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We present a new approach to the logical design of relational databases, based on strategic port graph
rewriting. We show how to model relational schemata as attributed port graphs and provide port
graph rewriting rules to perform computations on functional dependencies. Using these rules we
present a strategic graph program to find the transitive closure of a set of functional dependencies.
This program is sound, complete and terminating, given the restriction that there are no cyclical
dependencies in the schema.

1 Introduction

Traditionally, steps of relational database design include Conceptual, Logical and Physical modelling.
The theory behind these steps (especially the first two) is well-understood and is part of the syllabus of
many databases courses. Yet, database professionals often consider normalisation too cumbersome and
do not apply normalisation theory, despite the clear advantages of normalised database designs. Badia
and Lemire [4] also highlight that conceptual and logical models do not always carry enough information
about database semantics thereby leading the architect to a sub-optimal design.

We use attributed port graphs to represent a relational schema and its semantics. Port graphs are
graphs where edges are connected to nodes at specific points, called ports. They were introduced in [2]
as a tool to model biochemical systems. In port graphs, nodes, edges and ports can have attributes, which
are used to represent properties of the system modelled. In this paper we focus on using port graphs in
the logical phase of database design. We show that port graphs are a good choice of data structure to
store relational metadata and can be transformed without the loss of metadata.

To specify the transformations applied to relational schemata, we use port graph rewriting systems,
a general class of graph rewriting systems [10]. The implementation framework we use is PORGY [12]
– a visual, interactive tool for the specification, simulation and analysis of systems based on port graph
rewriting. PORGY provides a graphical interface, where users can define a system and specify its dynam-
ics by means of port graph rewrite rules and strategies. Port graphs have node, port and edge attributes,
whose values are taken into account in port graph morphisms (used to define rewriting steps) and in
strategy expressions (to control the application of rules). Strategic graph programs [12], consisting of
an initial port graph and a set of rewrite rules controlled by a strategy, are the essence of PORGY. The
strategy language offers separate primitives to select subgraphs of the model as focusing positions for
rewriting and to select the rewrite rules to be applied, following the separation of concerns principle
which makes programs easier to maintain and adapt. The strategy language also allows users to define
strategies using not only operators to combine graph rewriting rules but also operators to deal with graph
traversal and management of rewriting positions in a graph. PORGY provides a visual representation of
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the set of rewrite derivations (a derivation tree) and includes features such as cycle detection, to facilitate
debugging.

We extend the rule language by adding the possibility to specify application conditions for a rule.
That is, as part of a rewrite step, in the rule editor, users can define a set of conditions which are evaluated
after a morphism has been found. The rewrite step is applied only if the rule condition evaluates to true.
As a use-case we provide a set of port graph rewriting rules and a strategy to calculate the transitive
closure of a set of functional dependencies. Although there are a number of tools already available to
do the same, a distinctive advantage of our implementation is that it is visual and backtrackable (thanks
to the derivation tree feature of PORGY). Our strategy is sound, complete and terminating, given the
restriction that there are no cyclical dependencies in the schema.

Summarising, our contributions are:

1. a new visual language, based on port graphs, for logical design of relational schemata,

2. generic application conditions for rules (a port graph rewriting language extension),

3. a strategic graph program to find the transitive closure of a set of functional dependencies.

This last contribution is a key step towards building strategic graph programs to find minimal covers,
candidate keys and Third Normal Form (3NF) relation schemata.

Related Work. Graph theory and graph rewriting is by no means a new addition to the set of tools
that have been used for relational database design. In [11] hypergraphs are used and their well-formed
property (called a canonical hypergraph) determines the quality of design they represent. The authors of
[16] used directed graphs to find all candidate keys of a relation in polynomial time. A special family of
labelled graphs, FD graphs, were introduced in [3] to obtain Σ+ and Σmin. In terms of graph transforma-
tions and rewriting we highlight two works. Hypergraph rewriting was used in [5] for the manipulation
of functional dependencies and Triple Graph Grammars were used in [13] to optimize an already existing
schema.

Organization. This paper is organised as follows. We briefly review relational database theory and
port graph rewriting background in Section 2. We present our port graph visual language for logical
design of relation schemata in Section 3. In Section 4 we define the syntax of the language for generic
rule application conditions. Section 5 illustrates how the visual language and the generic rule application
conditions can be used to find the transitive closure of a set of FDs. We then conclude in Section 6 by
highlighting how these results can be used in future work. Due to space constraints proofs are omitted.

2 Background

In this section we will review the definitions and background in relational databases and port graph
rewriting that we are going to use throughout this paper. Due to space constraints, for formal definitions
and proofs, this section will refer the reader to the relevant works rather than recalling them. We will
also briefly review related work that used graphs to represent or transform relational schemata.

