
Algebraic Crossover Operators for Permutations
Marco Baioletti, Alfredo Milani, Valentino Santucci

Department of Mathematics and Computer Science
University of Perugia

Perugia, Italy
{marco.baioletti, alfredo.milani, valentino.santucci}@unipg.it

Abstract—Crossover operators are very important tools in
Evolutionary Computation. Here we are interested in crossovers
for the permutation representation that find applications in
combinatorial optimization problems such as the permutation
flowshop scheduling and the traveling salesman problem. We
introduce three families of permutation crossovers based on
algebraic properties of the permutation space. In particular, we
exploit the group and lattice structures of the space. A total of 14
new crossovers is provided. Algebraic and semantic properties
of the operators are discussed, while their performances are
investigated by experimentally comparing them with known per-
mutation crossovers on standard benchmarks from four popular
permutation problems. Three different experimental scenarios
are considered and the results clearly validate our proposals. 1

Index Terms—Permutation crossovers, Algebraic crossovers,
Lattice operators.

I. INTRODUCTION

Crossover operators [1] are a key concept in many Evolu-
tionary Algorithms (EAs), ranging from Genetic Algorithms
and Genetic Programming to Differential Evolution.

A crossover operator recombines two existing solutions,
called parents, to form one or more new solution(s), called
offspring(s). Crossovers are often used in combination with
a mutation operator. Ideally, crossover and mutation have
different purposes. Indeed, the crossover role is to exploit
the genetic materials of the parents by recombining them into
the offspring(s), while mutation aims to introduce new genetic
material into the EA population.

There exist many families of crossover operators that
strongly depend on the solutions representation at hand and,
with a lesser extent, on the problem to be solved. For instance,
one-point and arithmetic crossovers [1], [2] have natural ap-
plications when the solutions are represented by, respectively,
binary strings and real-valued vectors, while the edge assembly
crossover [3] and the partition crossover [4] are specifically
designed for the traveling salesman problem.

Here, we are interested in the crossover operators designed
for the permutation representation, i.e., those operators that
find application in all the permutation-based optimization
problems like, for instance, the linear ordering problem [5]
and the permutation flowshop scheduling problem [6].

The main contribution of this paper is the definition of
three new families of algebraic crossover operators for the
permutation space.

1This paper has been accepted for presentation at next IEEE Congress
on Evolutionary Computation (IEEE CEC 2018).

The first family is mainly based on the algebraic framework
we have introduced in [6], [7]. In the previous papers this
algebraic framework has been mainly employed to define com-
binatorial variants of the Differential Evolution and Particle
Swarm Optimization algorithms in order to reach competitive
results on some permutation problems. Here we exploit the fact
the permutations set forms a finitely generated group in order
to define a set of six new group-based algebraic crossover
operators.

A new algebraic property of the permutation space, i.e., the
fact that permutations form a lattice structure, is exploited to
provide two new lattice-based algebraic crossover operators.

Finally, a third family of six hybrid algebraic crossovers
is obtained by hybridizing the group-based and lattice-based
operators.

Some properties of these new 14 crossovers are discussed,
while their performances have been experimentally compared
with seven popular permutation crossover from literature.

Three different experimental scenarios have been consid-
ered. Indeed, the performances of the crossovers are investi-
gated: by applying them to several pairs of randomly generated
parent permutations, to several pairs of local optima, and
embedding them inside a standard genetic algorithm scheme.

Experiments have been held on 12 selected instances from
the four most popular permutation problems, i.e., the linear
ordering problem [5], the permutation flowshop scheduling
[6], the quadratic assignment problem [8], and the traveling
salesman problem [3].

The rest of the papers is organized as follows. Section II
briefly recalls the algebraic framework for the permutation
space. The group-based, lattice-based and hybrid algebraic
crossover families are introduced in, respectively, Sections III,
IV and V. The seven permutation crossover from literature
used in our experimentation are briefly described in Section
VI. The experimental analysis is provided in Section VII,
while conclusions are drawn in Section VIII, where future
research directions are also proposed.

II. ALGEBRAIC BACKGROUND

Many combinatorial optimization problems, like for in-
stance the Traveling Salesman Problem (TSP) and Quadratic
Assignment Problem (QAP), have the aim of optimizing an
objective function f defined on permutation objects. Hence,
in these problems, the candidate solutions are permutations of
items.

In the following, we briefly recall some concepts that
provide an algebraic characterization of the permutation search
space [6]. These concepts are used in the later sections to
introduce the algebraic crossover operators.

A. Permutations and Finitely generated groups

A permutation of the set [n] = {1, 2, . . . , n} is a bijective
function x : [n]→ [n]. The set of all the permutations of [n] is
denoted by Sn. Permutations can be composed by means of the
composition operator ◦. Given x, y ∈ Sn, z = x ◦ y is defined
as z(i) = x(y(i)), for all i ∈ [n]. The set Sn forms a group
with respect to ◦, called symmetric group. Its neutral element is
the identiy permutation e, defined as e(i) = i, for all i ∈ [n].
The inverse of x ∈ Sn is the permutation x−1 defined as
x−1(i) = j if and only if x(j) = i.

The group Sn is finitely generated, i.e., there exists a
subset of Sn elements, called generators, such that any per-
mutation of Sn can be expressed as a product of finitely
many generators. Actually, Sn has multiple generating sets.
Here, we consider the generating set of all the n − 1 simple
transpositions, i.e., the set ST = {σi ∈ Sn : 1 ≤ i < n}
where σi is defined as: σi(i) = i + 1, σi(i + 1) = i, and
σi(j) = j for j ∈ [n] \ {i, i+ 1}.

