
On the Configuration of SAT Formulae

Mauro Vallati

School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom.

Abstract. In this work we investigate how the performance of SAT
solvers can be improved by SAT formulae configuration. We introduce
a fully automated approach for this configuration task, that considers a
number of criteria for optimising the order in which clauses and, within
clauses, literals, are listed in a formula expressed using the CNF.
Our experimental analysis, involving three state-of-the-art SAT solvers
and six different benchmark sets, shows that this configuration can have
a significant impact on solvers’ performance.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most promi-
nent problems in Artificial Intelligence (AI), and it is exploited in a wide
range of real-world applications. Well-known examples include hardware
and software verification [12], test-case generation [4], and scheduling [6].
Nowadays, thanks also the SAT competition,1 there is a large number of
ready-to-use SAT solvers that can be exploited in applications.

By exploiting algorithm configuration techniques, SAT solvers’ be-
haviour can be adjusted to perform well for a specific type of instances
[13, 7, 10]. To support this type of customisation, most state-of-the-art
solvers expose a large number of parameters whose settings affect most
parts of the solver. Furthermore, in areas of AI such as automated plan-
ning [14] or abstract argumentation [5], it has been demonstrated that
also the configuration of the knowledge models, i.e. the symbolic repre-
sentation of the problem that has to be analysed by automated reasoners,
can lead to significant performance improvements of general solvers. Intu-
itively, such results indicate that the way in which a model is represented
strongly affect the behaviour of automated reasoners.

In this context, we propose an approach for performing the automated
configuration of SAT formulae expressed using the conjunctive normal
form (CNF). The configuration aims at identifying an ordering of clauses
and, within clauses, the involved literals, of a CNF from a specific type of

1 http://www.satcompetition.org

instances that allows to improve the performance of a given state-of-the-
art SAT solver. Notably, due to the fact that the configuration has to be
performed online when a new CNF is provided to the solver, it has to rely
on characteristics of the CNF that are computationally cheap to extract.
Through comprehensive experiments, using three SAT solvers and six
different benchmark sets, we demonstrate that the CNF configuration as a
remarkable impact on performance, and can provide valuable information
for the encoding of CNFs and for further improvements of SAT solvers.

2 SAT Formulae Configuration

In this work we focus on SAT formulae represented using conjunctive
normal form. A CNF is a conjunction of clauses, where a clause is a
disjunction of literals. In a formula, clauses are usually not ordered fol-
lowing a principled approach, but are ordered according to the way in
which the randomised generator has been coded, or following the way in
which information from the application domain has been collected. This
is also generally true for the order in which literals of a given clause are
presented in the formula.

Here we focus on the following question: given the set of clauses and,
for each clause, the set of corresponding literals, in which order should
they be listed to maximise the performance of a given solver? The under-
lying hypothesis is that the order in which clauses and literals are listed
carries some knowledge about their importance for satisfying, or demon-
strating the unsatisfability, of the considered SAT instance. Such implicit
knowledge can be exposed via a smart ordering of the clauses, that will
affect the behaviour of the considered SAT solver.

2.1 Automated Configuration of SAT Formulae

In this work we use the state-of-the-art SMAC [8] configuration approach
for identifying a configuration of CNFs, encoded using the DIMACS for-
mat, that improves the PAR10 performance of a given SAT solver. PAR10
is the average runtime where unsolved instances count as 10× cutoff time.
PAR10 is a metric commonly exploited in machine learning and algorithm
configuration techniques, as it allows to consider coverage and runtime at
the same time.

SMAC uses predictive models of performance [11] to guide its search
for good configurations. More precisely, it uses previously observed 〈configuration,
performance〉 pairs 〈c, f(c)〉 and supervised machine learning (random

forests [3]) to learn a function f̂ : C → R that predicts the performance
of arbitrary parameter configurations.

The CNF configuration has to be performed online: as soon as a new
formula is provided as input, the formula has to be configured before
being presented to the solver. Given this scenario, we are restricted only
to information about the CNF that can be quickly gathered. Furthermore,
the configuration should consider only general aspects which are common
to any CNF. As it is apparent, the use of a computationally expensive
configuration of a single CNF, that considers elements that are specific
to the given CNF, would nullify the potential performance improvement,
by drastically reducing the time available for the solver.

In this work, we considered the possibility to list clauses according to
the following criteria: (1) the number of literals of the clause; (2) the fact
that the clause is binary; (3) the fact that the clause is ternary; (4) the
number of positive literals involved; (5) the number of negative literals
of the clause; (6) the fact that the clause is binary, and both literals are
negative; and (7) the fact that the clause has only one negative literal.

