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Abstract – The structure of Chinese monoid appeared in the classification of monoids with the growth
function coinciding with that of the plactic monoid. In this work, we deal with the presentations of
the Chinese monoid from the rewriting theory perspective using the notion of string data structures.
We define a string data structure associated to the Chinese monoid using the insertion algorithm on
Chinese staircases. As a consequence, we construct a finite semi-quadratic convergent presentation of
the Chinese monoid and we extend it into a finite coherent presentation of this monoid.

1. Introduction

The Chinese monoid was discovered by Duchamp and Krob during their classification of monoids with
growth similar to that of the plactic monoid, [6]. The latter monoid was introduced by Lascoux and
Schützenberger [13] and it has found several applications in algebraic combinatorics and representation
theory [7]. Plactic monoids were also investigated using rewritingmethods by constructing finite convergent
presentations for classical types [1, 2, 10] and by computing coherent presentations for plactic monoids of
type A, [11]. The Chinese monoid of rank n is the monoid generated by the ordered set {1 < . . . < n}
and submitted to the relations zyx = zxy = yzx, for x 6 y 6 z. Since Young tableaux play an important
role in the structure of plactic monoids, a similar notion of Chinese staircases was found for the Chinese
monoid, [4]. Moreover, a right insertion and a left insertion similar to Schensted’s insertions were
also introduced on the structure of Chinese staircases yielding a cross-section property for the Chinese
monoid, [3, 4]. Recently, the Chinese monoid has motivated a wide range of other interesting work
in rewriting theory [5, 9] including computing a finite convergent presentation [3] by adding column
generators. However, the latter presentation is not semi-quadratic in the sense that the targets of its
rewriting rules can contain more than two columns generators, and thus it is difficult to extend this
presentation into a coherent presentation for the Chinese monoid. In this work, we construct a finite
semi-quadratic convergent presentation of the Chinese monoid and we extend it into a finite coherent
presentation using the notion of string data structures on the Chinese staircases.

Recall from [12] that a string data structure (SDS) S on a totally ordered alphabet A is defined by a
set of combinatorial objects DA together with an insertion map constructing the elements of DA and a
reading map describing the elements of DA by words onA. The insertion map defines a product ?S on DA.
The structure monoid associated to S is presented by the 2-polygraph whose set of 1-cells is DA and
whose 2-cells rewrite every two elements in DA into their product by ?S. One shows that the associativity
of ?S, the fact that DA satisfies the cross-section property for the structure monoid, and the confluence of
2-polygraph presenting the structure monoid are equivalent properties, see [12]. Note that the associativity
of ?S can be also deduced from the existence of two insertion algorithms that commute. Moreover, one
can compute finite coherent presentation of the structure monoid made of a generating set of the set of
combinatorial objects, rewriting rules describing the insertion on words and relations among the insertion
algorithms of the data structure.
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2. String data structures, cross-section and coherent presentations

We define a string data structure presenting the Chinese monoid made by the set of Chinese staircases
together with the right insertion of the Chinese monoid and a reading map that transforms Chinese
staircases into words on {1, . . . , n}. We show that the right insertion and the left insertion for the Chinese
monoid commute which gives the associativity of the product defined by this SDS. We obtain as a
consequence that the set of Chinese staircases satisfies the cross-section property for the Chinese monoid.
Finally, using the SDS on the Chinese staircases, we construct a finite coherent convergent presentation of
the Chinese monoid.

2. String data structures, cross-section and coherent presentations

We recall in this section the notion of string data structures and the construction given in [12].

