
Submitted to:
TERMGRAPH 2018

c© S. Tourret & A. Cropper
This work is licensed under the
Creative Commons Attribution License.

SLD-Resolution Reduction of Second-Order Horn Fragments
- Extended Abstract

Sophie Tourret
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

sophie.tourret@mpi-inf.mpg.de

Andrew Cropper
University of Oxford, UK

andrew.cropper@cs.ox.ac.uk

We introduce the derivation reduction problem, the undecidable problem of finding a finite subset
of a set of clauses such that the whole set can be derived using SLD-resolution. We also study
the derivation reducibility of various fragments of second-order Horn logic using a graph encoding
technique, with particular applications in the field of Inductive Logic Programming.

1 Introduction

Our main focus is studying whether theories formed of second-order function-free Horn clauses can be
derivationally reduced to minimal (i.e. irreducible) finite theories, such that all the clauses in the original
theory can be derived from the reduced theory. For instance, consider the following theory T , where the
symbols Pi represent existentially quantified second-order variables (i.e. variables that can be substituted
by any predicate symbols):

C1 = P0(x)← P1(x)
C2 = P0(x)← P1(x),P2(x)
C3 = P0(x)← P1(x),P2(x),P3(x)

The clause C3 is derivationally redundant in T because it can be derived through a self-resolutions of C2.
Since C2 cannot be derived from C1 and vice versa, in this case a minimal derivation reduction of T is
the theory containing only C1 and C2.

Our motivation for studying this problem comes from Inductive Logic Programming [8] (ILP), a sub-
field of machine learning which induces hypotheses from examples and background knowledge, where
hypotheses, examples, and background knowledge are all represented as logic programs. Many forms
of ILP [3, 5, 9, 11], or ILP variants [1, 6, 14], rely on SLD-resolution and use second-order Horn clauses
as program templates, also denoted as metarules in ILP, to denote the form of hypotheses that may be
induced. For instance, the following second-order Horn clause could be used to learn the concept of a
transitive closure:

P0(x1,x2)← P1(x1,x3),P2(x3,x2)

However, determining which program templates to use is an open problem in ILP [3,9]. On the one hand,
you want to provide enough clauses to ensure completeness (or near-completeness) of the learner [3].
For instance, it is impossible to express transitive closure using the following second-order Horn clause
as program template because it only contains monadic literals:

P0(x)← P1(x)

On the other hand, you want to remove redundant clauses to improve the efficiency of the learner [3].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 SLD-Resolution Reduction of Horn Fragments

2 Problem Statement and Decidability Results

We now introduce the derivation reduction problem, which is the problem of removing derivationally
redundant clauses from a clausal theory. The problem can be defined for any first-order proof system,
but we focus on SLD-resolution [7] for the reason previously stated.

We assume two infinite enumerable sets of variables: term variables x1, x2, ..; and predicate variables
P, P0, P1, ... An atom is of the form Pi(xk1 , ..,xka), where i ∈N and a ∈N∗. The number of term variables
in an atom, denoted a, corresponds to the arity of the predicate Pi. A literal is either an atom (positive
literal) or the negation of an atom (negative literal). A Horn clause, denoted as C, D, C′, C1, .. is a
finite set of literals interpreted as a disjunction with at most one positive literal. The term “Horn” will
be omitted in the rest of the paper, where all clauses are in fact Horn clauses (or λ -free function-free
second-order Horn clauses to be precise). We use standard set operations such as union on clauses. The
term and predicate variables are respectively assumed to be universally and existentially quantified1. A
theory T is a set of clauses. We denote the set of all clauses, as defined previously, as H . The positive
literal of a clause C, when it exists, is its head and is denoted as h(C). The set of negative literals of C
is called its body and is denoted as b(C). The clause C is written as h(C)← b(C). We denote the empty
clause as �. We denote the number of literals occurring in b(C) as |b(C)|, i.e. the body size.