2.1 Relational Database Design

We assume that the reader is familiar with the theory of logical design of relational databases [8, 9].
In particular, the definitions of: relation schema, attribute, candidate key and functional dependency
(FD) [8, 9]. We refer to a single attribute with letters from the beginning of the alphabet A,B, . . . and to
attribute sets with letters from the end of the alphabet X ,Y,Z. This paper will denote the set of all FDs
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of a relation schema ΣR or just Σ, where appropriate. We also assume familiarity with the inference rules
of functional dependencies, also known as Armstrong’s Axioms [6]: Transitivity, Trivial Dependency,
Augmentation, Union, Decomposition, Pseudotransitivity. We call the set of all FDs that can be inferred
from Σ, using Armstrong’s Axioms, the syntactic closure Σ+. It was shown that Armstrong’s Axioms
are sound and complete, which means that they find only and all (respectively) semantically correct
dependencies.

2.2 Port Graph Rewriting

An attributed port graph is a labelled attributed graph where nodes have specific points-of-connection
called ports, and edges that are attached to ports. In this subsection we recall the most important port
graph rewriting constructs from Sections 2 and 3 of [12], where the full formal definitions can also be
found.

A port graph rewrite rule is a port graph L⇒Where:=C R consisting of two subgraphs L and R together
with an arrow node that links them. Each rule is characterised by its arrow node, which has a unique
name (the rule’s label), a condition Where restricting the rule’s matching, and ports to control the rewiring
operations when rewriting steps are computed. Edges that run between ports of L, R and the arrow node
are coloured red by PORGY to distinguish them from normal edges. We recall the definition of the
matching morphism that states that a match g(L) of the left-hand side is found in G if there is a total port
graph morphism g from L to G such that if the arrow node has an attribute Where with value C, then g(C)
is true in G. C is of the form saturated(p1)∧ ...∧ saturated(pn)∧B. The predicate saturated(g(pi)) is
true if there are no edges between g(pi) and ports outside g(L) in G. B is a Boolean expression such that
all its variables occur in L.

Our contribution to the rewrite rule language is to provide the functionality of generic application
conditions. This task was two-fold: we created a grammar for B and implemented a PORGY Rule Editor
plug-in (called Rule Conditions).

We also recall here that a strategic graph program consists of a located graph (a port graph with
two distinguished subgraphs that specify the locations where rewriting should take place or not), a set
of located rewrite rules, and a strategy expression. In a located graph GQ

P , P represents the position
subgraph of G where rewriting steps may take place and Q represents the banned subgraph of G where
rewriting steps are forbidden. A located rewrite rule L⇒C RN

M can update P and Q in a rewrite step such
that P′ = (P\g(L))∪g(M) and Q′ = (Q\g(L))∪g(N).

Our work to find the transitive closure is implemented in the form of a strategic graph program.

3 A Visual Language for Relational Schema Design

We now show how relational schemata (using functional dependencies only) can be modelled as at-
tributed port graphs. We use the ′.′ (dot, member-of) operator to refer to a particular port of a node.

We define attributes and FDs as nodes. The fact that an attribute belongs to the right- or left-hand side
of a FD is represented by edges. However, when adding FDs to the visual language, we face a challenge.
Because of the semantics of a FD (i.e. LHS determines RHS), strategic graph programs executed on this
visual language have to be able to distinguish between LHS and RHS attributes of FDs. A non-trivial
FD must have at least one attribute on both sides where (RHS 6⊆ LHS). Also, as per the separation of
concerns principle, a FD has to be aware of the list of attributes on its sides, not the other way around.

Since port graphs are not typed graphs, firstly, we introduce an attribute called RelDbType which
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denotes the role of the node in the relational context. Every new node (and all of its ports) created
in a model have to have a RelDbType value. Attribute nodes have RelDbType = ATTR, FD nodes have
RelDbType = FD. The port of an attribute that handles the connection to either side of a FD has RelDbType
= pFD. The LHS and RHS connection ports of a FD node have RelDbType = FDLHS and FDRHS,
respectively. Both FDLHS and FDRHS ports have an integer attribute FunctionalArity defined that
allows the system to store the number of attributes on each side. This is required because the matching
algorithm does not enforce exact arity since a particular port can be connected to other ports outside the
match found, however, when matching on FDs and their LHSs, every single LHS attribute has to be in
the matching subgraph.

node:

viewLabel="A"

RelDbType="ATTR"

port:

RelDbType="pFD"

node:

viewLabel="FD2"

RelDbType="FD"

LHS port:

viewLabel="LHS"

RelDbType="FDLHS"

FunctionalArity=1

RHS port:

viewLabel="RHS"

RelDbType="FDRHS"

FunctionalArity=1

node:

viewLabel="C"

RelDbType="ATTR"

port:

RelDbType="pFD"

Figure 1: The functional dependency A→C

Both FD and ATTR nodes have an integer UID attribute that allows the rules to assign a numeric
identity value to them. This is useful when a rule adds a new FD and we want control over the value
of the unique identifier. To assign meaningful names to nodes, we make use of the built-in viewLabel
attribute. Figure 1 shows a functional dependency A→ C as a port graph, with the relevant attribute
values.

