
Object-Oriented Security Proofs

Ernie Cohen

Amazon Web Services

Abstract. We use standard program transformations to construct for-
mal security proofs.

1 Security as Object Equivalence

A security specification is a functional specification that additionally bounds
information flow. For example, a functional specification for a communication
channel might say that messages are received in the order sent; its security spec-
ification might additionally say that sending a message can leak to an adversary
only the length of the message, not its bits. Such precise specification allows the
proof of useful security guarantees for practical designs under realistic environ-
mental assumptions. Security proofs most commonly appear in the context of
cryptographic protocols, but can handle a variety of security enforcement mech-
anisms, such as security policy checks, virtualization, and human operations.

We formalize a specification as a constructor producing fresh objects ex-
hibiting permitted behaviors. The constructor parameters can include objects
representing components of the (possibly adversarial) environment, providing to
the constructed object both services to call and a way to explicitly leak informa-
tion. For example, one possible ideal channel specification maintains the history
of messages sent as a private field, with a send method that leaks to the adver-
sary the length of the message, but not its bits. As demonic nondeterminism in
the language would provide to an attacker an NP oracle, breaking all reason-
able cryptographic assumptions, methods also delegate to the environment the
resolution of nondeterminism. For example, the receive method of the channel
would ask the environment to decide whether to fail the call or to return the
next undelivered message from the history.

A specification C(_) refines a specification A(_) iff there is a function f

such that C(x) and A(f(x)) are equivalent. Typically, A(x) will be an abstract
specification of a service that describes security intent, while C(x) is a more
concrete implementation of the service. This reduces security reasoning to object
equivalence (or, more precisely, equivalence of two constructor calls).

This approach, a flavor of universal composability, bears some similarity to
methods based on process algebra or higher-order functional programming, but
has some practical advantages. One advantage is that object identity makes it
easy to write first-order invariants about the program state. Another is that,
unlike spi calculi, there are no cryptographic security assumptions built into the
logic; they are formulated directly as equivalence assumptions.



2 Reasoning About Object Equivalence

What does it mean for two objects to be equivalent? A natural definition is for
every language-definable Boolean function of a single object reference to return
the same value when called on the two objects. In a probabilistic language, the
two function calls would have to have the same probability of returning true.
This definition of equivalence, semantic equivalence, is suitable for constructions
that do not use cryptography.

The basic tools for reasoning about semantic equivalence are mostly famil-
iar ones used for modular reasoning about object-oriented programs. These in-
clude inlining method calls, introducing/eliminating auxiliary variables, type
invariants, admissible object invariants, ownership (to justify admissibility of in-
variants depending on the state of owned objects), sequential code equivalence
(leveraging object invariants), and simulation. To simplify such reasoning, it is
useful to guarantee that a method call cannot result in a callback, so that we
do not have to worry about changes to the local object state when making a
method call. We achieve this by (1) requiring an object calling a method to hold
a “reference” to the object (in addition to its address), (2) allowing only con-
structors to create new references, and (3) allowing references to be passed into
constructors and returned from method calls, but not passed into method calls.
In the absence of infinite loops/recursions within a single object, this discipline
also guarantees that all method calls terminate.

Cryptography requires a more permissive and complex equivalence: indistin-
guishability. Indistinguishability assumes that objects are additionally parame-
terized by a security parameter. It requires that for every probabilistic function
running in time polynomial in the security parameter, and given one of the two
objects with equal probability, the advantage (probability in excess of 0.5) of
the function guessing which of the two objects it is interacting with is negligi-
ble in the security parameter. (A real-valued function f(n) is negligible iff for
every polynomial p(n), limn→∞(p(n) ·f(n)) = 0.) Fortunately, indistinguishabil-
ity is in practice not very different from semantic equivalence. It adds the side
condition that the environment runs in probabilistic polynomial time. It also
provides additional assumptions, e.g., that a uniformly chosen random number,
of length linear in the security parameter, chooses a value not in any previously
constructed set of polynomial size.

Our simulations are program terms that transform one state representation
to another, with the usual forward simulation condition (simulation followed
by a method of the first representation is equivalent to a method call of the
second representation followed by simulation). This formulation is independent
of semantic details of the language and the equivalence. In particular, it allows
probabilistic simulations, which often eliminate explicit probability reasoning.

In a concurrent system, we want to allow internal steps, as many internal
interactions with the environment might be required between successful external
interactions. We do this by providing an additional method that performs an
internal step. The method queries the adversary to choose which internal action
to perform, performs the chosen action, and returns the result to the adversary.