Generally, any permutation has multiple decompositions in
terms of ST . Hence, it is meaningful to restrict the attention
to minimal-length decompositions. Although even minimal-
length decompositions are not unique in general, for any x ∈
Sn, it is possible to define the weight |x| as the length of any
minimal decomposition of x.

Finally, it is worth to note that |x| also corresponds to the
number of inversions of x, i.e., the number of ordered pairs
(i, j), such that i < j and x−1(i) > x−1(j), for i 6= j ∈ [n].
We denote by I(x) the set of all the inversions of x.

B. Cayley graphs

An important concept for any finitely generated group is
its Cayley graph. For Sn generated by ST , the Cayley graph
CG is the labeled digraph whose vertexes are the elements
of Sn and there is an arc from x to y labeled by σi ∈ ST
if and only if y = x ◦ σi. Hence, since it is easy to show
that applying a simple transpositions corresponds to swap two
adjacent items, CG actually represents the permutation search
space equipped with the neighborhood structure induced by
adjacent swap moves.

The graph CG is strongly connected, regular, and vertex
transitive. These properties guarantee that, for any finite se-
quence of generators s ∈ ST ? and for any element x ∈ Sn,
CG has exactly one path which starts from the vertex x and
whose arcs are labeled according to s.

In CG, for all vertexes x ∈ Sn, each directed path from the
group identity e to x corresponds to a decomposition of x, i.e.,
if the arc labels occurring in the path are (σj1 , σj2 , . . . , σjL),
then x = σj1 ◦ σj2 ◦ · · · ◦ σjL . Hence, all the shortest paths
from e to x correspond to minimal decompositions of x, thus
the length L of these shortest paths is equal to |x|.

Furthermore, a generic shortest path from x ∈ Sn to y ∈ Sn
corresponds to a minimal decomposition of x−1 ◦ y. Indeed,
if the generators on the path are (σj1 , σj2 , . . . , σjL), then y =
x◦ (σj1 ◦σj2 ◦ · · · ◦σjL), hence σj1 ◦σj2 ◦ · · · ◦σjL = x−1 ◦y.

Given x, y ∈ Sn, we denote by SPx,y the set of all the
shortest paths (expressed in terms of sequences of vertexes)
from x to y.

Therefore, it is possible to define a metric distance d on Sn.
For all x, y ∈ Sn, d(x, y) is the length of any shortest path in
SPx,y , or equivalently, d(x, y) = |x−1 ◦ y|. The distance d is
known in literature as Kendall-τ distance [9].

Finally, we write x v y if, for each minimal decomposition
sx ∈ ST ∗ of x, there exists a minimal decomposition sy ∈
ST ∗ of y such that sx is a prefix of sy . It is easy to see that
x v y if and only if there exists at least one shortest path
in SPe,y which contains x. This is a partial order relation
because it may happen that neither x v y nor y v x. In these
cases, x and y are said to be incomparable. It is known that
x v y if and only if I(x) ⊆ I(y) (see for instance [10]).

C. Vector operations

In a previous series of papers [6], [7], [11] we have de-
fined three operations ⊕,	,� for a generic finitely generated
group. Here we recall their definitions and some of the basic
properties for the group Sn generated by ST .

The definition of these operations lies on the important
observation that each element x ∈ Sn can be seen as a point-
like object, because x is a vertex of CG, and also as a vector-
like object, because x corresponds to any shortest path from
e to x, i.e., to a finite sequence of generators.

The addition z = x⊕ y is defined as the application of the
vector y ∈ Sn to the point x ∈ Sn. The result z is computed by
choosing a minimal decomposition sy = (σj1 , σj2 , . . . , σjL)
of y and by finding the end point of the path which starts
from x and whose arc labels are the elements of sy , i.e., z =
x ◦ (σj1 ◦ σj2 ◦ · · · ◦ σjL), which simply reduces to

x⊕ y := x ◦ y. (1)

Analogously to the Euclidean space, the difference between
two points is a vector. Given x, y ∈ Sn, the difference
x	 y produces the sequence of labels (σj1 , σj2 , . . . , σjL) in a
shortest path from y to x. Since σj1 ◦σj2 ◦ · · ·◦σjL = y−1 ◦x,
we define 	 as

x	 y := y−1 ◦ x. (2)

Both ⊕ and 	, like their numerical counterparts, are con-
sistent with each other, i.e., x⊕ (y	x) = y for all x, y ∈ Sn.

Given a coefficient a ∈ [0, 1], a� x is defined for a vector
x and produces a vector z such that z v x and |z| = da · |x|e.
The result of a � x can be computed by taking a random
minimal decomposition of x, truncating it after da · |x|e gen-
erators, and composing the truncated sequence. Since minimal
decompositions are not unique, � is a stochastic operators.

Since permutations composition and inversion can be com-
puted in O(n) time steps, also ⊕ and 	 have O(n) complexity.
The operation � uses the RandBS algorithm, introduced in

[6], [12], which produces a random minimal decomposition of
a permutation in terms of simple transpositions. RandBS is
actually a randomized implementation of the classical bubble
sort algorithm. Its pseudo-code is presented in Figure 1.
RandBS sorts x in increasing order (hence obtaining e) by

1: function RANDBS(x ∈ Sn)
2: s← 〈 〉
3: A← {σi ∈ ST : i < i+ 1 and x(i) > x(i+ 1)}
4: while A 6= ∅ do
5: σ ← select a generator from A uniformly at random
6: x← x ◦ σ
7: s← Concatenate(〈σ〉, s)
8: A← Update(A, σ) . O(1) complexity
9: end while

10: return s
11: end function

Fig. 1. Randomized decomposition algorithms for permutations

iteratively choosing a random adjacent swap moves from the
set of adjacent inversions A. Then, A is efficiently updated
by considering that the adjacent swap encoded by σi can only
affect the three adjacent inversions (i − 1, i), (i, i + 1), and
(i + 1, i + 2). Since the computational cost of RandBS is
O(n2), so is the cost of computing �.