A substitution σ is a function mapping term variables to term variables and predicate variables to
predicate variables with the same arity. The application of a substitution σ to a clause C is written Cσ . A
substitution σ is a unifier of two literals when they are equal after substitution. A substitution σ is a most
general unifier of two literals, denoted as m.g.u., when no smaller substitution is also a unifier of the two
literals. SLD-resolution [7] is a restricted form of resolution [12] based on linear resolution, with two
additional constraints: (1) it is restricted to Horn clauses, and (2) it does not use factors, where factoring
unifies two literals in the same clause during the application of the resolution inference rule (this implies
that all resolvents are binary resolvents). Given two clauses C and D such that h(C) can be unified with a
literal in b(D) by an m.g.u. σ of these two literals, and given that σ does not unify any other two literals
from C and D, the resolvent of C and D by SLD-resolution is C′ = (h(D)← b(C)∨D′)σ where D′ is
b(D) without the pivot, i.e. the literal being resolved upon (i.e. b(C) in C and the literal that unifies with
it in D). We write C,D `C′ to indicate that C′ is the resolvent of C and D by SLD-resolution. We define
a function Sn(T) of a theory T as:

S0(T) = T
Sn(T) = {C|C1 ∈ Sn−1(T),C2 ∈ T , s.t. C1,C2 `C}.

The SLD-closure of a theory T is defined as S∗(T) =
⋃

n∈N
Rn(T). We say that a clause C is derivable from

the theory T , written T `∗ C, if and only if C ∈ S∗(T). Given a theory T , a clause C ∈ T is reducible if it
is the resolvent of an inference whose premises all belong to T and have a body size smaller than |b(C)|.
A clause C is redundant in the theory T ∪{C} if and only if T `∗ C. By extension, we write that a theory
T is redundant to another theory T ′ ⊆ T if for all C ∈ T , T ′ `∗ C. A theory is reduced if and only if it
does not contain any redundant clauses. We now state the reduction problem:

Definition 2.1 (Reduction problem) Given a theory T , the reduction problem is to find a finite theory
T ′ ⊆ T such that (1) T is redundant to T ′, and (2) T ′ is reduced. In this case, we say that T ′ is a minimal
core of T .

1The quantification of predicate variables does not matter in this paper because we are not concerned with the truth-value
of the clauses. In practice, ILP approaches typically use existentially quantified predicate variables [3], however this has no
impact on the results presented here.

S. Tourret & A. Cropper 3

Theorem 2.2 (Undecidability) The derivation reduction problem is undecidable.

Proof sketch. To prove this theorem, we reduce the problem of testing entailment between first-order
Horn clauses to it, using the subsumption theorem for SLD-resolution [10]. Since this second problem
is known to be undecidable [13], derivation reduction must also be undecidable.

These results show that it is impossible to compute a minimal core for arbitrary theories. Therefore, we
instead focus on specific second-order theories that are used by ILP systems. Following is a description
of some of these theories.

3 Fragments of Interest in H

From Section 4 onwards we study whether derivationally reduced theories exist for various fragments of
H , where a fragment of a theory is a syntactically-restricted subset of that theory [2]. In this section, we
describe the fragments of interest and introduce additional fragment-related notion.

The first fragments are based on simple syntactic restrictions. The most simple syntactic restrictions
that can be imposed on clauses in H are on the arity of the predicates and on the number of literals in
the clauses. Let us consider a fragment F of H . We write Fa,b to denote clauses in F that contain
predicates of arity at most a and clauses of body size at most b. When one of these restrictions is not im-
posed, the symbol ∞ replaces the corresponding number. For example, the clause P0(x1)← P1(x2,x3,x4)
belongs to H3,1. When restrictions are imposed on a fragment that is already restricted, the stricter re-
strictions are kept. For example, H3,1 = (H4,1)3,∞ =H4,1∩H3,∞ because the stricter restriction on arity
is 3, not 4, and the restriction to clauses of body size 1 is stricter than no body size restriction (∞). We
rely on the body size restriction to bound the minimal cores of the studied fragments.

Definition 3.1 (Reducible fragment) A fragment F of H is reducible to F∞,b when, for all C ∈F
such that |b(C)|= b′ > b, there exists b′′ < b′ such that F∞,b′′ `C, i.e. C is the resolvent of an inference
with premises in F∞,b′′ .

The following results are consequences of this definition and of the reduction problem statement.

Proposition 3.2 (Reduciblility) If a fragment F is reducible to F∞,b then F is redundant to F∞,b.

