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Abstract

Using combinatorics of chains going back to works of Anick, Green, Happel and

Zacharia, we give, for any monomial algebra A, an explicit description of its minimal

model. This also provides us with formulas for a canonical A∞-structure on the Ext-

algebra of the trivial A-module.

Introduction

Understanding A∞-structures associated to differential graded associative (dga, for short)

algebras is central to understanding in turn, the homotopy category of the category Alg of

dga algebras. More precisely, one can, in principle, compute in the homotopy category of

Alg by considering the category of quasi-free dga algebras or, equivalently, A∞-coalgebras,

modulo the usual relation of homotopy between morphisms in Alg: the quasi-free dga al-

gebras are precisely the cofibrant objects of Alg, where the weak equivalences are the quasi-

isomorphisms and the fibrations are the degree-wise epimorphisms; see [13, Théorème

1.3.1.1] and [12, 16].

In particular, we may use A∞-coalgebras to understand usual (non-dg) associative algeb-

ras. For any augmented algebra A over a field k, one can produce from the dga coalgebra

B(A), the bar complex of A, the equivalence class of minimal A∞-coalgebra structures on

TorA(k,k). Among other things, such structures determine A up to isomorphism, may be

used to compute its Hochschild cohomology, and obtain the minimal model of A; see [12,

13]. The explicit computation of such higher structures is therefore of interest. The ma-

chinery of Gröbner bases and homological perturbation theory suggest that a possible first

step towards solving this problem is to first obtain an answer for monomial algebras. In this

paper we provide a complete description of a minimal A∞-coalgebra structure on TorA(k,k)
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2 MINIMAL MODELS FOR MONOMIAL ALGEBRAS

for a monomial algebra A in terms of the combinatorics of its Anick chains. Equivalently, we

completely describe a minimal model of A as the cobar construction Ω∞ TorA. The results

extend without modification to describe minimal models of monomial quiver algebras in

terms of the combinatorics of their chains; see [7].

Concretely, let γ be a basis element of Torr+1
A (k,k), represented by an Anick chain of length

r ∈ N and let us take n ∈ NÊ2. An n-decomposition of γ is a tuple (γ1, . . . ,γn) of chains with

lengths satisfying r1 +·· ·+ rn = r −1 and whose concatenation, in this order, is γ. Our result

is the following.

Theorem. For each monomial algebra A there is a minimal model M −→ A where M =
Ω∞ TorA(k,k) is the ∞-cobar construction on TorA(k,k). The differential b is such that for a

chain γ ∈ TorA(k,k),

b(s−1γ) = ∑
nÊ2

(−1)(n+1
2 )+|s−1γ1|s−1γ1 ⊗·· ·⊗ s−1γn ,

where the sum ranges through all possible decompositions of γ.

This recovers, in particular, the results in [8] describing cup products in ExtA for a monomial

quiver algebra A using a multiplicative basis of chains, and the results in [9] describing the

A∞-algebra structure of ExtA for monomial algebras which are p-Koszul.

1 Recollections

1.1 Algebraic discrete Morse theory

(1.1.1) Let C be a non-negative complex of free k-modules. Fix a basis X = X0 ∪ X1 ∪ ·· ·
of homogeneous elements of C , so that for each t ∈ N0, the set X t is a basis of Ct . Given

c ∈ X we introduce the notation dc =∑
c ′∈X [c : c ′]c ′ where [c : c ′] ∈ k. Let G =G(C , X ) be the

directed weighted graph with vertices the set X and with an edge c → c ′ if c ′ appears in dc

with non-zero coefficient [c : c ′] which is, in that case, the weight of c → c ′. A finite subset M

of edges of G is a Morse matching if it satisfies the following Morse conditions:

M1. Each vertex of G is in at most one edge of M .

M2. The weights of edges of M are invertible.

M3. The graph GM obtained by inverting the edges of M in G has no directed cycles.

If c ′ → c is a edge in GM with c → c ′ ∈ M , we set its weight to be −[c : c ′]−1. In our situation

the coefficients [c : c ′] will be either 1 or −1, which means M2 is always satisfied. We write
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X M for the collection of vertices not appearing in M , which we call critical. Assign a path

the product of the weights of the edges it contains. Finally, write Γ(c,c ′) for the sum of all the

weights of paths from c to c ′ in GM . The main theorem of [11] is the following.

Theorem 1.1. The complex C M is homotopy equivalent to C , and the maps f : C −→C M , g :

C M −→C given on basis elements by f (c) =∑
c ′∈X M

t
Γ(c,c ′)c ′, g (c) =∑

c ′∈X t Γ(c,c ′)c ′ for c ∈ X t ,

respectively c ∈ X M
t , are inverse homotopy equivalences. In fact, f g = 1 and g f −1 = dh +hd

where for a basis element c ∈ X t , h(c) =∑
c ′∈X t+1 Γ(c,c ′)c ′.