String data structures. A string data structure, SDS for short, S on a totally ordered alphabet A is a
quadruple (DA, `, I, R) made of a set DA, a reading ` of words on A, a one-element insertion map I and a
reading map R defined as follows:
i) the inclusions A ⊆ DA ⊆ A∗ hold, where A∗ denotes the free monoid on A,
ii) the map ` : A∗ → A∗ sends each word x1 . . . xk in A∗ on a word xσ(1) . . . xσ(k) in A

∗, where σ is a
permutation on {1, . . . , k},
iii) I : DA×A→ DA inserts an element of A into an element of DA such that any restriction I(−, x) is
injective for any x inA. By iteration, one defines an insertion map I∗ : DA×A∗ → DA that inserts a word
in A∗ into an element of DA wrt `, that is I∗(d, x1 . . . xn) = I∗(I(d, y1), y2 . . . yn), for every d ∈ DA
and x1 . . . xn ∈ A∗, where y1 . . . yn = `(x1 . . . xn),
iv)R : DA → A∗ is an injective map satisfying I∗(∅, `(−))R = IdDA

and R(∅) is the empty word.
The map I∗(∅, `(−)) : A∗ → DA, denoted by CS, is called the constructor of the SDS S. We will

use the right-to-left (resp. left-to-right ) reading of words denoted by `r (resp. `l). A right (resp. left)
insertion SDS is an SDS whose insertion map is said right (resp. left), that is inserting a word into an
element of DA with respect to `l (resp. `r). Two one-element insertion maps I, J : DA×A→ DA commute
if the relation J(I(d, x), y) = I(J(d, y), x) holds for every d ∈ DA and x, y ∈ A. An opposite of a
right (resp. left) insertion SDS (DA, `l, I, R) (resp. (DA, `r, I, R)) is a left (resp. right) insertion SDS
(DA, `r, J, R) (resp. (DA, `l, J, R)) such that I and J commute. An SDS S = (DA, `, I, R) is associative if
the product ?S : DA×DA → DA defined by d?Sd ′ = I∗(d, `(R(d ′))), for every d, d ′ ∈ DA is associative.

Let S be a right (resp. left) insertion SDS. If there is a left (resp. right) insertion SDS T opposite to S,
then the SDS S and T commute, that is d ?S d

′ = d ′ ?T d, for any d, d ′ ∈ DA, and are associative, [12].

Structure monoid. Let S = (DA, `, I, R) be an SDS. Denote by | the product of the free monoid on DA.
The structure monoid associated to the SDS S is the monoid, denoted by M(S), and presented by the
2-polygraph R(S), called the standard presentation induced by S, whose set of 1-cells is DA and whose
2-cells are γd,d ′ : d|d ′ ⇒ d ?S d

′, for any d, d ′ in DA. Since every application of a 2-cell of R(S) yields
a strictly smaller preceding word with respect to the deglex order on D∗A, R(S) is terminating. Moreover,
if S is associative, then R(S) is convergent.

The reading of the standard presentation of the SDS S is the 2-polygraph R(A, S) whose set of 1-cells
is A and whose 2-cells are γd,d ′ : RS(d)RS(d

′)⇒ RS(d ?S d
′), for any d, d ′ in DA. If S is associative,
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2. String data structures, cross-section and coherent presentations

then the 2-polygraph R(A, S) is locally confluent, [12]. Recall that an associative SDS S = (DA, `, I, R)
is compatible with an equivalence relation ∼ on A∗ if for any d in DA and w, w ′ in A∗, w ∼ w ′ implies
I∗(d,w) = I∗(d,w ′), and for any w ∈ A∗, one has RC(w) ∼ w. Let K be a set and let ∼ be an
equivalence relation on K∗. A subset S ⊂ K∗ satisfies the cross-section property for the monoid K∗/ ∼
if each equivalence class with respect to ∼ contains exactly one element of S. Let S be a right insertion
associative SDS compatible with the equivalence relation ∼S induced by R(A, S). One shows that the
monoids (DA, ?S) and A∗/ ∼S are isomorphic, [12]. In particular, if R(A,S) is terminating, then the set
of normal forms wrt R(S) satisfies the cross-section property for M(S) if and only if the set of normal
forms wrt R(A, S) satisfies the cross-section property forM(S).