Theorem 3.3 (Cores of reducible fragments) If a fragment F is reducible to F∞,b then the solutions
of the reduction problem for F and F∞,b coincide, i.e. if there are any, the minimal cores of F and F∞,b
coincide.

Since our work is largely motivated by applications in ILP [3, 6, 10] we focus on connected clauses:

Definition 3.4 (Connected fragment) A clause is connected if the literals in the clause cannot be par-
titioned into two sets such that the variables appearing in the literals of one set are disjoint from the
variables appearing in the literals of the other set. The connected fragment, denoted as H c, is the subset
of H where all clauses are connected.

Example 3.5 The clause C1 = P0(x1,x2)← P1(x3,x1),P2(x2), P3(x3) belongs to H c, but the clause C2 =
P0(x1,x2)← P1(x3,x4), P2(x2),P3(x3) does not because none of the variables occurring under P0 and P2,
i.e. x1 and x2, occur under P1 and P3 and vice versa.

A stricter version of connectedness, denoted here as 2-connectedness, is also of importance in ILP
[3]. It essentially eliminates singleton occurrences of variables:

4 SLD-Resolution Reduction of Horn Fragments

P0

P1 P2 P3

P4 P1

x1
x1

x2 x5

x4

x1

x3

Figure 1: Encoding of C = P0(x1,x2)← P1(x1,x3),P2(x1,x3,x4),P3(x4),P4(x2,x5), P1(x5,x6) in the graph
GC, where vertices correspond to literals and edges represent variables shared by two literals.

Definition 3.6 (2-connected fragment) The 2-connected fragment, denoted as H 2c, is the subset of
H c such that all the term variables occur at least twice in distinct literals. A term variable that does not
follow this restriction is denoted as pending.

Example 3.7 The clause C1 from Example 3.5 belongs to H 2c because x1 occurs under P0 and P1,
x2 occurs under P0 and P2, and x3 occurs under P1 and P3. In contrast, the clause C3 = P0(x1,x2)←
P1(x3,x1),P2(x1),P3(x3) belongs to H c but not to H 2c because x2 occurs only once and is thus pending.

Note that the simple restrictions can be combined with both connectedness and 2-connectedness. In the
following sections we consider the reduction problem for H c (Sect. 4) and for H 2c

2,∞ (Sect. 5).

4 The Fragment H c is Reducible to H c
∞,2

We now study whether certain fragments can be reduced. Our first focus is on the fragment H c con-
taining al connected clauses. We are primarily interested in seeing whether this fragment can be reduced
using SLD-resolution to a fragment with only two literals in the body (H c

∞,2). Our general approach is
to use concepts from graph theory and we assume reader familiarity with basic notions of this field, in
particular, notions of circuits and length of circuits, spanning trees, connected graphs, degree of vertices
and outgoing edges (from a set of vertices). To prove the reducibility of H c, we consider H c

a,∞ for any
a ∈ N∗, and show that it can be reduced to H c

a,2. To reduce all clauses in H c
a,∞ of body size greater than

two, we rely on the following graph encoding to create fitting premises to infer C.

Definition 4.1 (Graph encoding) Let C be a clause in H c
m,∞. The undirected graph GC is such that:

• there is a bijection between the vertices of GC and the predicate occurrences in C (head and body),

• there is an edge in GC between each pair of vertices for each corresponding pair of predicate that
share a common term variable. The edge is labeled with the corresponding variable.

Example 4.2 The clause C =P0(x1,x2)←P1(x1,x3),P2(x1,x3,x4), P3(x4), P4(x2,x5),P1(x5,x6) is mapped
to GC as illustrated in Fig. 1. In C, there are two occurrences of P1, thus there are also two vertices with
this label in GC. Moreover the variables x1 and x3 occur both under P1 and P2 in C, thus there are
two edges linking the corresponding nodes in GC. Note also that since the variable x6 occurs only in
P4, it is not present in GC. In fact GC also represents many other clauses, e.g., P1(x1,x3)← P0(x2,x1),
P2(x4,x3,x1),P3(x4), P4(x2,x5),P1(x5,x5).