1.2 Anick’s resolution via Algebraic discrete Morse theory

(1.2.1) We now describe the critical vertices B M . Let m1, . . . ,ml−1 be minimal monomial

generators of the ideal of leading monomials of I , such that for each j ∈ {1, . . . , l − 1} we

have m j = u j v j u j+1 where u1 is a variable. We call the term [u1|v1u2|v2u3| · · · |vl−1ul ] fully

attached if for all j ∈ {1, . . . , l − 2} and each prefix u of v j+1u j+2 the monomial v j u j+1u is

normal. We denote by B j the set of fully attached terms of degree j Ê 2 and let B1 consist of

the variables. Let us say that a pair (u, v) of monomials has zero product minimally if uv = 0

but uv ′ is nonzero for any left divisor v ′ of v . For the proofs of the following two lemmas we

refer the reader to [11].

Lemma 1.2. Assume that A is a monomial algebra. Let j ∈ N. There is a Morse matching

M = M1∪M2∪·· · on the bar resolution B(A, A) of A for which elements of M j consist of those

edges of the form [xi |u1| · · · |u j−1|u j | · · · ] → [xi |u1| · · · |u j−1u j | · · · ] such that xi u1 = u1u2 = ·· · =
u j−2u j−1 = 0 minimally and u j−1u j 6= 0.

Lemma 1.3. The fully attached tuples are exactly the critical vertices, and B(A, A)M is the

Anick resolution of A. In case A is monomial, the critical vertices are the variables [x1], . . . , [xn]

along with those terms [xi |u1| · · · |ur ] where if we set xi = u0, u j u j+1 = 0 minimally for j ∈
{0, . . . ,r −1}.

1.3 Homotopy transfer theorem and A∞-coalgebras

(1.3.1) Let C be a dga coalgebra, and assume that V is a complex of k-modules which is a

deformation retract of C given by maps i : V →C , p : C →V and h : C →C . By this we mean

that pi = 1 and i p−1 = dh+hd . We assume that such data satisfies the side conditions, that

is, all three maps h2, hi and ph are zero. The following result of [15] shows how to transfer

on V a structure of A∞-coalgebra from the dga coalgebra structure of C and, further, how to

produce from the homotopy data another homotopy data of A∞-coalgebras.
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Theorem 1.4 (Homotopy Transfer Theorem). Let (C ,∆′
2) be a dga coalgebra and consider a

homotopy retract as above. There exists an A∞-coalgebra structure on V and a homotopy

retract data from Ω∞C to Ω∞V . The A∞-coalgebra structure on V is given by ∆1 = dV and,

for n ∈NÊ2, by ∆n = p⊗n∆′
ni , where for n ∈NÊ3 the arrows ∆′

n : C −→C⊗n are defined by

∆′
n = ∑

s+t=n
s,t>0

(−1)s(t+1)(∆′
sh ⊗∆′

t h)∆′
2,

with the convention that ∆′
1h = 1. Î

(1.3.2) If T is a planar binary tree of n leaves, write∆T for the cooperation of arity n obtained

by decorating the leaves of T with p, the root of T with i , the inner vertices with ∆′
2 and the

inner edges with h. We define an integer ϑ(T ) as follows. For each vertex v of T , let r1

be the number of paths from a leaf of T to the root that pass through the first input of v ,

and let r2 be the number of those that pass through the second. Set ϑT (v) = r1(r2 +1) and

ϑ(T ) = ∑
v∈T ϑT (v). Let us write ∆T for the operator obtained by decorating the leaves of T

by p, the root of T by i , the inner vertices by ∆′
2 and the inner edges by h. We then have the

following result. We then have the following result of [15].

Theorem 1.5. Let n ∈N. Then ∆n is given by the sum
∑

T (−1)ϑ(T )∆T as T ranges through all

planar binary trees with n leaves. Î

2 Coproducts act by the right comb

2.1 A∞-structure on Tor

(2.1.1) In this subsection we will prove that for each n ∈ N0, following the description of

the higher coproducts of TorA given by Theorem 1.5 by taking C = B A, V = TorA and the

contraction afforded by [11], the only tree that contributes to the computation of ∆n is the

right comb.

(2.1.2) Suppose that γ = [u0| · · · |ur ] is attached but is not a chain. Then there is a largest i1

such that ui = u′
i u′′

i and such that η1 = [u0| · · · |u′
i ] is a chain. It may happen that i = 0, in

which case u′
0 is simply the first variable in u0, as it does for [t 2|t ]. We define

γ1 = (−1)i1+1[η1|ui1
′′|ui1+1| · · · |ur ], Γ1 = [η1|ui1

′′ui1+1| · · · |ur ].