III. GROUP-BASED ALGEBRAIC CROSSOVER OPERATORS

In order to define a class of algebraic crossover operators
based on the group properties described in Section II, we need
to define the concept of interval on Sn.

Given two permutations x, y ∈ Sn, the interval [x, y] can
be defined in various equivalent ways:

[x, y] = {z ∈ Sn : ∃p ∈ SPx,y s.t. z appears in p}, (3)

[x, y] = {z ∈ Sn : z 	 x v y 	 x}, (4)

[x, y] = {z ∈ Sn : d(x, z) + d(z, y) = d(x, y)}. (5)

[x, y] = {z ∈ Sn : D(x, z) ⊆ D(z, y)}. (6)

Therefore, the interval [x, y] is, in some sense, the set of
permutations between x and y in the Cayley graph of Sn
induced by the generating set ST .

A group-based algebraic crossover operator AXG can be
abstractly defined as any operator which, given two permuta-
tions x, y ∈ Sn, returns a permutation z = AXG(x, y) such
that z ∈ [x, y].

This definition has an important interpretation in terms of
precedences among the items in [n]. Indeed, given x, y, z ∈
Sn, z ∈ [x, y] if and only if

P (x) ∩ P (y) ⊆ P (z) ⊆ P (x) ∪ P (y), (7)

where P (x) is the set of all the precedence relations induced
by x on [n], i.e., P (x) = {(i, j) : x−1(i) < x−1(j)}. The
key observation that allows to prove property (7) is that the
only way to introduce new precedences in z (with respect to x
and y), or to avoid the common precedences of x and y, is to
move in a non-shortest path between x and y, thus violating
the condition of definition (3).

Therefore, given x, y ∈ Sn, any group-based algebraic
crossover AXG produces a permutation z such that:

1) z contains all the common precedences in x and y, and
2) all the precedences of z comes from x or y (no new

precedence is generated).
Hence, we say that AXG is precedence respectful (property
1) and transmits precedences (property 2). Note also that,
since [x, x] = {x}, then AXG(x, x) = x for any possible
implementation of AXG .

Implementations of AXG strongly depend on the method
used to select z from [x, y]. Ideally, two extreme methods
are: randomly select a solution from [x, y] in a uniform way,
and choose the fittest solution in [x, y]. Clearly, the former
one is the least informed and most explorative method, while
the latter is the most informed and exploitative. However,
it is possible to show that their implementation requires the
enumeration of all the solutions in [x, y]. Since the cardinality
of [x, y] is exponential in d(x, y), these two extreme methods
are computationally prohibitive.

Here, we propose a more feasible way to obtain similar
results. We define a class of concrete AXG crossovers based
on a two-phase process: first, a shortest-path p ∈ SPx,y is
constructed, then a vertex z is selected from p.

Two strategies are devised for the shortest-path construction
phase: random (R), and greedy (G) construction. Three strate-
gies are considered for the vertex selection phase: uniformly
random (R), based on path truncation (T), and choosing the
best vertex in the path (B). Hence, six AXG implementations
are derived from any possible combination of the shortest-path
and vertex selection strategies.

Given x, y ∈ Sn, a random shortest path p connecting x
to y (strategy R) is generated in two steps. First, obtain a
random minimal decomposition (σj1 , σj2 , . . . , σjL) of y	x by
using RandBS . Then, convert the minimal decomposition to
the sequence of vertexes p = (z0, z1, . . . , zL) such that z0 = x
and zk = zk−1 ◦σjk for all 1 ≤ k ≤ L. It is easy to verify that
zL = y. An argumentation provided in [6] can be used to show
that this procedure guarantees the largest degree of randomness
without increasing the O(n2) asymptotic complexity.

The greedy construction procedure for a shortest path
(strategy G) is very similar to the random one. The only
modification is that, in the first step, RandBS is replaced
with the greedy decomposer GreedyBS , whose pseudo-code
is provided in Figure 2.

GreedyBS differs from RandBS at line 5, where the
generator σ ∈ A is greedily chosen by means of the objective
function f . GreedyBS requires O(n) fitness evaluations at
each iteration. Since the maximum number of iterations is
O(n2), the overall number of solutions to be evaluated is
O(n3). Note anyway that, in most problems like, for instance,
LOP and TSP, there are speed-up techniques that allow to
compute in constant time the fitness of a solution x′ obtained
by applying an adjacent swap to x, being known f(x).

Given the selected shortest path p = (z0, z1, . . . , zL), the
vertex selection strategies are straightforward. The random
strategy R simply chooses a solution from p in a uniformly

1: function GREEDYBS(x ∈ Sn,f : Sn → R)
2: s← 〈 〉
3: A← {σi ∈ ST : i < i+ 1 and x(i) > x(i+ 1)}
4: while A 6= ∅ do
5: σ ← select σ ∈ A with the best value of f(x ◦ σ)
6: x← x ◦ σ
7: s← Concatenate(〈σ〉, s)
8: A← Update(A, σ) . done in O(1) complexity
9: end while

10: return s
11: end function

Fig. 2. Greedy decomposition algorithms for permutations

random way, but excluding the two end-points z0 = x and
zL = y. The truncation strategy T makes use of a further
parameter α ∈ [0, 1] and select the dα · Le-th solution
from p. The best strategy B returns the fittest solution in p
excluding again the two end-points. This last strategy requires
the evaluation of solutions in the path (when the path is chosen
randomly). However, the same speed-up techniques mentioned
for GreedyBS can be also applied here.