S. Tourret & A. Cropper 5

This graph encoding allows us to abstract the characteristics of the clauses that are irrelevant to our
problem and concentrate only on the one notion that matters in this case, namely connectivity, as shown
in the following proposition.
Proposition 4.3 Let C ∈H . The graph GC is connected if and only if C ∈H c.

In other words, the notion of connectedness that we introduced for clauses in Def. 3.4 is equivalent to
graph connectedness when encoding the clauses in the graph form from Def. 4.1. Since we are only
interested in connected clauses, this means that we only handle connected graphs.

In the proofs of this section we assume that (1) in a clause no two literals share more than one variable
and (2) no predicate variable occurs more than once. This is done w.l.o.g. to simplify the notations and
the reasoning. Condition (1) allows us to identify edges with pairs of vertices without care for their label
since there is then at most one edge between two vertices, as is the case in standard unlabeled graphs.
Condition (2) allows us to name vertices with the predicates they represent. Clauses that do not respect
these criteria are trivially derivable from clauses respecting these conditions with clauses of body size
1. For example C = P0(x1,x2)← P1(x1,x2),P0(x2,x3) is derivable from P0(x1,x2)← P1(x1,x4),P2(x4,x3)
and P2(x2,x3)← P0(x2,x3), both in H c

2,∞, by unifying x2 and x4.
The following result (Prop. 4.6) is the main intermediary step in the proof of reducibility of the

connected fragment (Th. 4.7). We start with a reminder of a classical result in graph theory used in the
subsequent proof.
Theorem 4.4 (Th. 2 from [4]) A finite graph in which the degree of every vertex is at least d(> 1) con-
tains a circuit of length at least d +1.

Proposition 4.5 Let G be a connected graph containing a circuit of length 3. If S is a spanning tree of
G containing two edges of the circuit then replacing in S one of these edges by the non-used one from
the circuit yields another spanning tree of G.

Proof. Let S ’ be S after the replacement described in the proposition and v1, v2 and v3 be the vertices
in the circuit of length 3. We assume w.l.o.g. that the edges (v1,v2) and (v2,v3) belong to S and that
the edge (v2,v3) is replaced by (v1,v3) in S ’. Wherever there exists a path between two vertices in S ,
there also exists a path between them in S ’:
• if the path doesn’t go through (v2,v3) in S then the same path also exists in S ’,

• if the path goes through (v2,v3) in S then the same path where v1 is inserted between all contigu-
ous occurrences of v2 and v3 exists in S ’.

Let us assume the existence of a circuit in S ’. Since S is a spanning tree, the circuit in S ’ necessarily
goes through (v1,v3). Let us consider a path from v1 to itself in S ’. Then by inserting v2 in any
contiguous occurrences of v1 and v3, a path from v1 to itself in S is obtained, a contradiction.

Proposition 4.6 (Spanning tree) For any clause C ∈H c
a,∞, a ∈N∗, there exists a spanning tree of GC in

which there exist two adjacent vertices such that the number of edges outgoing from this pair of vertices
is at most a.

Proof. By contradiction, let us assume that no such pair of vertices exists in any spanning tree. Due to
Th. 4.4 there exists at least one vertex v of degree 1 in the spanning tree, because by definition it has no
circuit. The vertice v′ adjacent to v is thus of degree at least a+2, so that there are at least a+1 outgoing
edges from the pair (v,v′). Since there are at most a arguments in all predicates, there are at least two
edges e1, e2 related to one or two variables that is/are also behind the existence of some other edge or
edges. We want to remove one of these edges and replace it with an edge not connected to v′. There are
two possibilities to examine:

6 SLD-Resolution Reduction of Horn Fragments

1. there is one variable that connects v′ with at least three other distinct vertices,

2. there are two distinct variables such that each one connects two vertices to v′, the four such vertices
being distinct.

In the first case, since there are at least three distinct vertices connected to v′, at least two are distinct
from v. We call w and w′ these two vertices. Since both w and w′ are connected to v′, there is no edge
between them in the spanning tree, or it would have a circuit. However, note that the edge (w,w′) belongs
to GC because the corresponding predicates share a common variable. Let us consider the same spanning
tree where the edge (w,v′) has been replaced by the edge (w,w′). This new graph is also a spanning tree
of GC by Prop. 4.5.