4 Generic Rule Application Conditions

We recall the structure of the arrow node Where attribute defined in Section 2.2. In this section we
extend the rewrite rule language to provide the functionality of generic application conditions. Firstly,
we define the context-free grammar for B, secondly, we present the PORGY Rule Editor plug-in (called
Rule Conditions).

The EBNF grammar for B is defined in Figure 2. The structure of the grammar was inspired by C++
and follows the operator precedence of C++, too.

We point out that when referring to a node or edge the user has to use its internally assigned id.
Also note that there is no port construct in the grammar – they have to be referred to as node. Terminal
number can be any integer or floating-point number and quoted string is an arbitrary-length string
made up of letters, digits and symbols in double quotes. Similarly, quoted attribute name is a valid
name of an attribute of node, edge or port.

We highlight the NotNode() operator: it iterates all nodes of G and checks if there exists a node with
an attribute quoted attribute name and if the comparison on them evaluates to true. Intuitively, if
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〈node〉 ::= ’n(’ valid LHS node id ’)’

〈edge〉 ::= ’e(’ valid LHS edge id ’)’

〈element attribute〉 ::= ( 〈node〉 | 〈edge〉 ) ’.’ quoted_attribute_name

〈factor〉 ::= number | quoted_string | ’(’ 〈expression〉 ’)’ | ’!’ 〈factor〉
| 〈element attribute〉 | ’max(’ 〈expression〉 ’,’ 〈expression〉 ’)’
| ’min(’ 〈expression〉 ’,’ 〈expression〉’)’ | ’random(’〈factor〉’)’

〈term〉 ::= 〈factor〉 {(’∗’ | ’/’ | ’%’) 〈factor〉}

〈expression〉 ::= 〈term〉 {(’+’ | ’−’ ) 〈term〉}

〈comp operator〉 ::= ’==’ | ’! =’ | ’>’ | ’<’ | ’>=’ | ’<=’

〈comparison〉 ::= 〈expression〉 〈comp operator〉 〈expression〉 |
’NotNode(’quoted_attribute_name 〈comp operator〉 〈expression〉’)’

〈logical expression〉 ::= 〈logical term〉 { ’||’ 〈logical term〉 }

〈logical term〉 ::= 〈logical factor〉 { ’&&’ 〈logical factor〉 }

〈logical factor〉 ::= 〈comparison〉 | ’!’ 〈logical factor〉 | ’(’ 〈logical expression〉 ’)’

〈rule condition〉 ::= {〈logical expression〉};

Figure 2: The rule application condition grammar.

at least one such node is found in G, NotNode() returns false. It is very important to note here that
this check is performed on the entire graph G, not just in g(L). This is fundamentally different from the
rest of the rule application condition grammar, which only applies to g(L). This is a consequence of the
definition of the port graph rewrite rule which states that all variables in the Boolean expression of the
Where attribute have to occur in L, so that the matching algorithm can work with them. When a match
g(L) is found, all variables of B are mapped so that their actual values can be found. However, when
checking the absence of a node, we are not constrained by this, because we are not specifying a node in
NotNode()– we are only specifying an attribute comparison that must evaluate to false on all the nodes
of G.

PORGY offers a modular plug-in system allowing developers to create Python/C++ plug-ins. We im-
plemented an LL-parser for the above detailed context-free grammar in C++ using the Boost Spirit Parser
Framework. This framework generates and executes the parser design-time and builds and evaluates an
abstract syntax tree run-time. When evaluated, the Boolean result is ANDed to the rest of the arrow node
Where attribute by the matching algorithm. The parser ensures that all nodes, edges, ports and attributes
referred to in the conditions exist on the LHS of the rule.

We also added a UI extension to PORGY that allows users to specify and parse/check the rule con-
ditions. A screenshot of PORGY with the Conditions editor is presented in Figure 3. Examples of rule
conditions can be found in Section 5.
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Figure 3: PORGY, an initial graph (G0), Transitivity1 rule and the conditions editor.

5 Transitive Closure Strategy

In this section we present the strategy to find the transitive closure of a set of FDs using the previously
introduced visual language and rule conditions. We work under the assumptions that a) FDs are in
canonical form ie. every right-hand side is a single attribute and b) there are no cyclical dependencies.

The starting point of port graph rewriting, the original model, is referred to as G0. In our case, G0
has all user-defined FDs of a relation schema and follows the structure set out in Section 3. The task is
to find a relational transitive closure of G0, i.e. to generate all the transitive dependencies.