If Γ1 is a chain or zero, stop. Else, there is some largest i2 > i1 such that, keeping in with the
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notation above, η= [u0| · · · |u′
i1
| · · · |u′

i2
] is a chain. In which case, set

γ2 = (−1)i2+1[η2|u′′
i2
| · · · |ur ], Γ2 = [η2|u′′

i2
ui2+1| · · · |ur ].

Continuing in this way, we obtain terms γ= Γ0, · · · ,Γn and γ1, · · · ,γn , where Γn is either zero

or a chain.

Lemma 2.1. With the notation above, we have that h(γ) =∑n
i=1γ

i , p(γ) = Γn . Î

(2.1.3) In the language of the Morse graph associated to the matching M of B A given by

Lemma 1.2, whose critical set of vertices is TorA, we have the following corollary.

Corollary 2.2. Let c be a vertex in G M of degree t that is not critical. There is a unique element

c ′ of degree t +1 and a unique element c ′′ of degree t , which is either zero or critical, a unique

path in G M from c to c ′ and, if c ′′ is nonzero, a unique edge from c ′ to c ′′. Thus, the coefficients

in the homotopy of Theorem 1.1 are all 1 or −1 and p(c) coincides with c ′′ up to a sign. Î

(2.1.4) The following exchange rule between ∆′
2 and h shows that most of the trees in the

definition of the higher coproducts in TorA do not contribute to their computations.

Lemma 2.3. Suppose that γ is attached. Then ∆′
2(h(γ)) = (h ⊗1)∆′

2(γ) modulo TorA ⊗B(A). It

follows that have (h⊗1)∆′
2h = 0 on attached terms. It follows that if n ∈NÊ3 and if γ ∈ TorA is

an element represented by an Anick chain, then only tree that contributes to∆′
n(γ), and hence

to ∆n(γ), is the right comb.

Proof. Let us explain how the second claim follows. The fact that h vanishes on TorA means

that, at the root, the left edge must be a leaf. Knowing this, the exchange rule means that if

T is planar and contains any subtree of the form

∆

h

h

which corresponds to (h ⊗1)(∆′
2h), the operator ∆T will vanish identically. This means that

T can only have leaves growing to the left, and hence T can only be the right comb. Î
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3 The description of the minimal model

3.1 Combinatorics of chains and tails

We now aim to give a more refined description of the terms appearing in a higher coproduct

of a fixed chain γ, as stated in the following theorem.

Theorem 3.1. Let γ be a chain and n ∈NÊ2. The terms that appear in ∆n(γ) are exactly those

of the form γ1 ⊗ ·· · ⊗γn with (γ1, . . . ,γn) a decomposition of γ. Moreover, the coefficient of

γ1 ⊗·· ·⊗γn is (−1)N where N = (n+1
2

)+ r1 +∑n−1
i=1 (n − i )(ri +1) .

(3.1.1) Suppose that γ = xi1 · · ·xis is an Anick chain, with associated interlaced sequences

{(a j ), (b j )}, that is

1 = a1 < a2 É b1 < a3 É b2 < ·· · < ar É br−1 < br = s,

and each xia j
· · ·xib j

is a relation. We will say a variable xi j is an overlapping variable if

s ∈ [a j+1,b j ), and we will say that a bar is inserted at xi j if it is inserted immediately after

it. It may happen that a j+1 = b j , in which case we agree that xia j+1
is both overlapping and

non- overlapping. This always happens, for example, if A is quadratic. A bar term obtained

from γ is regular if it is obtained by inserting bars at non-overlapping variables, and it is

coregular if it is obtained by inserting bars at overlapping variables. The following figure il-

lustrates our definitions for the 4-chain [t |t 3|t |t 3|t ] in k〈t |t 4〉, where white circles represent

overlapping variables, black ones represent non-overlapping variables, the cross represents

the only variable that is both overlapping and non-overlapping, and bars mark the obstruc-

tions that constitute the chain.

• • • •◦ ◦ ◦ ◦×

Lemma 3.2. Let γ be a monomial which is an r -chain. Any regular bar term obtained by

inserting

(1) exactly r bars into γ is either attached and nonzero or is zero,

(2) less than r bars into γ is zero, and

(3) more than r bars into γ is not attached and nonzero or is zero.

Analogous statements hold for coregular bar terms. Î
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(3.1.2) We now note that the homotopy h, which introduces and shifts bars in bar terms,

produces bar terms whose subchains, starting from the left, have bars introduced regularly.

Lemma 3.3. If γ is an element of Torr+1
A corresponding to an r -chain, it has its r bars inserted

regularly. In particular, if γ is an attached term, and if γa is a nonzero summand in h(γ), fol-

lowing the notation of Lemma 2.1, then for j É ia , the j -chain (γa)( j+1) has its j bars inserted

regularly.