In the second case, among the two pairs of vertices previously identified, we consider the pair of
vertices {w,w′} such that both are distinct from v. Since the four vertices are distinct, one such pair
necessarily exists. As with the first case, since w, w′ and v′ share a common variable, it is possible to
swap the edge (w,v′) with (w,w′) in the spanning tree and as in the first case, Prop. 4.5 guarantees that
the obtained graph is also a spanning tree of GC.

In both cases, this operation reduces the number of edges outgoing from the pair v, v′ by one. This
process can be repeated until this number reaches a, since the conditions to apply the transformation hold
as long as the degree of v′ is greater than a. This contradicts our initial assumption.

The main result of this section is the following theorem, that concerns any connected fragment with
constrained arity. As implied by Th. 20 it turns out that any such fragment admits a minimal core
containing clauses of body size at most two.

Theorem 4.7 (Reducibility of connected fragments) For any a ∈ N∗, H c
a,∞ is reducible to H c

a,2.

Proof. Let a ∈N∗ be fixed and C = P0(..)← P1(..), ..,Pk(..) ∈H c
a,∞ (k≥ 3). By applying Prop. 4.6, it is

possible to identify two adjacent vertices v and v′ in GC such that there exists a spanning tree S of GC

where the number of edges outgoing from the pair v, v′ is less than or equal to a. Let Pv and Pv′ be the
predicates respectively associated with v and v′ in C. Let x1, ..,xa′ (a′ ≤ a) be the variables corresponding
to the edges outgoing from the pair of vertices v, v′. Let P′0 be an unused predicate variable of arity a′. We
define: C1 =P0(..)←P′0(x1, ..,xa′),P1(..), ..,Pk(..)\{Pv(..),Pv′(..)} and C2 =P′0(x1, ..,xa′)←Pv(..),Pv′(..).
These clauses are such that C1,C2 `S C and C1,C2 ∈H c

a′,∞. Thus, C is reducible.

This result is straightforwardly extended to the whole connected fragment.

Lemma 4.8 (Reducibility of the whole connected fragment) The fragment H c is reducible to H c
∞,2

Note that this last result does not imply that H c has minimal cores. In fact, since it is not possible to
increase the arity of predicates through SLD-resolution, any fragment where this arity is not constrained
is guaranteed to have no minimal core since at least one predicate of each arity must occur in it and the
number of literals that occur in a clause is finite.

5 Reducibility of H 2c
2,∞

We now consider the Reduction for the H 2c
2,∞ fragment of H . Although this fragment is only slightly

more constrained than H c
2,∞, itself reducible to H c

2,2, the results in this section are completely different
from the ones from the previous section. We show that it is not possible to reduce H 2c

2,∞ to any size-
constrained sub-fragment. To do so we exhibit a set H nr of clauses in H 2c

2,∞ that cannot be reduced. This

S. Tourret & A. Cropper 7

P0

P1

P2

P3

P4

P5

x1

x1

x1

x2

x2

x2

x3

x3
x3

x4

x4 x4

(a) Graph encoding of Cbase,
GCbase

P1 P2x1

x1 x1

x2 x3

x2 x3

P1 P2

P3

P4 P5

x1

x4

x4

x4

x5

x5

x5

x1 x1

x2 x3

x2 x3

(b) Graph of a clause before and after a non-red preserving transformation

Figure 2: Graph encoding of H nr base and construction rule

set contains clauses that are of arbitrary size. In practice, this means that in H 2c
2,∞ given any integer k it

is possible to exhibit a clause of body size superior or equal to k that cannot be reduced, thus preventing
H 2c

2,∞ itself to be reducible to H 2c
2,k no matter how big k is.

We start by defining the clause Cbase ∈H nr that is the foundation on which H nr is build.

Definition 5.1 (Cbase) Cbase = P0(x1,x2)← P1(x1,x3),P2(x1,x4),P3(x2,x3),P4(x2,x4),P5(x3,x4).

In Cbase all the literals are symmetrical to the others, i.e. they all have two direct neighbors (literals
that share a common variable) from their first variable and two other from their second variable, and
there is one literal that does not share any variable with them but is a neighbor to all the other literals.
This is better seen on the graphical representation of Cbase in Fig. 2a, e.g. P0 does not share literals with
P5 but does with all other predicates.