Inspired by the Chase Algorithm [1, 15] we iterate every FD in G0 (and also those added by the
rules), apply the rules that detect a transitive dependency pattern and create the new FD. Once we have
every possible new transitive dependency that goes through the iterated FD, we mark it visited. We define
two new Boolean node attributes : iter to flag the node currently being iterated and visit to perma-
nently flag to node as visited. The two rules controlling the iteration are IterOn and IterOff (omitted).
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IterOn randomly selects a node with attribute values RelDbType=FD, iter=false, visit=false

and sets the two flags: iter=true, visit=true. IterOff rule selects the currently iterated FD node
RelDbType=FD, iter=true, visit=true and turns the iteration flag off: iter=false, visit=true.

To track the maximum number of rule applications in which a particular ATTR can participate, we
introduce the MaxNoOfAppl integer node attribute. In G0, MaxNoOfAppl = the number of FDs whose
RHS is the ATTR node. Every time a Transitivity match is found such that ATTR is on the RHS of
the new dependency, we increment the value by 1. Similarly, a new edge integer attribute is defined:
ApplCounter. Its G0 value is 0 and it is incremented by 1 every time the edge is in g(L) of any Transitivity
rule. We add the FDBanned node attribute (Boolean), default value false, to be able to exclude a FD from
the iteration or matching.

F2

F1
AB

F2’

F1’

A’

B’

iter=F

visit=F

FDBanned=F

FDRHS.Arity=1

FDBanned=F

FDLHS.Arity=1

FDRHS.Arity=1

iter=T

visit=T

Rule Condition:

NotNode(UID!=F1.UID*F2.UID)

Rule Algorithm:

UID=F1.UID*F2.UID

Figure 4: Transitivity1 rule

F2

F3 F1

A

B C

edge1

edge2

F3’

F2’

F1’

A’

B’

C’edge1’

edge2’

iter=F

visit=F

FDBanned=F

FDRHS.Arity=1

FDBanned=F

FDRHS.Arity=1

FDBanned=F

FDLHS.Arity=1

FDRHS.Arity=1

iter=T

visit=T

Rule Condition:

NotNode(UID!=F1.UID*F2.UID*F3.UID)

edge1.ApplCntr<B.MaxNoOfAppl

edge2.ApplCntr<A.MaxNoOfAppl

Rule Algorithm:

UID=F1.UID*F2.UID*F3.UID

edge1’.ApplCntr=edge1.ApplCntr+1

edge2’.ApplCntr=edge2.ApplCntr+1

A’.MaxNoOfAppl=A.MaxNoOfAppl+1

Figure 5: Transitivity2 rule

The first two rules we created can be seen on Figures 4 and 5. Note that the node being iterated is
the central one and its LHS subgraph increases in size as the FunctionalArity of it increases.

To offer extra, context-specific backtracking functionality, we assign prime numbers values to the
UID attribute of every FD. When a new FD is created by any transitivity rule, the UID of the new FD is
the product of the UIDs of the FDs that lead to the new FD. This is calculated and assigned by the Rule
Algorithm feature of PORGY.
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Finally, the strategy that uses the above defined rules is Strategy 1. The ResetVisitedFlags rule sets
the flags visit=0, to allow for a whole new iteration of all FD nodes.

Strategy 1: Finding a Transitive Closure
while(match(IterOn))do(
one(IterOn);
repeat(one(Transitivity1));
one(IterO f f )

);
repeat(one(ResetVisitedFlags));
while(match(IterOn))do(
one(IterOn);
repeat(one(Transitivity2));
one(IterO f f )

)

We discuss the rewriting characteristics of Strategy 1 in Theorems 1, 2 and 3.

Theorem 1. The Transitive Closure Strategy is sound. That is, it only finds functional dependencies that
can be inferred from the original set using Armstrong’s Axioms but ignoring the meaningless dependen-
cies that would be generated by the Reflexivity and Augmentation axioms.

Theorem 2. The Transitive Closure Strategy is complete. That is, it finds all functional dependencies
that can be inferred from the original set using Armstrong’s Axioms but ignoring the meaningless depen-
dencies that would be generated by the Reflexivity and Augmentation axioms.

Theorem 3. The Transitive Closure Strategy is a terminating program that never fails. That is, given
the restriction that there are no cyclical dependencies in the original set, there is no infinite descending
chain in the derivation tree.

6 Conclusion

Our results can be used to build a strategic graph program that takes the transitive closure as input and
finds a minimal cover [3, 14]. From a minimal cover, all candidate keys of a relation schema can be
found [16]. The minimal cover and the set of candidate keys can then be used as inputs to Bernstein’s
Synthesis Algorithm to synthesize Third Normal Form [7] schemata.
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