(3.1.3) Let us now introduce the definitions that will be central to our proof of Theorems 3.1

and its equivalent formulation in terms of minimal models already stated in the Introduc-

tion. Let γ be an r -chain and j ∈ N. We will say a bar term Γ is a j -tail of γ if there is

a term of the form γ1 ⊗ ·· · ⊗ γ j ⊗Γ in ∆′
j+1(γ) appearing with nonzero coefficient, where

the first j tensors are chains, and, moreover, Γ is a concatenation of at least two chains

γ j+1, . . . ,γn , in this order. Moreover, if for i ∈ [n] we have that γi is an ri chain, we require

that r1 +·· ·+ rn = r −1. The length of Γ is n − j . Let us call the n-tuple (γ1, . . . ,γn) a decom-

position of γ. Remark that there is the notion of “tail” of a chain given in [1], but that this is

not a special case of our definition.

(3.1.4) The following lemma is central to our result.

Lemma 3.4. Fix j ∈N and suppose that γ= [u0|u1| · · · |ur ] is an r -chain, and that Γ is a j -tail

of γ, with first chain γ j+1. Then there exists i ∈ {1, . . . ,r } and a decomposition ui = u′
i u′′

i such

that u′′
i 6= 1, u′′

i ui+1 = 0 minimally and Γ= [u′′
i | · · · |ur ]. Moreover:

(1) This decomposition is nontrivial whenever j > 1

(2) The tail Γ contains exactly r j+1 +·· ·+ rn bars.

(3) There is a unique ( j − 1)-tail Γ′ and a unique term in ∆′
2h(Γ′) of the form γ j ⊗Γ that

gives rise to Γ, and it appears with a sign as a coefficient.

Remark that the condition u′′
i ui+1 = 0 is vacuous if Γ happens to have no bars.

(3.1.5) The following proposition is the main result about tails and chains we were after,

and follows at once from Lemma 3.4. Let γ be an r -chain and n ∈NÊ2. An n-decomposition

of γ is a tuple (γ1, . . . ,γn) of chains such that the underlying monomial of the concatenation

γ1 · · ·γn is γ and such that r1 +·· ·+ rn = r −1 where ri is the lenght of γi .

Proposition 3.5. Let γ be a chain, n ∈ NÊ2 and let (γ1, . . . ,γn) be a decomposition of γ. For

each j ∈ [n − 1] there is a unique j -tail Γ of γ with underlying monomial γ j+1 · · ·γn and a

unique term γ1 ⊗·· ·⊗γ j ⊗Γ in ∆′
j+1(γ), and it appears with coefficient 1 or −1. Î
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3.2 Main theorem

(3.2.1) We now recall the promised description of the minimal model of a monomial algebra

A, which follows immediately from the last proposition and the book-keeping of signs made

in Theorem 3.1. Before doing so, let us remark that all of the work was done for monomial

algebras for readability, but that our work is equally valid for monomial quiver algebras.

(3.2.2) Fix a quiver Q = (Q0,Q1, s, t ) and a set R of paths in Q of length at least two, none

of which is a divisor of another. We call A = kQ/(R) a monomial quiver algebra. Let us

write k for the semi-simple k-algebra kQ0, so that there is an augmentation A −→ k. We

set TorA = TorA(k,k), and write B(A) for the bar complex of A, where unadorned ⊗ are now

taken over k. Thus, a generic basis element of B(A) in degree n ∈N is of the form [a1| · · · |an]

where t (ai ) = s(ai+1) for each i ∈ {1, . . . ,n −1}.

(3.2.3) The notion of decompositions of a chain carry through to this setting, as well as the

technical work of Sections 2 and 3. As an end result we obtain, mutatis mutandis, the fol-

lowing description of a minimal model for quiver monomial algebras. Naturally, we have a

dual result for the Yoneda algebra ExtA(k,k) of A, which we also record.

Theorem 3.6. Let A = kQ/(R) be a quiver monomial algebra. There is a minimal model

M −→ A where M =Ω∞ TorA(k,k) is the∞-cobar construction on TorA(k,k). The differential

b is such that for a chain γ ∈ TorA(k,k),

b(s−1γ) = ∑
nÊ2

(−1)(n+1
2 )+|s−1γ1|s−1γ1 ⊗·· ·⊗ s−1γn ,

where the sum ranges through all possible decompositions of γ. Î

Theorem 3.7. There is a canonical A∞-algebra structure on ExtA given as follows. If n ∈NÊ2

and if γ∨1 , . . . ,γ∨n are chains in ExtA of lengths r1, . . . ,rn , respectively, then µn(γ∨1 ⊗ ·· ·⊗γ∨n ) =
(−1)Mγ∨ if the concatenation γ1 · · ·γn is a chain of length r = r1 +·· ·+ rn +1 where M is the

integer given by the sum M = (n+1
2

)−1+∑
i< j ri (r j +1)+r1+r . Otherwise, this higher product

is zero. Î
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