Proposition 5.2 (Non-reducibility of Cbase) Cbase is not reducible.

Proof. To derive the clause Cbase from two smaller clauses, these two smaller clauses C1 and C2 must
form a partition of the literals in Cbase if one excludes the pivot. To solve this problem, we partition the
vertices of GCbase in two sets and count the number of edges with distinct labels that link vertices from
the two sets. These correspond to pending variables in one of the sets, i.e. to the variables that must
occur in the pivot that will be added in both sets to form C1 and C2. If there are more than two of these
variables, the pivot cannot contain all of them thus at least one of C1 and C2 is not in H 2c

2,∞. Each of the
two sets in the partition must contain at least two elements, otherwise one of C1, C2 is as big as Cbase
which does not make Cbase reducible. The symmetries in GCbase are exploited to reduce the number of
cases to consider to only four that vary along two axes: the cardinalities of the subsets, either 2-4 or 3-3;
and the connectedness of the subsets. Only the following cases are possible. In the 2-4 case, one of the
subset is fully connected and the other is not. In the 3-3 case, the subsets are either both fully connected
or both not fully connected. In all cases, there are 3 or more distinct labels on the edges between the
two subsets, corresponding to pending variables, thus Cbase is not reducible. Note that this proof works
because there are exactly three occurrences of each variable in Cbase. Otherwise it would not be possible
to match the labels with the pending variables.

We define a transformation that turns a clause into a bigger clause (Def. 5.3) in such a way that when
this extension is done on a non-reducible clause, the resulting clause is also not reducible (Prop.5.4).

8 SLD-Resolution Reduction of Horn Fragments

Definition 5.3 (Non-red preserving extension) Let the body of a clause C ∈H 2c
2,∞ contain two dyadic

predicates sharing a common variable, e.g. P1(x1,x2) and P2(x1,x3), without loss of generality. A non-
red preserving extension of C is any transformation replacing two such literals in C by the following
set of literals: P1(x1,x4), P2(x1,x5), P3(x4,x5), P4(x4,x2), P5(x5,x3) where P3, P4, P5, x4 and x5 are fresh
predicate and term variable symbols.

By observing on Fig. 2b the neighboring structure of the literals after the non-red preserving transforma-
tion, one can see a symmetry between the ordered pairs of vertices (P1,P4) and (P2,P5) that resembles
the symmetry between the original vertices P1 and P2.
Proposition 5.4 (Non-red preserving extension) If a clause C is non-reducible and all the term vari-
ables it contains occur three times then any non-red preserving extension of C is also non-reducible.

Proof sketch. We assume the existence of a reducible non-red extension Cext of a non-reducible clause
C in which all term variables occur three times. We use the existence of premises Cext1, Cext2 that derive
Cext to build C1, C2 such that C1,C2 `C, a contradiction to the fact that C is non-reducible. The number
of cases to consider is greatly reduced due to the symmetries of the non-red preserving extension.

Starting from Cbase and using this extension, we define H nr formally (Def. 5.5) and as a consequence
of the previous proposition, the whole H nr fragment contains only non-reducible clauses (Prop. 5.6).
Definition 5.5 (Non-reducible fragment) The fragment H nr is a subset of H 2c

2,∞ that contains Cbase
and all the clauses that can be obtained by applying a non-red extension to another clause in H nr.

Proposition 5.6 For all C ∈H nr, C is non-reducible.

The non-reducibility of H nr ensures that the body sizes of the clauses in an hypothetical minimal core
of H 2c

2,∞ cannot be bounded, which in turn prevents the existence of this minimal core. This has direct
(negative) consequences on ILP systems that rely on such results to ensure search completeness [9].

6 Conclusion

In this paper, we have introduced the derivation reduction problem for second-order clauses (H), i.e.
the problem of computing a finite subset of a set of second-order clauses from which the whole set
can be derived using SLD-resolution. We have shown that the problem is undecidable. We have also
considered the derivation reducibility of several fragments of H . The first studied fragment, that of
connected clauses H c, was proven reducible to H c

∞,2, where clauses have at most two literals in their
body. The second studied fragment, that of 2-connected clauses made of at most dyadic predicates H 2c

2,∞,
was proven to have no reduction constraining the body size of clauses.