Therefore, we have six group-based algebraic crossovers
denoted by: AXG-RR, AXG-RT , AXG-RB , AXG-GR,
AXG-GT , and AXG-GB (the first and second letters af-
ter the hyphen denote, respectively, the shortest path and
vertex selection strategies). The crossovers AXG-RR and
AXG-GB are polynomial approximations of, respectively, the
most explorative and exploitative way to choose z ∈ [x, y].
AXG-GB is also related to the path-relinking operator [13].
AXG-RT (x, y;α) produces an offspring z such that z =
x⊕α�(y	x). Both AXG-RT and AXG-GT , when applied
with α = 0.5, produce an offspring as far as possible from
both parents (in terms of the Kendall-τ distance), thus they are
likely to slow down the loss diversity with respect to the other
proposals. Finally, note that AXG-RB and AXG-GR balance
exploration and exploitation in two ”orthogonal” ways.

IV. LATTICE-BASED ALGEBRAIC CROSSOVER OPERATORS

The permutation space Sn endowed with the partial order
relation v forms a lattice, i.e., it admits the two well defined
binary operations of meet and join [10]. Given x, y ∈ Sn, we
denote their meet and join by, respectively, x ∧ y and x ∨ y.

The meet permutation z = x ∧ y has the following prop-
erties: (i) z v x and z v y, (ii) for all t ∈ Sn, such that
t v x and t v y, then t v z. Hence, x ∧ y is the “greatest”
permutation that is “smaller” than both x and y.

The join permutation z = x∨y has the following properties:
(i) x v z and y v z, (ii) for all t ∈ Sn, such that x v t and
y v t, then z v t. Hence, x∨ y is the “smallest” permutation
that is “greater” than both x and y.

In this paper we also propose to employ the meet and join as
crossover operators denoted by, respectively, AXL-Meet and
AXL-Join .

The operator AXL-Meet can be computed by an algorithm
similar to RandBS and GreedyBS . Its pseudo-code is pro-
vided in Figure 3. AXL-Meet initializes z to the identity.

1: function AXL-MEET(x ∈ Sn, y ∈ Sn)
2: x′ ← x−1

3: y′ ← y−1

4: z ← e
5: A← {σi ∈ ST : x′(i) > x′(i+ 1) and y′(i) > y′(i+ 1)}
6: while A 6= ∅ do
7: σ ← select a generator fromA
8: x′ ← x′ ◦ σ
9: y′ ← y′ ◦ σ

10: z ← z ◦ σ
11: A← Update2(A, σ) . done in O(1) complexity
12: end while
13: return z
14: end function

Fig. 3. Meet operator for permutations

Then, at every iteration k, it moves z one step closer to x∧ y
by composing it with an arbitrary generator that appears at
position k in both a minimal decomposition of x and a minimal
decomposition of y. When no more common generators are
found, i.e., A = ∅, z = x ∧ y. Inversions at lines 2–3 are
a simple trick due to the correspondence between a minimal
decomposition of x and the reversed sequence of generators
that sorts x−1. The procedure Update2 updates the set A in
constant time as done in Update (see Section II-A).

By denoting with xR the reverse of x, i.e., xR(i) = x(n+
1 − i) for all i ∈ [n], we can express the “De Morgan”-like
property (x∨y)R = xR∧yR which in turn allows to implement
AXL-Join by means of the following equivalence

x ∨ y =
(
xR ∧ yR

)R
, (8)

and thus reusing the AXL-Meet algorithm.
It is worth to note that AXL-Meet(x, y) and

AXL-Join(x, y) cannot generate a new individual when
x v y (or y v x). Indeed, in these cases, x ∧ y = x and
x ∨ y = y (or vice versa).

However, by observing that I(x ∧ y) ⊆ I(x) ∩ I(x) and
I(x ∨ y) ⊇ I(x) ∪ I(y) (see for instance [10]), it is possible
to show that

[x, y] ⊆ [x ∧ y, x ∨ y], (9)

where the equivalence holds if and only if I(x ∧ y) =
I(x) ∩ I(y) and I(x ∨ y) = I(x) ∪ I(y). As a special case,
equivalence holds when x and y are comparable. However,
it is important to observe that, conversely from the group-
based crossovers, property (9) implies that meet and join can
generate an offspring with new precedences with respect to x
and y.

V. HYBRID ALGEBRAIC CROSSOVER OPERATORS

In this section we introduce the family of crossovers AXH
which hybridizes the group-based family AXG (see Section
III) with the lattice-based operators (see Section IV).

This hybrid family is motivated from property (9). Given
x, y ∈ Sn, we define AXH (x, y) as a crossover that returns
an offspring z ∈ Sn such that z ∈ [x∧ y, x∨ y]. The aim is to
further explore the interval [x∧ y, x∨ y] in order to introduce

a more variegate set of new precedences (with respect to x
and y) in the offspring z.

By exploiting the same shortest path and vertex selection
strategies introduced in Section III, we define six variants of
hybrid algebraic crossovers as follows:

AXH -RR(x, y) = AXG-RR(x ∧ y, x ∨ y),
AXH -RT (x, y;α) = AXG-RT (x ∧ y, x ∨ y;α),
AXH -RB(x, y) = AXG-RB(x ∧ y, x ∨ y),
AXH -GR(x, y) = AXG-GR(x ∧ y, x ∨ y),
AXH -GT (x, y;α) = AXG-GT (x ∧ y, x ∨ y;α),
AXH -GB(x, y) = AXG-GB(x ∧ y, x ∨ y).
VI. PERMUTATION CROSSOVERS IN LITERATURE

In this section we review some popular permutation
crossover operators available in literature. This review is
mainly based on [2], [14], [15].