Literals can be listed in clauses according to: (i) the number of clauses
in which the literal is involved; (ii) the average size of the clauses in which
the literal is involved; (iii) the number of binary clauses in which the
literal in involved; (iv) the number of ternary clauses in which the literal is
involved; (v) the number of times the literal appears in clauses as positive;
(vi) the number of times the literal appears in clauses as negative; (vii)
the number of times the literal is involved in clauses where all literals are
positive; and (viii) the number of times the literal is involved in clauses
where all literals are negative.

It is easy to notice that many of the introduced criteria focus on
aspects of binary and ternary clauses. This is due to their importance
in the search process. For instance, binary clauses are responsible, to a
great degree, of unit propagation. There are also criteria that aims at
identifying potentially relevant aspects. For instance, criterion 7 aims at
identifying clauses that may be representing implication relations between
literals.

There are different ways for encoding the degrees of freedom in CNFs
as parameters. This is due to the fact that orders are not natively sup-
ported by general configuration techniques. Following [14], we generate
7 continuous parameters for configuring the order of clauses, and 8 con-
tinuous parameters for configuring the order of literals in clauses. Such
parameters correspond to the aforementioned criteria, that have to be
combined to generate different possible orderings of clauses and literals

in CNFs. Each continuous parameter has associated a real value in the
interval [−10.0,+10.0] which represents (in absolute value) the weight
given to an ordering criterion. Two additional categorical selectors are
also included. One which allows to activate or de-active the ordering of
literals in the clauses, and the second that allows to order clauses accord-
ing to the ordering (direct or inverse) followed by the involved literals.
Thus, the configuration space is C = [−10.0,+10.0]15× 2× 3, where 2 are
the possible values of the parameter on ordering of literals in clauses, and
3 are the possible values of the categorical parameter describing whether
the order of clauses should follow the order of involved literals. An or-
dering σ instantiates each of the 17 parameters, and can be used on any
CNF. Given a CNF and an ordering σ, the corresponding configuration
of the formula is obtained as follows. For each literal, an ordering score
ol(v) is defined as:

ol(l) =
∑
c∈C

(value(p, c)× weight(c)) (1)

where c is a continuous ordering criterion in the set C of the 8 available
continuous parameters for configuring literals’ order, value(p, c) is the nu-
merical value of the corresponding aspect for the literal v, and weight(c)
is the weight assigned to the corresponding continuous parameter by the
configuration technique. If the 16th parameter is set to ignore the order of
literals in clauses, then literals are ordered as in the provided initial CNF.
Otherwise, the literals in a clauses are ordered following the score ol(v).
Ties are broken following the order in the original CNF configuration.

Similarly to what is presented in Equation 1 for literals, clauses are
ordered according to a corresponding score oc(d) –where C is the set of
clauses ordering criteria–, unless clauses are forced to follow the order of
literals via the appropriate parameter. In that case, clauses are ordered
according to the sum of the ol(v) scores of the involved literals L(d), as
shown in Equation 2.

oc(d) =
∑

v∈L(d)

ol(v) (2)

Example 1. Let us consider the CNF presented, using the DIMACS for-
mat, on the left side of Figure 1. Suppose that we are interested in listing
clauses according to their length (criterion 1) and to the number of in-
volved negative literals (criterion 5). Similarly, we are interested in listing
the literals of a clause according to the number of clauses in which they
appear (criterion i). This can be done by leaving all the parameters to

1 -3 0

2 3 -1 -4 0

-5 -4 0

3 -1 -4 2 0

-4 -5 0

1 -3 0

Fig. 1. The example CNF non configured (on the left), and the configured version
(right). Configuration has been done by listing clauses according to their length and
the number of negative literals. Literals are listed following the number of clauses they
are involved.

the default value 0.0, but the ones controlling the mentioned criteria to
10.0. Considering only criteria 1 and 5, the clause 2 3 -1 -4 0 has a
oc(d) score of (4 + 2) × 10.0 = 60.0: it involves 4 literals, and 2 literals
are negative. According to the same criteria, clause 1 -3 0 has a score of
(2 + 1)× 10.0 = 30.0. In a similar way, but considering the corresponding
criterion, score of literals can be calculated, and literals are then ordered
accordingly in each clause.

3 Experimental Analysis

Our experimental analysis aims to evaluate the impact of CNFs configu-
ration on state-of-the-art SAT solvers.