Concrete minimal cores for the reducible fragments H c
a,∞ with a ∈ N could now be computed to

be used as ILP templates. An open challenge for ILP is to work around the negative result for H 2c
2,∞,

which could be done, for instance, by relaxing SLD-resolution to standard resolution or by allowing
the use of triadic literals in restricted cases. The ramifications of these decisions, both theoretical and
practical, need further investigation. Considering fragments of H 2c where predicates with a higher arity
are allowed, e.g. H 2c

3,∞, H 2c
4,∞, etc. also remains as future work.

References
[1] Aws Albarghouthi, Paraschos Koutris, Mayur Naik & Calvin Smith (2017): Constraint-Based Synthesis of

Datalog Programs. In: International Conference on Principles and Practice of Constraint Programming,
Springer, pp. 689–706.

S. Tourret & A. Cropper 9

[2] Aaron R Bradley & Zohar Manna (2007): The calculus of computation: decision procedures with applica-
tions to verification. Springer Science & Business Media.

[3] A. Cropper & S.H. Muggleton (2015): Logical minimisation of meta-rules within Meta-Interpretive Learn-
ing. In: Proceedings of the 24th International Conference on Inductive Logic Programming, Springer-Verlag,
pp. 65–78. Available at http://www.doc.ic.ac.uk/~shm/Papers/minmeta.pdf. LNAI 9046.

[4] G. A. Dirac (1952): Some Theorems on Abstract Graphs. Proceedings of the London Mathematical Society
s3-2(1), pp. 69–81, doi:10.1112/plms/s3-2.1.69.

[5] Werner Emde, Christopher U Habel & Claus-Rainer Rollinger (1983): The discovery of the equator or con-
cept driven learning. In: Proceedings of the Eighth international joint conference on Artificial intelligence-
Volume 1, Morgan Kaufmann Publishers Inc., pp. 455–458.

[6] Richard Evans & Edward Grefenstette (2017): Learning Explanatory Rules from Noisy Data. arXiv preprint
arXiv:1711.04574. To appear in JAIR.

[7] Robert A. Kowalski (1974): Predicate Logic as Programming Language. In: IFIP Congress, pp. 569–574.
[8] S.H. Muggleton (1991): Inductive Logic Programming. New Generation Computing 8(4), pp. 295–318.

Available at http://www.doc.ic.ac.uk/~shm/Papers/ilp.pdf.
[9] S.H. Muggleton, D. Lin & A. Tamaddoni-Nezhad (2015): Meta-Interpretive Learning of Higher-Order

Dyadic Datalog: Predicate Invention revisited. Machine Learning 100(1), pp. 49–73.
[10] Shan-Hwei Nienhuys-Cheng & Ronald de Wolf (1997): Foundations of Inductive Logic Programming.

Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[11] Luc De Raedt & Maurice Bruynooghe (1992): Interactive Concept-Learning and Constructive Induction by

Analogy. Machine Learning 8, pp. 107–150, doi:10.1007/BF00992861.
[12] John Alan Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1),

pp. 23–41, doi:10.1145/321250.321253.
[13] Manfred Schmidt-Schauß (1988): Implication of Clauses is Undecidable. Theor. Comput. Sci. 59, pp. 287–

296, doi:10.1016/0304-3975(88)90146-6.
[14] William Yang Wang, Kathryn Mazaitis & William W Cohen (2014): Structure learning via parameter learn-

ing. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowl-
edge Management, ACM, pp. 1199–1208.

http://www.doc.ic.ac.uk/~shm/Papers/minmeta.pdf
http://dx.doi.org/10.1112/plms/s3-2.1.69
http://www.doc.ic.ac.uk/~shm/Papers/ilp.pdf
http://dx.doi.org/10.1007/BF00992861
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1016/0304-3975(88)90146-6

	Introduction
	Problem Statement and Decidability Results
	Fragments of Interest in H
	The Fragment Hc is Reducible to Hc_,2
	Reducibility of H2c2,
	Conclusion

