
Towards a Hierarchical-Control Architecture for Distributed
Autonomous Systems

Radu Calinescu and Saud Yonbawi
Department of Computer Science, University of York, UK

1 Introduction and Architecture Overview
Recent technological advances enable the cost-effective manufacturing of a wide range of distributed au-
tonomous systems. However, deploying these systems in safety-critical domains (e.g., transportation and
manufacturing) is very challenging, as they need to comply with strict functional and nonfunctional require-
ments in uncertain operating environments [4, 7]. System-level formal verification cannot be used to ensure
this compliance because it does not scale to systems of this size and complexity, especially if the verification
needs to be repeated at runtime, after each change that affects one of the system components.

To address this limitation, we propose a hierarchical-control architecture based on two-level formal verifica-
tion. The new architecture comprises (i) a decentralised system-level control loop that partitions the goals of
the distributed autonomous system among its components under conservative assumptions, and (ii) component-
level control loops responsible for achieving the component sub-goals. The operation of the two control loops
is underpinned by formal models that are small enough to enable their verification at runtime.

As shown in Fig. 1, an instance of the system-level monitor-analyse-plan-execute (MAPE) control loop is
running on each system component. Its Local Monitor oversees the operation of the component-level MAPE
loop, detecting difficulties with the achievement of the component-level goals, while the Peer Monitor receives
notifications of such difficulties experienced by other components. The Analysis uses formal verification to
compute alternative contributions that the local component can make to the achievement of the system goals,
and the cost(s) of each of these contributions. For example, for a robotic team used in a search and rescue
mission, each robot may be able to cover different parts of the search area, with different (predicted) energy
consumption, risks, etc. This local capability analysis is carried out infrequently, i.e., when the component joins
the system, and when the Local Monitor notices that the component-level planner P experiences difficulties.

The Planning uses formal techniques to partition the system goals into component (sub)goals based on
the alternative component-level contributions “proposed” by the locally running Analysis and by the Analysis
instances running on the other components, where the latter information is obtained as a summary, via the
Peer Monitor. This goal partition is carried out such as to guarantee that the system goals are achieved, e.g.
by allocating each part of the search and rescue area to at least one robot. The Execution configures the
component-level MAPE in line with the goals that the Planning allocated to the local component.

A key benefit of our solution is the use of conservative assumptions in the Analysis step of the system-
level MAPE loop. For instance, the Analysis assumes that a search-and-rescue robot may move (slightly)
slower, consume more energy and encounter more obstacles than in its past missions or mission simulations.

Component-level control loop n

component goals

Execution

Planning

Analysis

Local monitor Peer monitor

System-level control loop

M A P E

Execution

Planning

Local monitorPeer monitor

System-level control loop

M A P E

major local
change

major local
change

exchange of
local capability
summaries

Component-level control loop 1

component goals

Analysis

system goals

Robot 1 Robot n

Figure 1: Hierarchical-control architecture applied to search-and-rescue robotic team



The “slack” provided by these conservative assumptions allows the component-level MAPE loops to handle
environment uncertainties and changes that do not invalidate the assumptions. Using different slack levels
enables a wide range of trade-offs between the efficiency with which the system components operate, and the
frequency with which the component-level MAPE loops1 become unable to synthesise a component-level plan
after environmental changes and need to report a “major local change” to the Local Monitor. Thus, a robot
that assumes an up to 20% higher than normal energy use will be less likely to encounter situations where
this assumption is violated than a robot that assumes only up to 10% extra energy use; but the former robot
would be allocated a smaller part of the search area in the Planning step than the latter robot.

2 Supported Verification Techniques and Preliminary Evaluation
Our approach is not prescriptive about the verification techniques used by its two MAPE loops. However, the
Analysis step of the system-level MAPE loop and the analysis and planning steps of the component-level MAPE
loop must employ techniques based on the same modelling paradigm. This is needed because the Analysis needs
to predict (for conservative ranges of environmental parameter values) what the component-level MAPE loop
will analyse and plan for the actual values of these parameters. As in recent work on developing self-adaptive
systems with strict requirements, stochastic models ranging from Markov chains to Markov decision processes
and stochastic multiplayer games [3] are particularly suitable for modelling the environmental uncertainty of
autonomous systems—with probabilistic [2] or statistical [6] model checking used to analyse and synthesise [5]
these models within the two MAPE loops.

To capture this generality of the architecture, we prototyped it as a reusable set of abstract Java classes,
and we specialised these classes for the control of a team of three Parallax ActivityBot mobile robots involved
in a lab-based search and rescue application around a predefined perimeter. The application (not described
here due to limited space) uses continuous-time Markov chains to model the individual robot behaviour locally,
and probabilistic model checking to predict energy use for alternative search areas, with the system-level goal
of continuing the mission for as long as possible given the available battery energy of each robot.

3 Related Work
The hierarchical-control architecture from Fig. 1 extends our recent work on decentralising the control loops of
self-adaptive systems [1] and generalises its system-level loop using different patterns similar to [8]. There is a
significant body of work on architectures that could support self-adaptation in distributed autonomous systems,
although most approaches that we are aware of focus on specific application domains, use fixed modelling and
analysis techniques, or cannot provide the same levels of assurances as our approach. Due to limited space, we
cannot detail these alternative approaches. However, we want to emphasise that a general-purpose architecture
based on formal verification (like the one we proposed) is essential for lowering the engineering effort required
to develop trustworthy distributed autonomous systems for safety-critical domains [2, 4, 7].

References
[1] R. Calinescu et al. Self-adaptive software with decentralised control loops. In Fundamental Approaches to

Software Engineering (FASE), pages 235–251, 2015.
[2] R. Calinescu et al. Engineering trustworthy self-adaptive software with dynamic assurance cases. IEEE

Trans. Software Eng., PP(99):1–31, 2017.
[3] R. Calinescu et al. Synthesis and verification of self-aware computing systems. In Self-Aware Computing

Systems, pages 337–373. Springer, 2017.
[4] R. de Lemos et al. Software engineering for self-adaptive systems: Research challenges in the provision of

assurances. In Software Engineering for Self-Adaptive Systems III. Assurances, pages 3–30. Springer, 2017.
[5] S. Gerasimou et al. Search-based synthesis of probabilistic models for quality-of-service software engineer-

ing. In ASE’15, pages 319–330, 2015.
[6] M. U. Iftikhar and D. Weyns. Towards runtime statistical model checking for self-adaptive systems.

Technical Report CW 693, KU Leuven, 2016.
[7] Lloyd’s Register Foundation. Foresight review of robotics and autonomous systems, 2016.
[8] D. Weyns et al. On patterns for decentralized control in self-adaptive systems. In Software Engineering

for Self-Adaptive Systems II, pages 76–107, 2010.
1We assume that the component-level MAPE loops are implemented using established approaches (e.g., [2]), so we are not

describing them in the paper.


