federal Ministry for Education and Research with the funding ID
01—S16025. The responsibility for the content remains with the authors.

References

1. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting seman-
tics and its application to static analysis of information flow. CoRR abs/1608.01654
(2016), http://arxiv.org/abs/1608.01654 [retrieved: Sep. 2017].

2. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18, 1157–1210 (2010)

3. Kästner, D., Miné, A., Mauborgne, L., Rival, X., Feret, J., Cousot, P., Schmidt,
A., Hille, H., Wilhelm, S., Ferdinand, C.: Finding All Potential Runtime Errors and
Data Races in Automotive Software. In: SAE World Congress 2017. SAE Interna-
tional (2017)

4. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting Safety- and Security-Relevant
Programming Defects by Sound Static Analysis. In: Rainer Falk, Steve Chan, J.C.B.
(ed.) The Second International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2017). IARIA Conferences, vol. 2, pp. 26–31. IARIA XPS Press
(2017)

5. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science (LMCS) 8(26), 63 (Mar 2012)

6. Miné, A., Delmas, D.: Towards an Industrial Use of Sound Static Analysis for the
Verification of Concurrent Embedded Avionics Software. In: Proc. of the 15th In-
ternational Conference on Embedded Software (EMSOFT’15). pp. 65–74. IEEE CS
Press (Oct 2015)



7. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)