We denote by x and y the two parent permutations given in
input to crossovers, while z indicates the produced offspring.
All the operators start from an “empty” sequence z and fill it
in an incremental way, until z is a valid permutation.

The Partially-mapped crossover PMX [16] randomly
chooses two cut points i1 and i2, with i1 < i2, and copies
the portion y(i1), . . . , y(i2) on z(i1), . . . , z(i2). The other
positions i of z are filled by copying the elements in the same
positions of x. If x(i) is already present in z, the value for
z(i) is obtained by applying the mapping x(j) ↔ y(j) for
j = i1, . . . , i2, to x(i).

The Order-based crossover OX1 [17] randomly chooses
two cut points i1 and i2 > i1 and copies the portion
x(i1), . . . , x(i2) on z(i1), . . . , z(i2). Starting from i = i2 + 1
(or from i = 1 if i2 = n), z(i) is filled with y(j), where j is
initially such as j = i. Each time y(j) is already present in z,
j is increased by 1. Once z(i) is copied, i and j are increased
by 1. All the increments are clamped in [n], i.e., they produce
the result 1, instead of n+ 1.

Another Order-based crossover, called OX2 , has been pro-
posed in [18]. A finite sequence y(i1), y(i2), . . . , y(ik) of ran-
dom positions of y is chosen and the positions j1, . . . , jk of x
are determined such that x(jr) = y(ir) for r = 1, . . . , k. Then,
z(i) = x(i) for i 6∈ {j1, . . . , jk}. The remaining positions
j1, . . . , jk of z are filled with the values y(i1), y(i2), . . . , y(ik)
taken in that order.

The cycle crossover CX [19] produces a permutation z such
that z(i) = x(i) or z(i) = y(i), for each i ∈ [n]. CX starts
by choosing the value for z(1) as x(1) or y(1). If z(1) =
x(1), then z(j) = y(j), where j is the position of x(1) in y
(i.e. y(j) = x(1)). CX continues in this way until the cycle
is completed, i.e., when there are no more elements whose
position in z is forced. Then, the same process is repeated by
starting from the next empty position of z.

The Alternating Position crossover AP [20] fills z by taking
the values in an alternating way from x and y (i.e., the first
from x, the second from y, and so on) and by omitting the
items already present in z.

The Edge Recombination crossover ER [21] has been
designed for the TSP problem. For each position i ∈ [n], the

edge set Ei is computed by taking the predecessor and the
successor of i in x and y (seen in a circular way). The first
position z(1) is filled with a value k ∈ {x(1), y(1)}. Then,
k is removed from all the set Ei and the value r for z(2) is
chosen from Ek by selecting the edge set Er with the smaller
cardinality (ties are randomly broken). The next positions of
z are filled in the same way.

The Position-based crossover POS [18] randomly selects
some elements y(i1), y(i2), . . . , y(ik) and copies them in the
corresponding positions of z. The remaining positions of z are
filled by taking the elements from x in the same order they
appear in x, but omitting the elements already present in z.

VII. EXPERIMENTS

Aiming to compare the performances of the proposed
crossover operators with those described in Section VI, exper-
iments have been held on the four most popular permutation-
based problems: the linear ordering problem (LOP), the per-
mutation flowshop scheduling problem (PFSP), the quadratic
assignment problem (QAP), and the traveling salesman prob-
lem (TSP). Three instances per problem have been selected.
The name of the instances, together with the objective function
formulations, are provided in Table I. All the selected instances
come from widely adopted benchmark suites: xLOLIB2 for
LOP, Taillard’s benchmark suite3 for PFSP, QAPLIB4 for QAP,
and TSPLIB5 for TSP. Moreover, PFSP has been investigated
using the total flowtime as objective criterion [6], while, for
TSP, we have adopted the objective function formulation that
fixes the last city in the tour [22], thus allowing a one-to-one
correspondence between TSP tours and permutations of n− 1
cities.

All the algebraic crossovers using the truncated vertex
selection strategy have been investigated by setting α = 0.5.

The 14 algebraic crossovers (see Sections III, IV, and V)
and the 7 competitors (see Section VI) have been compared by
means of three different experiments: (i) without embedding
them in any algorithm and considering randomly generated
parent solutions, (ii) as in the previous point, but considering
local optima solutions, (iii) embedding them in a genetic algo-
rithm. These three experiments are described in, respectively,
Sections VII-A, VII-B, and VII-C.

A. Random Experiment
In this experiment, for every problem instance, 5000 pairs

of parent permutations have been randomly generated. Then,
for each pair of parents, an offspring is generated for all the
considered crossover operators. The 21 offsprings are then
evaluated and ordered by their fitness, thus the rank obtained
by every crossover is averaged over all the 5000 pairs of
parents. These average ranks, aggregated on every problem for
the sake of clarity, are provided in Table II. The crossovers
are ordered according to their overall average rank.

