
The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

Formal Design, Implementation and Verification
of Blockchain Languages
Grigore Rosu
University of Illinois at Urbana-Champaign and Runtime Verification, Inc., USA
http://fsl.cs.illinois.edu/grosu
grosu@illinois.edu

Abstract
This invited paper describes recent, ongoing and planned work on the use of the rewrite-based
semantic framework K to formally design, implement and verify blockchain languages and virtual
machines. Both academic and commercial endeavors are discussed, as well as thoughts and
directions for future research and development.

2012 ACM Subject Classification Security and privacy → Logic and verification, Software and
its engineering → Software verification, Theory of computation → Logic and verification

Keywords and phrases Formal semantics Program verification Blockchain

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.2

Category Invited Talk

Related Version https://www.ideals.illinois.edu/handle/2142/97207

Funding NSF CCF-1421575; NSF SBIR-II-1660186; IOHK grant; Ethereum Foundation grant.

1 Introduction and Motivation

Many of the recent expensive cryptocurrency bugs and exploits are due to flaws or weaknesses
of the underlying blockchain programming languages or virtual machines [6, 4, 1, 3, 12].
The usual post-mortem approach to formal language semantics and verification, where the
language is firstly implemented and used in production for many years before a need for
formal semantics and verification tools naturally arises, does simply not work anymore. New
blockchain languages or virtual machines are proposed at an alarming rate, followed by new
versions of them every few weeks, sometimes every few days, together with programs (a.k.a.
smart contracts) in these languages that are responsible for financial transactions totaling
more than $1B/day only on the Ethereum blockchain [7]. Formal analysis and verification
tools for such languages and virtual machines are therefore needed immediately.

In order to formally verify a program in any given language, a formal model of the
program is necessary. Such a program model can be developed manually, in mechanical
theorem provers such as Coq [10] or Isabelle [13], but this is usually expensive and thus
done rarely, mostly in the context of mission critical systems and in combination with other
activities, such as defining model abstractions and protocol/algorithm/model validation. The
norm is for tools to extract such program models automatically, based either on translations
of the program to particular intermediate languages such as Boogie [2] or Why [8] that serve
as input to specialized program verifiers, or on direct implementations of Hoare logics or
verification condition (VC) generators for the target programming language.

The translation approach has the advantage that the same verifier can be used across
various target languages, but it has the drawback that program behaviors may be lost in

© Grigore Rosu;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 2; pp. 2:1–2:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://fsl.cs.illinois.edu/grosu
mailto:grosu@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.2
https://www.ideals.illinois.edu/handle/2142/97207
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

2:2 Formal Design, Implementation and Verification of Blockchain Languages

translation, so a trusted formal semantics of the original language and a proof of correctness
of the translation are needed for increased confidence. Additionally, backwards translations
of failed proofs need to be engineered, so users see error messages specific to their original
language and not to the level of the intermediate language. The direct approach avoids both
the translation correctness and the translation of failed proofs problems, but it is usually
significantly more complex to implement, which can lead to subtle implementation errors
that are hard or impossible to expose by testing (Hoare logics are not easily executable).
Therefore, to increase confidence in such direct program verifiers, the underlying Hoare logic
or VC generation procedure needs to be proved sound with respect to some trusted reference
model of the target programming language, typically an operational semantics.

Therefore, a formal trusted semantics of the target programming language is required for
increased confidence of program verification. The K framework [11] (http://kframework.
org) takes the firm position that a formal language semantics should be needed to validate
not only program verifiers, but essentially all the target language tools. Moreover and
more importantly, that no other formal or informal, direct or indirect semantics of the
target language should be required for any of the tools, and that the tools should be either
generated automatically from or take as input the formal language semantics. That is, that
all the language-specific tools for a given language should be produced automatically by the
framework, correct-by-construction, from the formal semantics of the language. Figure 1
depicts the K belief and approach. This is nevertheless the best we can hope for in our field.
But does it really work? Isn’t it too idealistic? Aren’t the tools too inefficient to be practical?

Some initial practical instances of the K approach were reported in [5], where existing
formal semantics of C, Java and JavaScript were used as inputs to K’s language-parametric
program verifier, to yield program verifiers specific to these three languages. The resulting
program verifiers were comparable in performance with existing state-of-the-art verifiers
developed specifically for these languages. Here we bring additional evidence for the feasibility
of the K approach, this time in the context of the blockchain. Specifically, we discuss recent
academic and commercial results in designing blockchain languages and virtual machines
by formalizing their semantics. Implementations for these are generated automatically from
their semantics, in a correct-by-construction fashion, and so are program verifiers for them.