We selected 3 SAT solvers, based on their performance in recent
SAT competitions: Cadical [2], Glucose [1], and Lingeling [2]. The lat-
est available version of each solver has been considered. For each solver, a
benchmark-set specific configuration was generated using SMAC 2.08. A
Python 2.7 script is used for extracting information from a given CNFs
and, according to the parameters’ value, reconfigure it and provide it as
input for the SAT solver.

We chose benchmark sets from the Configurable SAT Solver Challenge
(CSSC) 2014 edition [10], and the benchmarks used in the Agile track of
the 2016 SAT competition.2 CSSC 2014 sets include: Circuit Fuzz (Indus-
trial track), 3cnf, K3 (Random SAT+UNSAT Track), and Queens and
Low Autocorrelation Binary Sequence (Crafted track). Benchmark sets
were selected in order to cover most of the tracks considered in CSSC, and
by checking that at least 20% of the instances were solvable by consid-
ered solvers, when run on the default CNFs. Benchmarks were randomly
divided into training and testing instances, aiming at having 150-250 in-
stances for testing purposes. Following the design of the CSSC, a cutoff
of 5 CPU-time minutes, and a memory limit of 4 GB of RAM, has been

2 https://baldur.iti.kit.edu/sat-competition-2016/

Table 1. Results of the selected solvers on the considered benchmark sets. For each
solver and benchmark, we show the number of test set timeouts achieved when running
on the default and on the configured CNFs. Bold indicates the best result.

Cadical Glucose Lingeling

timeouts: default → configured

K3 89 → 84 72 → 69 76 → 75
3cnf 219 → 216 134 → 131 213 → 210
Queens 10 → 9 26 → 25 24 → 23
Low Autocorrelation 118 → 116 115 → 109 123 → 120
Circuit Fuzz 19 → 17 9 → 9 12 → 10
Agile16 31 → 29 24 → 19 55 → 48

Total 486 → 471 380 → 362 503 → 486

set for each solver run on both training and testing instances. Experi-
ments were run on a dedicated machine equipped with Intel Xeon 2.50
Ghz processors. Each configuration process has been given a budget of 5
CPU-time days on a single processor.

Table 1 summarises the results of the selected solvers on the consid-
ered benchmark sets. Results are presented in terms of the number of
timeouts on testing instances, achieved by solvers run using the default
or the configured CNFs. Indeed, all of the considered solvers benefited
from the configuration of the CNFs. Improvements vary according to the
benchmark sets: the Agile16 set is, in general, the set where the solvers
gained more by the use of configured CNFs. Remarkably, the improve-
ments observed in Table 1 are comparable to those achieved in CSSC 2013
and 2014, by configuring the solvers’ behaviour [10]. In fact, our intuition
is that the way in which clauses and literals are ordered has an impact on
the way in which solvers explore the search space. Listing “important”
clauses earlier, may lead the solver to tackle complex situations early in
the search process, making it then easier to find a solution.

Interestingly, the overall results (last row of Table 1) indicate that the
CNF configuration does not affect all the solvers in a similar way, and that
can potentially lead to rank inversions in competitions or comparisons.
This is the case of Lingeling (on configured) and Cadical on default. This
may suggest that current competitions could have an implicit bias, in the
fact that the selected CNF configuration may favour a solver more than
others. Finally, It is worth noting that the way in which the CNFs are
configured varies significantly between solvers, as well as according to the
benchmark set.

Table 2. Results of the selected solvers on the considered benchmark sets. For each
solver and benchmark, we show the IPC score achieved when running on the default
and on the configured CNFs. Bold indicates the best result. Results of different solvers
can not be directly compared.

Cadical Glucose Lingeling

IPC score: default → configured

K3 56.7 → 59.9 71.3 → 76.3 67.8 → 68.6
3cnf 27.3 → 31.6 106.6 → 107.0 33.6 → 35.9
Queens 136.5 → 137.6 119.3 → 121.1 120.6 → 122.9
Low Autocorrelation 171.8 → 173.4 177.2 → 183.7 171.0 → 175.3
Circuit Fuzz 156.3 → 160.8 175.2 → 175.3 161.3 → 164.3
Agile16 208.1 → 211.3 209.1 → 215.9 188.6 → 196.6

Total 756.7 → 774.6 858.7 → 879.3 742.9 → 763.6

Table 2 shows the impact of configuring CNFs in terms of IPC score
variations. For a solver C and a SAT instance p, Score(C, p) is 0 if p is un-
solved, and 1/(1 + log10(Tp(C)/T ∗p)) otherwise (where T ∗p is the minimum
amount of time required by any compared system to solve the instance).
The IPC score on a set of instances is given by the sum of the score
achieved on each considered instance. The IPC score provides a trade-off
between runtime and coverage, and is used in the International Planning
Competition for comparing planners’ performance. In Table 2 the perfor-
mance of a solver run on the default and configured CNFs are compared,
in order to highlight changes due to the configuration process. Results
indicate that the configuration provides, for most of the benchmark sets,
a noticeable improvement also in terms of IPC score.