2http://www.optsicom.es/lolib
3http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/

ordonnancement.html
4http://anjos.mgi.polymtl.ca/qaplib
5http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

TABLE I
BENCHMARK PROBLEMS AND INSTANCES

Problem Objective Function Definition of symbols Instances

LOP maxπ∈Sn

{∑n
i=1

∑n
j=i+1 Mπ(i),π(j)

}
M is the n× n I/O matrix

N-be75eec 150
N-stabu1 150
N-t59b11xx

PFSP minπ∈Sn
{∑n

i=1 cπ(i),m
} cπ(i),j = pπ(i),j +max

{
cπ(i−1),j , cπ(i),j−1

}
tai100 5 0

ci,0 = c0,j = 0 tai100 10 0
pi,j is the processing time of job i on machine j tai100 20 0
n and m are the number of jobs and machines

QAP minπ∈Sn

{∑n
i=1

∑n
j=1 Fi,jDπ(i),π(j)

} F is the n× n flow matrix lipa90a
sko100a

D is the n× n distance matrix tai100a

TSP minπ∈Sn−1

{∑n−2
i=1 dπ(i),π(i+1) + dπ(n−1),n + dn,π(1)

} di,j is the distance between cities i and j
kroA100
bier127

n is the number of cities pr152

TABLE II
AVERAGE RANKS IN THE RANDOM EXPERIMENT

Crossover LOP PFSP QAP TSP Overall

AXH -GB 1.12 1.55 1.33 1.12 1.28
AXG-GB 3.04 2.74 1.70 5.40 3.22
AXH -RB 7.39 3.92 5.83 3.25 5.10
AXG-RB 8.10 5.10 5.76 7.78 6.69
AXH -GT 3.90 11.91 5.79 5.50 6.78
AXH -GR 5.52 10.14 6.62 5.39 6.92
AXG-GT 5.94 9.15 5.97 10.75 7.95
AXG-GR 7.75 8.77 6.10 10.55 8.29
AXL-Meet 12.54 11.21 16.53 8.50 12.20
AXH -RR 14.46 14.14 15.38 10.96 13.74
AXH -RT 14.86 13.70 14.51 11.88 13.74
AXL-Join 16.53 15.79 16.29 8.44 14.26
ER 14.09 13.42 14.35 15.58 14.36
OX1 14.35 13.54 14.31 15.74 14.49
CX 14.41 13.69 14.33 15.75 14.55
OX2 14.45 13.60 14.44 15.75 14.56
AP 14.52 13.70 14.34 15.72 14.57
PMX 14.42 13.74 14.36 15.74 14.57
POS 14.46 13.74 14.38 15.70 14.57
AXG-RR 14.53 13.74 14.35 15.73 14.59
AXG-RT 14.61 13.70 14.33 15.75 14.60

Table II clearly shows that almost all the algebraic
crossovers outperform the competitors. The only exceptions
are AXG-RR and AXG-RT that have anyway a comparable
overall average rank with respect to best performing com-
petitor ER. In particular, the two most exploitative algebraic
operators AXH -GB and AXG-GB largely outperform all the
other crossovers. Finally, it is worth to note that the hybrid
algebraic variants (AXH -∗) have systematically obtained a
better result with respect to their group-based counterpart
(AXG-∗), thus validating the contribution of the two lattice
operators.

B. Local Optima Experiment

Aiming to investigate the performances starting from good
parent solutions, in this experiment the parents have been
selected to be local optima.

Furthermore, the AXG crossovers have been slightly modi-
fied in this experiment. Indeed, in order to limit the possibility
that the produced offspring falls in the basin of attraction of
one of the parents, the vertex selection strategy of the AXG
schemes has been constrained to the central half of the path
(i.e., excluding the first and last quarters).

A collection of 1000 different local optima has been ob-
tained by iteratively performing local searches starting from
randomly generated seed solutions. A standard local search
scheme has been implemented by considering the widely used
insertion neighborhood [9] and the greedy neighbor selection
strategy.

Then, 5000 pairs of parent solutions are randomly selected
from the pool of local optima and the rest of the experiment is
conducted as described in Section VII-A. The average ranks
are provided in Table III, where the crossovers are ordered
according to their overall rank.

The results of Table III are quite different from the ones
observed in the random experiment. This is likely due to
the improved quality of the parent solutions. In particular,
the competitor crossovers look to perform better than in
the random experiment, though AXG-GB , AXG-RB , and
AXG-GR have anyway obtained much better results. More-
over, conversely from the previous analysis, the lattice opera-
tors perform poorly and the group-based variants (AXG-∗)
have systematically outperformed their hybrid counterparts
(AXH -∗). This is possibly explained by the greater exploration
degree of the AXH crossovers that, in a local optima scenario,
is probably not appropriate.

For the sake of completeness, local search has been also
applied to the offspring solutions. The average ranks of these
results are not provided because they do not show significant
differences among the crossovers. However, an interesting data
has been observed. The local search, when applied to the

TABLE III
AVERAGE RANKS IN THE LOCAL OPTIMA EXPERIMENT

Crossover LOP PFSP QAP TSP Overall

AXG-GB 1.28 1.31 1.22 1.29 1.28
AXG-RB 1.78 1.82 1.91 1.78 1.82
AXG-GR 3.93 5.47 8.44 7.20 6.26
CX 8.31 6.12 4.43 10.52 7.35
PMX 9.38 6.84 6.44 6.80 7.37
AXG-GT 5.08 7.05 9.36 8.41 7.48
OX2 8.80 6.93 9.12 10.82 8.92
POS 8.80 7.00 9.04 10.87 8.93
OX1 10.22 10.84 11.97 4.08 9.28
AXH -GB 12.84 12.64 4.40 9.50 9.85
AP 6.03 7.11 16.33 16.58 11.51
AXG-RR 6.45 9.51 15.54 14.60 11.53
AXH -RB 15.49 12.48 9.93 11.65 12.39
AXG-RT 8.31 11.34 16.36 16.32 13.08
AXH -GT 14.19 16.23 9.70 14.90 13.76
AXH -GR 16.36 16.48 10.25 14.37 14.37
ER 20.60 19.67 16.27 3.99 15.13
AXH -RT 16.34 15.73 16.83 20.08 17.25
AXL-Meet 19.22 19.11 18.10 13.95 17.60
AXH -RR 17.61 17.36 17.37 19.38 17.93
AXL-Join 19.97 19.94 18.01 13.87 17.95

solutions produced by AXG-GB and AXG-RB , performs in
average less than 3 iterations, thus meaning that the produced
offspring are very close to a local optimum. In particular, in
the LOP instances, AXG-GB has produced new local optima
(with respect to the parents) in around the 5% of the trials.