Timing side channels are easily modeled by leaking the time required to perform
an operation. This also allows us to reason about transition systems.

A typical cryptographic assumption is that a concrete encryption functional-
ity, which encrypts with a randomly generated key, is indistinguishable from an
ideal encryption functionality (which zeroes message bits before encryption, but
remembers the original plaintext). Proofs often revolve around transforming an
implementation to encapsulating a key within a concrete encryption functional-
ity, so as idealize it. If that ideal functionality is used to encrypt other keys, it
can be transformed, through simulation, to instead map ciphertexts to concrete
encryption functionalities encapsulating the encrypted keys, allowing them to be
idealized also. Avoidance of key cycles thus arises naturally through the order
in which encapsulations are done in the proof.

An important consideration in reasoning about key compromise using this
style of proof (as opposed to direct game arguments) is the so-called commit-
ment problem: when an encryption key is compromised, we can no longer justify
the prior pretense that encryptions carried no information about the messages
sent. Fortunately, it is still sound to use the ideal functionality to prove safety
properties of the whole system that hold up to the point of key compromise.
This allows the proof of properties like perfect forward secrecy.

3 Some Specification Examples

We write specifications in a simple, untyped, object language, where all values
(including addresses) are bitstrings, fields are private, and method bodies are
expressions. Calling a method that doesn’t exist simply returns 0 (the empty
string). We use ~ to denote indistinguishability on program terms. Z(m) is the
bitstring m with all bits replaced with 0’s, and & is the C && operator.

As a simple example, here is a possible communication channel specification:

ChI(n) { new (n,s=0,r=0,h=0) {

snd(m) { m & n.snd(Z(m)), h[s++] = m }

rcv() { n.rcv() & r<s & h[r++] }

}}

This defines a function ChI that returns the address of a freshly constructed
object, with fields n (initialized to the parameter n), s,r, and h (each initialized
to 0). These fields give the address of the environment/adversary object, the
number of messages sent, the number of messages received, and the sequence
of messages sent (represented as a sparse map). Since we use 0 to represent
failure, messages must be nonzero. We leak to the adversary the length of the
messages sent, and allow it to fail reception. If communication was to be only
authenticated, m itself would be leaked instead of Z(m). We could allow internal
steps by adding the method step() { n.step() }.

ChI can be viewed as turning an arbitrary (insecure) service n into a secure,
FIFO service. Since ChI is idempotent (i.e., ChI(ChI(n)) ~ ChI(n)), we say an



expression t returns a fresh, asymptotically computationally secure channel iff
ChI(t) ~ t.

We can implement ChI using AEAD (authenticated encryption with associ-
ated data) as follows:

AEAD(n) { new (n,d=0) {

enc(a,m) { m & c = n.enc(a,Z(m)) & d[a][c] = m & c }

dec(a,c) { d[a][c] }

}}

ChC(n,e) { new (n,e,s=0,r=0) {

snd(m) { m & n.snd(e.enc(s++,m)), m }

rcv() { m = e.dec(r, n.rcv()) & r++ & m }

}}

The correctness of this construction is given by the following theorem. For rea-
soning purposes, it matters little what the term inside ChI is:

Theorem: ChC(n,AEAD(e)) ~ ChI(ChC(n,AEAD(e)))

A typical AEAD implementation uses a uniformly chosen symmetric key k:

Enc(k) { new (k) {

enc(a,m) { skEnc(k,a,m) }

dec(a,c) { skDec(k,a,c) }

}}

where rnd() chooses uniformly a bitstring of length given by the security param-
eter. (The key is a parameter so that we can replace rnd() with any expression
indistinguishable from rnd(), such as the output of a key derivation function or a
pseudorandom generator.) This gives a computationally secure implementation,
i.e., ChC(n,Enc(rnd())) ~ ChI(ChC(n,Enc(rnd()))).

4 Conclusion

We have used the methodology to formally verify several security properties of
industrial protocols, including the following:

– We proved that a simple, TLS-like shared-key ciphersuite communication
protocol provides a factory for secure communication channels.

– We proved that a distributed system design (using symmetric and asymmet-
ric encryption, unauthenticted Diffie-Hellman agreement, KDFs, public-key
signatures, envelope encryption, multiple encryption domains with mutually
distrusting quorums, dynamically changing domain operator/server mem-
berships, and domain key rotation) provides an ideal encryption service.

Current work includes mechanization and proofs with concrete security bounds.
We thank Supriya Anand, James Bornholdt, Matt Campagna, Byron Cook,

Andres Erbsen, Rustan Leino, Andrea Nedic, Jade Philipoom, and Serdar Tasiran
for their contributions.