Why target the blockchain as an application domain for the K approach? First, because
it is a new field in desperate need of formal verification; if cryptocurrencies are the future
of money, then we ought to do our best to increase the security, safety and reliability of
blockchain transactions. Second, because the entire blockchain space is a moving target,
with paradigms and languages that change on a daily basis with no time to develop program
verifiers following the traditional Hoare logic or VC generation approaches; therefore, it is
a sweet spot for our language-parametric approach. Third, because two major blockchains
holding cryptocurrencies, Ethereum and Cardano, showed unreserved interest in pushing
formal methods in the design and implementation of their languages, and even deploy new
versions of the blockchain using technology resulting from this research initiative. Finally,
because it offers an environment where a language framework like K can be pushed even
beyond its original, already ambitious goal: it can serve as a universal language of languages,
where language semantics (or more exactly their hashes) are stored on the blockchain, and
then correct-by-construction compilers and interpreters for such languages are generated
automatically; this way, smart contract developers can program and verify them using their
favorite languages, provided that they have a formal semantics on the blockchain.

http://kframework.org
http://kframework.org

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

G. Rosu 2:3

module LAMBDA
imports SUBSTITUTION
syntax Val ::= Id

| "lambda" Id "." Exp [binder]
syntax Exp ::= Val

| Exp Exp [strict, left]
| "(" Exp ")" [bracket]

syntax KVariable ::= Id
syntax KResult ::= Val

rule (lambda X:Id . E:Exp) V:Val => E[V / X]

syntax Val ::= Int | Bool
syntax Exp ::= Exp "*" Exp [strict, left]

| Exp "/" Exp [strict]
> Exp "+" Exp [strict, left]
> Exp "<=" Exp [strict]

rule I1 * I2 => I1 *Int I2
rule I1 / I2 => I1 /Int I2
rule I1 + I2 => I1 +Int I2
rule I1 <= I2 => I1 <=Int I2

syntax Exp ::= "if" Exp "then" Exp
"else" Exp [strict(1)]

rule if true then E else _ => E
rule if false then _ else E => E

syntax Exp ::= "let" Id "=" Exp "in" Exp
rule let X=E in E’ => (lambda X . E’) E

syntax Exp ::=
"letrec" Id Id "=" Exp "in" Exp

| "mu" Id "." Exp [binder]
rule letrec F:Id X = E in E’

=> let F = mu F . lambda X . E in E’
rule mu X . E => E[(mu X . E) / X]

syntax Exp ::= "callcc" Exp [strict]
syntax Val ::= cc(K)
rule <k> (callcc V:Val => V cc(K))

~> K </k>
rule <k> cc(K) V ~> _ => V ~> K </k>

endmodule

Figure 1 Left: the K framework approach to language design, implementation and verification.
Center and right: the K definition of a call-by-value lambda calculus with arithmetic and callcc.

2 K Framework

K is a rewrite-based executable semantic framework in which programming languages, type
systems and formal analysis tools can be defined using configurations, computations and
rules. Configurations organize the state in units called cells, which are labeled and can
be nested. Computations carry computational meaning as special nested list structures
sequentializing computational tasks, such as fragments of program. Computations extend
the original language abstract syntax. K (rewrite) rules make it explicit which parts of the
term they read-only, write-only, read-write, or do not care about. This makes K suitable for
defining truly concurrent languages even in the presence of sharing. Computations are like
any other terms in a rewriting environment: they can be matched, moved from one place to
another, modified, or deleted. This makes K suitable for defining control-intensive features
such as abrupt termination, exceptions or call/cc. Figure 1 left depicts the K architecture.

Figure 1 center and right shows the complete K definition of a simple call-by-value
lambda calculus language with builtin arithmetic, conditional, let, letrec, and call/cc. Note
that syntax is define using conventional BNF, with terminals in quotes. The | separates
production of same precedence, while > states that the previous productions bind tighter
than the subsequent ones. A parser is generated automatically and is used to parse both
the programs and the semantic rules; i.e., rules can use concrete syntax. Syntax and rule
declarations can be tagged with attributes. Some attributes have meaning for the parser,
such as left for left associativity, others have semantic meaning, such as binder (used
by the builtin variable-capture free substitution) and strict (which defines appropriate
evaluation contexts). For K’s internal substitution to work out of the box, we also need to tell
it which syntactic categories act as variables, by subsorting them to KVariable. Similarly,
for efficiency we need to tell it which categories build non-reducible results by subsorting to
KResult. Most of the semantic rules are self-explanatory. The call/cc rules use K’s specific
local rewriting: rewriting takes place in context, specifically in the <k/> cell, and not at the
top level. This gives K additional convenience and modularity in language definitions.