A reduced presentation. Let S = (DA, `, I, R) be an SDS. An internal composition for S is a binary
relation | on DA, such that R(d|d ′) = R(d)R(d ′), for any d, d ′ ∈ DA, where d|d ′ denotes (d, d ′) ∈ |. A
generating set with respect to an internal composition | for S is a subset Q of DA such that A ⊆ Q, and
any element d in DA can be written d = c1|c2| . . . |ck, with c1, . . . , ck ∈ Q. From a generating setQ of S
with respect to an internal composition |, one can define an SDS SQ = (DA, `Q, IQ, RQ) on Q, where
i) the map `Q : Q∗ → Q∗ induces a permutation on the letters of each words on Q,
ii) IQ : DA×Q→ DA is an one element insertion map defined by IQ(d, c) = I∗(d, R(c)), for any c ∈ Q
and d ∈ DA, that induces an insertion map I∗Q : DA×Q∗ → DA wrt `Q,
iii) RQ : DA → Q∗ is the reading map associated to the composition |, that is, for any d in DA,
RQ(d) = c1|c2| . . . |ck is the decomposition of d with respect to |.
Consider an SDS S = (DA, `, I, R) and a generating setQ of S wrt an internal composition |. The reduced
2-polygraph of S is the 2-polygraph, denoted by R(Q,DA, S), whose set of 1-cells isQ and whose 2-cells
are of the form γc,c ′ : c|c ′ ⇒ RQ(c ?S c

′), for any c, c ′ in Q such that c|c ′ /∈ DA.
Recall that a normalization strategy σ of R(Q,DA, S) computes the constructor CS if it is normalizing

and it reduces any 1-cell c1|c2| . . . |cn in Q∗ to RQ(c1 ?S c2 ?S . . . ?S cn).

Coherent presentations. Recall from [8] the notion of coherent presentation. Let R be a 2-polygraph
and letM be a monoid. For every 2-cell β in R we will denote respectively by s1(β) and t1(β) the source
and the target of β. We will denote by R> the (2, 1)-category freely generated by the 2-polygraph R, that
is the free 2-category enriched in groupoid generated by the set of 2-cells in R. An extended presentation
of M is a pair (R,R3) made of a 2-polygraph R that presents M and a globular extension R3 of the
(2, 1)-category R>2 freely generated by R, that is a set of 3-cells A : f V g relating 2-cells f and g
in R>2 , respectively denoted by s2(A) and t2(A) and satisfying the globular relations s1s2(A) = s1t2(A)
and t1s2(A) = t1t2(A). We will denote by R>3 the free (3, 1)-category generated by an extended
presentation (R,R3) of M, that is, the 3-category generated by(R,R3) whose 2-cells and 3-cells are
invertible. A 2-sphere of R>2 is a pair (f, g) of 2-cells of R>2 such that s1(f) = s1(g) and t1(f) = t1(g).
A coherent presentation ofM is an extended presentation (R,R2) ofM such that the cellular extension R3
is a homotopy basis of the (2, 1)-category R>2 , that is, for every 2-sphere γ of R>2 , there exists a 3-cell
in R>3 with boundary γ.

Let S be an associative SDS and Q be a generating set of S such that the 2-polygraph R(Q,DA, S)
is terminating. If there exists a normalization strategy of R(Q,DA, S) that computes CS, then the set
of normal forms wrt R(Q,DA, S) satisfies the cross-section property for M(S). In particular, if the
leftmost normalization strategy σ> computes CS, then the 2-polygraph R(Q,DA, S) can be extended into
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3. String data structures for Chinese monoids

a coherent convergent presentation by adjunction of, [12]:

c|c ′|c ′′|

σ>cc ′c ′′

!5

c|γc ′,c ′′

!5

RQ(c ?S c
′ ?S c

′′)

c|RQ(c ′ ?S c
′′)
σ>c|RQ(c ′?Sc ′′)

-A
for every c, c ′, c ′′ in Q.