C. Genetic Algorithm Experiment

A final experiment has been held by embedding the
crossover operators in a Genetic Algorithm (GA).

A standard steady-state GA scheme has been considered by
taking inspiration from the one used in [14]. A population of N
solutions is randomly generated. At every iteration, two parent
solutions are randomly selected from the current population.
An offspring is generated by means of the crossover operator
and it undergoes mutation with a given probability. The
(possibly mutated) offspring is then evaluated and competes
with the worst population individual to have a place in the
next iteration population.

Different variants of the GA have been implemented by
using all the crossover operators considered in this paper. The
mutation is performed by applying a random insertion move
[9] with probability 0.05. The population size has been set to
50, and each algorithm execution terminates after 1 000 000
iterations.

For each instance and for every crossover operators, 20
executions have been performed. The final fitness values of
every execution have been averaged, thus to obtain a ranking
of the crossovers in every instance. These average ranks,
aggregated on every problem, are provided in Table IV. The
crossovers are ordered according to their overall rank.

At a first look, some of the competitor crossovers seem to
outperform our proposals. However, we have observed that on

TABLE IV
AVERAGE RANKS IN THE GA EXPERIMENT

Crossover LOP PFSP QAP TSP Overall

PMX 9.33 2.33 1.33 6.67 4.92
POS 6.67 2.00 2.33 9.33 5.08
AX -Comb 3.33 7.67 8.00 2.33 5.33
OX2 5.67 6.00 4.00 8.00 5.92
CX 2.33 3.00 7.67 11.67 6.17
AXG-GB 4.00 5.67 7.33 8.67 6.42
OX1 8.67 5.00 8.00 4.00 6.42
AXG-RB 5.33 7.33 11.33 10.00 8.50
AXG-GR 3.33 9.00 10.00 14.00 9.08
AXG-RR 8.33 8.33 14.00 13.33 11.00
AXH -RB 14.33 13.33 7.33 10.00 11.25
AXG-GT 9.00 12.67 7.67 18.00 11.84
AP 13.67 13.33 16.00 5.00 12.00
AXH -GB 15.33 16.67 11.00 11.00 13.50
AXG-RT 14.67 13.33 12.33 18.00 14.58
AXH -RR 16.67 15.00 15.00 11.67 14.59
AXH -GR 14.33 18.33 14.67 12.33 14.92
AXH -GT 16.33 15.67 16.00 16.00 16.00
AXH -RT 18.67 15.33 16.00 15.67 16.42
ER 20.00 20.00 21.33 11.67 18.25
AXL-Join 21.33 21.00 21.00 17.67 20.25
AXL-Meet 21.67 22.00 20.67 18.00 20.59

every problem instance the fitness values produced by the best
20 executions among all our crossover operators outperform
all the competitors. Hence, we have designed a meta-crossover
operator AX -Comb, that at each iteration, selects one of
our 14 operators according to a simple adaptive strategy.
For each AX ∗ crossover, a karma value is maintained. At
each iteration, AX -Comb randomly chooses an operator with
probabilities proportional to the karma values. All karmas are
initialized to 1. Then, after the selected operator is applied, it
receives a karma reward or penalty if the produced offspring,
respectively, enters or not the next iteration population. The
reward consists of nit/1000 points of karma, where nit is the
iteration number (in this way, late successes have a greater
reward), while the penalty consists in decreasing the karma
by 1 point, though karma values are truncated to 1 if smaller.

Table IV shows that AX -Comb reaches competitive per-
formances with respect to its competitors. In particular, its
performances are very good in the TSP and LOP instances.

We have further investigated the reasons of this behavior
by observing the the Kendall-τ distances between the par-
ent solutions at every iteration. This experiment shows that
AXG-∗ crossovers loss diversity very quickly with respect to
the classical operators. The same observation, though with a
smaller degree, is true also for the hybrid algebraic crossovers,
while the lattice-based meet and join looks do not show a
significant diversity loss.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented 14 new crossover operators
divided in three families: the group-based, the lattice-based
and the hybrid algebraic crossover operators. We have shown

their properties, focusing on the precedence relations which
are transmitted from parents to their offspring.

These new crossovers have been experimentally compared
with seven existing crossover operators by conducting three
series of experiments. When applied to randomly generated
permutations, our crossover clearly operators outperform the
competitors. In the experiment with local optima parent
permutations, the three most performing operators are the
exploitative variants of the group-based algebraic crossovers.
When the crossovers are embedded in a standard genetic
algorithms, though no single variant of our proposal obtains
top average performances, the experiments show that the best
executions come anyway from different AX operators. This
means that the GA schemes using the AX crossovers are not
robust enough. This fact led us to define a combined operator
which adaptively chooses a (possibly) different AX crossover
at every iteration. The performances of the combined crossover
have been shown to be competitive with the competitors.