Taking such formal language definitions as input, K generates a variety of tools for the
defined language as shown in Figure 1, without any other piece of knowledge about the
given language except its formal syntax and semantics. Complete languages semantics for
real-world languages like C, Java and JavaScript have been defined this way, and tools for
them have been generated and shown to have acceptable performance when compared to
existing adhoc tools for the same languages [5].

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

2:4 Formal Design, Implementation and Verification of Blockchain Languages

3 Current Progress

KEVM: Ethereum, the second largest blockchain cryptocurrency after Bitcoin, implements
a general-purpose replicated “world computer” that allows for the development of arbitrary
programs, called “smart contracts”, that execute in blockchain transactions using the block-
chain to synchronize their state globally. Smart contracts are written in various high-level
languages, but are ultimately translated to a low-level language called the Ethereum Virtual
Machine (EVM) [14]. Among other features, these contracts can tally user votes, commu-
nicate with other contracts, store or represent digital assets, and send or receive money in
cryptocurrencies, without requiring trust in any third party to faithfully execute the contract.
Their correct and secure operation relies entirely on the correctness of their EVM code. Any
code error can be immediately exploited resulting in significant financial loss [6, 4, 1, 3, 12].

To enable the formal verification of smart contracts, in a project partially funded by the
research and engineering company IOHK (http://iohk.io, the creators of the Cardano
blockchain and the ADA cryptocurrency), we have formalized the semantics of the EVM [9].
Our K semantics of the EVM, which we refer to as KEVM, is as complete as it can be.
We know this because we tested it by running the automatically generated interpreter
(see Figure 1) against the comprehensive 40,000-program test suite that comes with the
official C++ implementation of the EVM, which serves as a conformance suite for EVM
implementations. Building upon KEVM, the startup Runtime Verification has formally
verified several smart contracts as part of their commercial verification services (https:
//runtimeverification.com/smartcontract/).

A pleasant surprise was that the EVM interpreter automatically generated from KEVM
turned out to be only one order of magnitude slower on average than the official C++
implementation offered by the Ethereum Foundation [9]. Since smart contracts are small
and fast executing programs, the above suggests that KEVM can serve not only as a
reference executable model of the EVM, but also as an actual production implementation.
We are grateful to IOHK for launching a testnet on Cardano in Summer 2018 to test this
hypothesis in a real-world setting. If successful, this experiment can be the first step towards
a world where virtual machines are generated automatically from their formal specifications,
correct-by-construction. If performance is not a problem, why should it be any other way?
IELE: One of the major lessons we learned during the EVM formalization effort was that
EVM can be improved along various dimensions, improvements that could make both im-
plementations and smart contract verification easier and faster. Instead of doing so, we
preferred to design and implement a new virtual machine, IELE: https://github.com/
runtimeverification/iele-semantics. Unlike the EVM, which is a stack-based machine,
IELE is a register-based machine, like LLVM. IELE also directly supports functions, like
LLVM, and is human readable. It has an unbounded number of registers and also supports
unbounded integers. Like KEVM, the design of IELE was also done in a semantics-based
style, using K, and a VM was automatically generated from its formal specification. To our
knowledge, IELE is the first VM that was completely designed and implemented using formal
methods. There is no line of low-level code written by humans; all code is automatically
generated from its formal specification. The IELE project was funded by IOHK, with the
explicit objective of eventually powering real-world blockchains, including Cardano. The
project is complete and like with KEVM, a test net will be deployed in Summer 2018 by IOHK
to evaluate IELE in a real-world setting. To make migration of existing Ethereum smart con-
tracts to IELE possible, we have also developed a IELE compiler for the most commonly used
smart contract language, Solidity: https://github.com/runtimeverification/solidity.

http://iohk.io
https://runtimeverification.com/smartcontract/
https://runtimeverification.com/smartcontract/
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/solidity

