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V-formation in a flock of birds is a quintessential example of emergent be-
havior in a stochastic multi-agent system. It brings numerous benefits to the
flock. It is primarily known for being energy-efficient due to the upwash bene-
fit a bird in the flock enjoys from its frontal neighbor. It is therefore not sur-
prising that interest in V-formation is on the rise in the aircraft industry [1].
Recent work on V-formation has shown that the problem can be viewed as one
of optimal control, model-predictive control (MPC) in particular. In [3], we in-
troduced adaptive-horizon MPC (AMPC), a highly effective control algorithm for
multi-agent cyber-physical systems (CPS) modeled as a Markov decision process
(MDP). Traditional MPC uses a fixed prediction horizon, i.e. number of steps to
compute ahead, to determine the optimal, cost-minimizing control action. The
downside of the fixed look-ahead is that the algorithm may get stuck in a local
minimum. For a controllable MDP, AMPC chooses its prediction horizon dynam-
ically, extending it out into the future until the cost function (shown in blue in
Fig. 1) decreases sufficiently [2]. This implicitly endows AMPC with a Lyapunov
function (shown in red in Fig. 1), providing statistical guarantees of convergence
to a goal state such as V-formation, even in the presence of adversarial agents.
It should be noted that AMPC works in a centralized manner.

This paper introduces DAMPC, a distributed version of AMPC that extends it
along several dimensions. First, at every time step, DAMPC runs a distributed con-
sensus algorithm to determine the optimal action (acceleration) for every agent
in the flock. In particular, each agent i starts by computing the optimal actions
for its local subflock. The subflocks then communicate in a sequence of consen-
sus rounds to determine the optimal actions for the entire flock. Secondly, DAMPC
features adaptive neighborhood resizing (black line in Fig. 1) in an effort to fur-
ther improve the algorithm’s efficiency. In a similar way as for the prediction
horizon in AMPC, neighborhood resizing utilizes the implicit Lyapunov function
to guarantee eventual convergence to a minimum neighborhood size. DAMPC thus
treats the neighborhood size as another controllable variable that can be dy-
namically adjusted for efficiency purposes. This leads to reduced communication
and computation compared to the centralized solution, without sacrificing sta-
tistical guarantees of convergence. The proof of statistical global convergence is
intricate. For example, consider the scenario shown in Fig. 1. DAMPC is decreas-
ing the neighborhood size k for all agents, as the system-wide cost function J
follows a decreasing trajectory. Suddenly and without warning, the flock begins
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Fig. 1. Left: Blue bars are the values of the cost function in every time step. Red dashed
line is the cost-based Lyapunov function used for horizon and neighborhood adaptation.
Black solid line is neighborhood resizing for the next step given the current cost. Right:
Step-by-step evolution of the flock of seven birds bringing two separate formations
together. Each color-slice is a configuration of the birds at a particular time step.

to split into two, undoubtedly owing to an unsuitably low value of k, leading to
an abrupt upward turn in J . DAMPC reacts accordingly and promptly, increasing
its prediction horizon first and then k, until system stability is restored. The
ability for DAMPC to do this is guaranteed, for in the worst case k will be in-
creased to B, the total number of birds in the flock. It can then again attempt
to monotonically decrease k, but this time starting from a lower value of J , until
V-formation is reached.

Apart from the novel adaptive-horizon adaptive-neighborhood distributed
algorithm to synthesize a controller, and its verification using statistical model
checking, we believe the work here is significant in a deeper way. The problem
of synthesizing a sequence of control actions to drive a system to a desired state
can be also viewed as a falsification problem, where one tries to find values
for (adversarial) inputs that steer the system to a bad state. These problems
can be cast as constraint satisfaction problems, or as optimization problems.
As in case of V-formation, one has to deal with non-convexity, and popular
techniques, such as convex optimization, will not work. Our approach can be seen
as a tool for solving such highly nonlinear optimization problems that encode
systems with notions of time steps and spatially distributed agents. Our work
demonstrates that a solution can be found efficiently by adaptively varying the
time horizon and the spatial neighborhood. By allowing adaptation to consider
longer time horizons, and larger neighborhoods (possibly the entire flock), one
can provide convergence guarantees that would be otherwise impossible (say, in
a fixed-horizon MPC).
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