To shed some light on the important aspects of CNF configuration, we
assessed the importance of parameters in the considered configurations
using the fANOVA tool [9]. In terms of clauses, parameters controlling the
weight of criteria 4 and 5 are deemed to be the most important. Param-
eters related to criteria ii, vi, and viii have shown to have a significant
impact with regards to the literals’ ordering. Generally speaking, the or-
dering of literals appears as more important than the ordering of clauses:
this is also because, in many cases, clauses are ordered according to the
(separately-calculated) weight of the involved literals. This behaviour can
be due to the way in which data structures are generated by solvers: usu-
ally literals are the main element, and clauses are related to them via
lists.

In order to test if it is possible to obtain a general configuration that
improves the performance of a solver on any CNF, despite of the bench-

mark, for each of the solver we performed a configuration process using
a training set composed by an equal proportion of instances from each
of the 6 sets. Results on the independent testing set indicate that this
sort of configuration has a very limited impact on solvers’ performance:
it is hence the case that structurally different sets of instances require a
different configuration. Intuitively, this seems to point to the fact that, in
different structures, the characteristics that identify challenging elements
to deal with, vary.

4 Conclusion

In this paper we proposed an approach for performing the automated
configuration of CNFs. We considered as configurable the order in which
clauses are listed and the order in which literals are listed in the clauses.

The performed analysis, aimed at investigating how the configura-
tion of CNFs affects the performance of state-of-the-art SAT solvers: (i)
demonstrates that configuration has a significant impact on solvers’ per-
formance; (ii) indicates that the configuration should be performed on
specific types of CNFs; and (iii) highlights important aspects of CNFs,
that have a potentially strong impact on the performance of solvers.

We see several avenues for future work. We are interested in compar-
ing configurations obtained on the same type of instances, but for only
SAT or only UNSAT cases. We plan to evaluate the impact of configura-
tion on weighted max SAT, where the weight of the clauses can provide
another important information to the configuration process. Finally, the
plan to incorporate the re-ordering of clauses and literals into existing
SAT solvers, in order to further improve performance, and to investigate
the concurrent configuration of CNFs and solvers.

References

1. Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose for
incremental SAT solving with assumptions: Application to MUS extraction. In
Theory and Applications of Satisfiability Testing - SAT, pages 309–317, 2013.

2. Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat
competition 2017. In SAT competition 2017, Solver and Benchmark Descriptions,
2017.

3. Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
4. Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and auto-

matic generation of high-coverage tests for complex systems programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation, pages 209–224, 2008.

5. Federico Cerutti, Mauro Vallati, and Massimiliano Giacomin. On the impact of
configuration on abstract argumentation automated reasoning. Int. J. Approx.
Reasoning, 92:120–138, 2018.

6. J.M. Crawford and A.B. Baker. Experimental results on the application of satis-
fiability algorithms to scheduling problems. AAAI, pages 1092–1097, 1994.

7. Stefan Falkner, Marius Thomas Lindauer, and Frank Hutter. Spysmac: Automated
configuration and performance analysis of SAT solvers. In Theory and Applications
of Satisfiability Testing - SAT 2015, pages 215–222, 2015.

8. F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Proceedings of the 5th Learning and
Intelligent OptimizatioN Conference (LION), pages 507–523, 2011.

9. Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for
assessing hyperparameter importance. In Proceedings of The 31st International
Conference on Machine Learning, pages 754–762, 2014.

10. Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos, and
Kevin Leyton-Brown. The configurable SAT solver challenge (CSSC). Artif. Intell.,
243:1–25, 2017.

11. Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm run-
time prediction: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

12. Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in
sat-based formal verification. Int. J. Softw. Tools Technol. Transf., 7(2):156–173,
April 2005.

13. Dave A. D. Tompkins, Adrian Balint, and Holger H. Hoos. Captain jack: New
variable selection heuristics in local search for sat. In Theory and Applications of
Satisfiability Testing - SAT 2011, pages 302–316, 2011.

14. M. Vallati, F. Hutter, L. Chrpa, and T.L. McCluskey. On the effective configuration
of planning domain models. In Proceedings of (IJCAI), 2015.