3. String data structures for Chinese monoids

Chinese SDS. TheChinese monoid of rankn, denoted byCn, [4], is presented by theChinese presentation
generated by the set [n] and subject to the relations zyx = zxy = yzx, for x 6 y 6 z. A Chinese
staircase on [n] is a collection of boxes in right-justified rows filled with non-negative integers, where the
rows (resp. the columns) are indexed with an initial segment of [n] from top to bottom (resp. from right to
left). We denote by tij (resp. ti) the contents of the box in row i and column j (resp. row i and column i).
Denote by Chn the set of Chinese staircases on [n]. We denote by Rr the map Chn → [n]∗

that reads the rows of a staircase from right to left and from top to bottom, where every k-th
row is reading as follows (k1)tk1(k2)tk2 . . . (k(k− 1))tk(k−1)(k)tk . We will call Im(Rr)
the set of Chinese words. For instance, a Chinese staircase t on [3] is represented as on
the right and Rr(t) = 1t1(21)t21(2)t2(31)t31(32)t32(3)t3 .

t1 1

t2 t21 2

t3 t32 t31 3

3 2 1

Consider the right insertion IChn , [4], and the left insertion JChn , [3], that insert an element of [n] into an
element of Chn, see Appendix A. Let I∗Chn (resp. J∗Chn) be the insertion map Chn×[n]∗ → Chn associated
to IChn (resp. JChn) wrt to the reading `l (resp. `r). This defines two SDSs Cn = (Chn, `l, IChn , Rr)
and Con = (Chn, `r, IChn , Rr) on the structure of staircases.

Reduced presentation of Cn. We construct a finite semi-quadratic convergent presentation of the
monoid Cn by adding columns generators cyx, for all 1 6 x < y 6 n, and square generators cxx, for
all 1 < x < n. We will denote by Qn the set defined by

Qn =
{
cyx

∣∣ 1 6 x < y 6 n} ∪ {cxx ∣∣ 1 < x < n} ∪ {c1, . . . , cn},
where c1, . . . , cn represent the initial generators 1, . . . , n. The reduced 2-polygraphR(Qn,ChnCn) of the
SDS Cn is the 2-polygraph whose set of 1-cells isQn and whose 2-cells are γu,v : cucv ⇒ Rr(cu ?Cn cv)
such that cucv is not a Chinese word.

3.1. Theorem. The SDS Cn satisfies the following properties

i) the 2-polygraph R(Qn,Chn,Cn) is a finite semi-quadratic presentation of the monoid Cn,

ii) the SDS Cn is associative,

iii) the 2-polygraph R(Qn,Chn,Cn) is a convergent,

iv) the set of Chinese words satisfies the cross-section property for the monoid Cn.
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4. Conclusion and future work

The proof of i) consists of showing that the 2-polygraph R(Qn,Chn,Cn) is Tietze-equivalent to the
Chinese presentation. Indeed, this 2-polygraph is obtained by Knuth–Bendix’s completion of the Chinese
presentation with an orientation compatible with the lexicographic order after adding the generators ofQn
and performing some Tietze transformations on the resulted presentation. Moreover, the associativity
of Cn is a consequence of the following result

3.2. Lemma. The SDS Con is a left insertion SDS opposite to the SDS Cn.

In addition, one shows that R(Qn,Chn,Cn) is terminating and that the leftmost normalisation strategy
with respect to R(Qn,Chn,Cn) computes CCn . Then we obtain iii) and iv).