The results obtained in this paper are promising and we are
planning to apply the algebraic crossovers to some specific
combinatorial problems and with a well suited algorithm in
order to reach competitive performances.

A further line of research is to extend the design of the
group-based algebraic crossovers to other generating sets for
the permutation group and to other finitely generated groups
like, for instance, the bit-strings.

Finally, the lattice-based crossovers are a first step towards a
deeper exploitation of the lattice structure characterizing some
interesting combinatorial search spaces. For instance, the space
of binary trees, though not being a group, forms a lattice (see
[10]).

REFERENCES

[1] Z. Michalewicz and S. J. Hartley, “Genetic algorithms+ data structures=
evolution programs,” Mathematical Intelligencer, vol. 18, no. 3, p. 71,
1996.

[2] A. Umbarkar and P. Sheth, “Crossover operators in genetic algorithms:
a review,” ICTACT journal on soft computing, vol. 6, no. 1, 2015.

[3] Y. Nagata and S. Kobayashi, “A powerful genetic algorithm using edge
assembly crossover for the traveling salesman problem,” INFORMS
Journal on Computing, vol. 25, no. 2, pp. 346–363, 2013.

[4] D. Whitley, D. Hains, and A. Howe, “Tunneling between optima:
partition crossover for the traveling salesman problem,” in Proceedings
of the 11th Annual conference on Genetic and evolutionary computation.
ACM, 2009, pp. 915–922.

[5] R. Martı́ and G. Reinelt, The linear ordering problem: exact and
heuristic methods in combinatorial optimization. Springer Science &
Business Media, 2011, vol. 175.

[6] V. Santucci, M. Baioletti, and A. Milani, “Algebraic differential evolu-
tion algorithm for the permutation flowshop scheduling problem with
total flowtime criterion,” IEEE Transactions on Evolutionary Computa-
tion, vol. 20, no. 5, pp. 682–694, 2016.

[7] M. Baioletti, A. Milani, and V. Santucci, “Algebraic particle swarm
optimization for the permutations search space,” in 2017 IEEE Congress
on Evolutionary Computation (CEC), June 2017, pp. 1587–1594.

[8] R. E. Burkard, S. E. Karisch, and F. Rendl, “Qaplib–a quadratic
assignment problem library,” Journal of Global optimization, vol. 10,
no. 4, pp. 391–403, 1997.

[9] T. Schiavinotto and T. Stützle, “A review of metrics on permutations for
search landscape analysis,” Computers & Operations Research, vol. 34,
no. 10, pp. 3143–3153, 2007.

[10] G. Grätzer and F. Wehrung, Lattice Theory: Special Topics and Appli-
cations - Vol. 2. Springer, 2016.

[11] M. Baioletti, A. Milani, and V. Santucci, “An extension of algebraic
differential evolution for the linear ordering problem with cumulative
costs,” in Parallel Problem Solving from Nature - PPSN XIV - 14th
International Conference, Edinburgh, UK, September 17-21, 2016, Pro-
ceedings, 2016, pp. 123–133.

[12] V. Santucci, M. Baioletti, and A. Milani, “A differential evolution
algorithm for the permutation flowshop scheduling problem with total
flow time criterion,” in Parallel Problem Solving from Nature – PPSN
XIII: 13th International Conference, Ljubljana, Slovenia, September 13-
17, 2014. Proceedings. Springer International Publishing, 2014, pp.
161–170.

[13] F. Glover, M. Laguna, and R. Martı́, “Fundamentals of scatter search and
path relinking,” Control and cybernetics, vol. 29, no. 3, pp. 653–684,
2000.

[14] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artificial Intelligence Review, vol. 13,
no. 2, pp. 129–170, 1999.

[15] A. Andreica and C. Chira, “Best-order crossover for permutation-based
evolutionary algorithms,” Applied Intelligence, vol. 42, no. 4, pp. 751–
776, Jun 2015.

[16] D. E. Goldberg, R. Lingle et al., “Alleles, loci, and the traveling
salesman problem,” in Proceedings of an international conference on
genetic algorithms and their applications, vol. 154. Lawrence Erlbaum,
Hillsdale, NJ, 1985, pp. 154–159.

[17] L. Davis, “Applying adaptive algorithms to epistatic domains,” in
Proceedings of the 9th International Joint Conference on Artificial
Intelligence - Volume 1, ser. IJCAI’85. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1985, pp. 162–164. [Online].
Available: http://dl.acm.org/citation.cfm?id=1625135.1625164

[18] G. Syswerda, “Schedule optimization using genetic algorithms,” in
Handbook of Genetic Algorithms, 1991, pp. 332–349.

[19] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of
permutation crossover operators on the traveling salesman problem,”
in Proceedings of the Second International Conference on Genetic
Algorithms on Genetic Algorithms and Their Application. Hillsdale,
NJ, USA: L. Erlbaum Associates Inc., 1987, pp. 224–230. [Online].
Available: http://dl.acm.org/citation.cfm?id=42512.42542

[20] P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H.
Murga, “Decomposing bayesian networks: triangulation of the
moral graph with genetic algorithms,” Statistics and Computing,
vol. 7, no. 1, pp. 19–34, Mar 1997. [Online]. Available:
https://doi.org/10.1023/A:1018553211613

[21] D. Whitley, “Traveling salesman and sequence scheduling: Quality
solutions using genetic edge reconbination,” Handbook of Genetic
Algorithms, pp. 350–372, 1991.

[22] R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithms for the
traveling salesman problem,” in Proc. of 1st International Conference
on Genetic Algorithms and their Applications, 1985, pp. 160–165.