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

G. Rosu 2:5

We are currently also working on a IELE compiler for Plutus, a high-order functional pro-
gramming language for future smart contracts developed by IOHK under the supervision of
Philip Wadler: https://github.com/kframework/plutus-core-semantics.
Vyper, Casper: Vyper (https://github.com/ethereum/vyper) is a novel programming
language for smart contracts that aims for increased security, simplicity, and human readabil-
ity; Vyper currently compiles to the EVM. Casper (https://github.com/ethereum/casper)
is a novel consensus protocol implemented in Vyper, meant to save wasteful electricity ex-
penditures and at the same time provide greatly increased security. Vyper and Casper are both
proposed by the Ethereum Foundation and, unfortunately, both are moving targets. Inconsist-
encies and bugs are found and fixed in Vyper on a weekly basis, which may potentially influence
the Casper implementation, which itself still changes due to other forces. Funded by Ethereum
Foundation, we have formalized the semantics of Vyper in K, discovering several bugs and in-
consistencies in the process: https://github.com/kframework/vyper-semantics; and we
are also formally verifying the Casper code in Vyper, as compiled to EVM: https://github.
com/runtimeverification/verified-smart-contracts/tree/master/casper. For veri-
fication purposes, we are currently regarding Casper as a smart contract eventually executed
on the EVM, but its inherent complexity makes it highly non-trivial to correctly specify
its intended behavior. To reduce the risk of misspecifying its Vyper code correctness, in a
joint effort with the Etherum Foundation and the University of Texas at Austin we are also
formalizing the actual protocol in Coq and in Isabelle, and validate the model by proving
its intended safety and liveness properties. Then we will show that the proved Vyper code
properties are consistent with the Coq and Isabelle models. All these are necessary due to
the extremely important role that Casper will play in the near future for Ethereum.

4 Conclusion and Future Work

While K may not be the final answer to our quest for an ideal language framework, we believe
that it has demonstrated that it is possible, and feasible, to generate a variety of formal
execution and analysis tools for a given language from the formal semantics of that language.
Moreover, only one, executable semantics for any given language suffices in order to generate
all the tools, and that the so generated tools can be correct-by-construction, thus eliminating
the need for redundant semantics and complex proofs of correctness.

Some years may still need to pass before sufficient evidence is accumulated to convince
the skeptical formal methodist that the approach has merit even with mainstream languages
like C and Java, for which well-engineered formal verification tools already exist. But for
emerging fields like the blockchain, which come with new languages that routinely change
every few days and require mostly small but tricky programs, the language-parametric
semantic framework approach appears to be the only solution quickly available.

We hope that this wave of interest in language frameworks like K will lead to the
development of several important advances in the field, which will then be applicable across
all languages. On the foundational side, we need to develop language-/paradigm-independent
logics that allow us to specify any desired properties about any programs in any programming
languages. On the practical side, automation is critical for the success of any verification
environment. Also, generation of proof objects to act as correctness certificates for the
various formal tools generated for a given language would increase demand and adoption of
such tools, especially in the blockchain domain.
Acknowledgments: This work would have not been possible without the sustained ded-
ication of the K-team (http://www.kframework.org/index.php/People) and numerous

FSCD 2018

https://github.com/kframework/plutus-core-semantics
https://github.com/ethereum/vyper
https://github.com/ethereum/casper
https://github.com/kframework/vyper-semantics
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper
http://www.kframework.org/index.php/People

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

2:6 Formal Design, Implementation and Verification of Blockchain Languages

other contributors and enthusiasts. I would like to particularly thank Philip Daian, Everett
Hildenbrandt, and Charles Hoskinson for bringing the blockchain needs for formal verification
to our team’s attention, and for evangelizing our language-parametric verification approach in
blockchain communities. Warm thanks to Hélène Kirchner and the entire FSCD’18 program
committee for inviting me to present this work at the conference and to submit this paper.

References
1 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on Ethereum

smart contracts. IACR Cryptology ePrint Archive, 2016:1007, 2016.
2 Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.

Boogie: A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO’05), volume 4111 of LNCS, pages 364–387, 2006.

3 Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An in-depth look
at the parity multisig bug. 2017. http://hackingdistributed.com/2017/07/22/
deep-dive-parity-bug/.

4 Vitalik Buterin. Thinking about smart contract security. 2016. https://blog.ethereum.
org/2016/06/19/thinking-smart-contract-security/.

5 Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-
based program verifiers for all languages. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’16). ACM, Nov 2016.

6 Phil Daian. DAO attack, 2016. http://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/.

7 Etherscan. Ethereum transactions, 2018. https://etherscan.io/.
8 Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for

deductive program verification. In CAV, volume 4590 of LNCS, pages 173–177, 2007.
9 Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,

Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu, and Grigore
Roşu. KEVM: A Complete Semantics of the Ethereum Virtual Machine. In Computer
Security Foundations Symposium (CSF’18), 2018. http://jellopaper.org.

10 The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0. URL: http://coq.inria.fr.

11 Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

12 Jutta Steiner. Security is a process: A postmortem on the par-
ity multi-sig library self-destruct, 2017. https://blog.ethcore.io/
security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/.

13 The Isabelle development team. Isabelle, 2018. https://isabelle.in.tum.de/.
14 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.

(Updated for EIP-150 in 2017) http://yellowpaper.io/.

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://etherscan.io/
http://jellopaper.org
http://coq.inria.fr
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://isabelle.in.tum.de/
http://yellowpaper.io/

	Introduction and Motivation
	K Framework
	Current Progress
	Conclusion and Future Work