Coherent presentations of Cn. We extend the reduced presentation R(Qn,Chn,Cn) into a coherent
presentation of the monoid Cn. In particular, we make explicit all possible forms of 3-cells of the coherent
presentation that are given by the confluence diagrams induced by the critical branchings. By definition
of the 2-cells of R(Qn,Chn,Cn), the 1-source of each critical branching of R(Qn,Chn,Cn) has the
form cucvct, for cu, cv and ct in Qn such that cucv and cvct are not Chinese words. All the critical
branchings are then obtained by applying the 2-cells of R(Qn,Chn,Cn) on cucv and cvct in each possible
form cucvct. We obtain the following result

3.3. Theorem. For n > 0, the 2-polygraph can be extended into R(Qn,Chn,Cn) a coherent convergent
presentation whose generating 3-cells have the following form

cece ′ct
ceβe ′,t %9

Xu,v,t��

cecbcb ′
βe,bcb ′

%9 cscs ′cb ′
csβs ′,b ′

%9 csckck ′ βs,kck ′
!5

cucvct

βu,vct )=

cuβv,t
!5

clcmck ′

cucwcw ′
βu,wcw ′

%9 caca ′cw ′
caβa ′,w ′

%9 cacdcd ′
caβa ′,w ′

%9 clcl ′cd ′ clβl ′,d ′

)=

where the rewriting rules β−,− denote either a 2-cell of R(Qn,Chn,Cn) or an identity.

4. Conclusion and future work

Our construction applied to the Chinese monoid gives a method to compute finite coherent presentations
for monoids presented by string data structures where the relations are given by insertion algorithms in the
data structures and the relations amongst the relations are strategies amongst the insertion algorithms. We
expect that this construction could be extended in the higher dimensions in order to compute polygraphic
resolutions of monoids and then to compute their homological invariants.
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A. Insertion’s algorithms

A. Insertion’s algorithms

The right insertion. The right insertion algorithm introduced in [4, Subsection 2.2] is the insertion
map IChn : Chn×[n] −→ Chn that sends (t, x) to theChinese staircase IChn(tx) as follows. Write t = (t ′, R1),
where R1 is the bottom row of t, and t ′ is the staircase obtained by the remaining rows of t. Let z be the
greatest index of t. If x > z, then IChn(tx) = t. If x = z, then IChn(tx) = (t ′, R ′1), where R ′1 is obtained
from R1 by adding 1 to tz. If x < z, let y be maximal such that the entry in column y of R1 is non-zero or
if such a y does not exist, set y = x. Three cases appear:

i) If x > y, then IChn(tx) = (IChn(t
′x), R1).

ii) If x < y < z, then IChn(tx) = (IChn(t
′y), R ′1), where R ′1 is obtained from R1 by subtracting 1

from tzy and adding 1 to tzx.

iii) If x < y = z, then IChn(tx) = (t ′, R ′1), where R ′1 is obtained from R1 by subtracting 1 from tz and
adding 1 to tzx.

For instance, consider the following example

1 1

1 0 2

0 1 1 3

0 0 2 0 4 ← 1

4 3 2 1

 

1 1

1 0 2

0 1 1 3 ← 2

0 0 1 1 4

4 3 2 1

 

1 1

1 0 2 ← 2

0 1 1 3

0 0 1 1 4

4 3 2 1

 

1 1

2 0 2

0 1 1 3

0 0 1 1 4

4 3 2 1

The left insertion. The left insertion algorithm introduced in [3, Algorithm 3.5] is the insertion
map JChn : Chn×[n] −→ Chn that sends (t, x) to the Chinese staircase JChn(xt) as follows. Take an
element y from [n] ∪ {on}, initially set to on. There are two steps. In the first step, for i = 1, . . . , x − 1,
iterate the following. If every entry in the row i is empty, do noting. Otherwise, let z be minimal such
that tiz > 0. Then:

i) If y =on, then

(a) If z < i, decrement tiz by 1, increment ti by 1, and set y = z.
(b) If z = i, decrement ti by 1, and set y = z.

ii) If y 6=on, then

(a) If z < y, decrement tiz by 1, increment tiy by 1, and set y = z.
(b) If z > y, do nothing.

In the second step, for i = x, if y =on, then increment ti by 1. Otherwise, decrement tiy by 1. Finally,
output the current staircase.
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