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1 Extended Abstract
The logic of Constrained Horn Clauses (CHC) provides an effective logical characterization
of many problems in (software) verification. For example, CHC naturally capture inductive
invariant discovery for sequential programs [4], compositional verification of concurrent and
distributed systems [15, 19, 17], and verification of program equivalence [11]. CHC is used
as an intermediate representation by several state-of-the-art program analysis tools, including
SeaHorn [16] and JayHorn [20].

IC3 [6], initially introduced for model checking of finite state transition systems, has become
the dominant model checking algorithm for hardware verification. Even more impressively, the
IC3 framework (i.e., many algorithms built in the style of IC3) has become the dominant
framework for exploring and building SAT/SMT-based verification algorithms. In particular,
the framework has been extended to CHC modulo SMT theories in [7, 18, 8, 23, 3, 22, 21, 9].
The efficiency of IC3 for software verification is demonstrated by the effectiveness of such tools
as SeaHorn. However, current extensions of IC3 are limited either in supported theories (e.g.,
no arithmetic), shape of the solution (i.e., quantifier free), or are not fully integrated within the
IC3 framework.

In this work, we extend the IC3 framework to discovering universally quantified solutions
to CHC. In the case that CHC are applied to software verification, these solutions correspond
to universally quantified inductive invariants. This extends applicability of the framework, in
particular, to reasoning about array manipulating programs and compositional verification of
distributed protocols that require quantified invariants to reference arbitrary array locations
and arbitrary processes.

Constrained Horn Clauses (CHC) is a fragment of First Order Logic (FOL) in which a
formula is a conjunction of clauses, where each clause is a universally quantified formula of the
form: ∀~x · p1(~x) ∧ · · · ∧ pl(~x) ∧ ϕ ⇒ p0(~x), where each pi is an uninterpreted predicate, and ϕ
is a constraint over interpreted predicates and functions of some background theory T . A set
Φ of CHC is satisfiable modulo theory T if and only if there is a first order model that satisfies
every clause of Φ and is consistent with the background theory T . A symbolic solution Ψ to a
set of CHC Φ is a map from each predicate pi to a FOL formula ψ(pi) such that Φ[pi 7→ ψ(pi)]
is a valid sentence in T . That is, ψ(pi) is a symbolic representation of a model for pi.

We consider CHC where the constraints are in the combined theory of Linear Integer Arith-
metic (LIA) and Arrays1. In many cases, solutions to such systems are definable by universally
quantified formulas over the background theory. For example, defining that an array A is filled
with 0 requires a quantified formula ∀i ·A [i] = 0. Quantifiers introduce two major challenges:
(i) they tremendously increase the search space for a candidate solution, and (ii) they require
deciding satisfiability of quantified formulas – itself an undecidable problem.

1However, our framework is more general and extends to arbitrary background SMT theory.



Existing techniques for inferring universally quantified solutions to CHC (and closely related
techniques for inferring universally quantified invariants) work by either fixing the shape of
quantified formulas and reducing to quantifier free inference (e.g., [5, 26, 17]), or by guessing
quantified candidates by post-processing the solutions of bounded instances (e.g., [1]).

We exploit the IC3 framework to integrate the discovery of the necessary quantifiers into the
search for the solution. To that end, we develop Quic3 – a generalization of the IC3 framework
to discovering universally quantified solutions to CHC. Quic3 builds on Spacer [23] – an SMT-
based extension of IC3 [6, 18]. Rather than fixing the quantifier structure apriori (e.g.[5, 26,
17]), or discovering quantifiers in a post-processing phase [1], Quic3 discovers the necessary
quantifiers on demand. Moreover, to ensure convergence of each satisfiability check, it carefully
manages the instantiations of each quantified lemma.

Discovery of quantifiers. The discovery of quantifiers is done by taking quantifiers into account
during the blocking phase of IC3. The key ideas are to use existential quantifiers in proof
obligations (or, counterexamples to induction) so that they are blocked by universally quantified
lemmas, and to extend lemma generalization to add quantifiers.

Namely, in IC3, proof obligations are generated by taking a backward step from existing
proof obligations (POBs). Such a backward step introduces existential quantifiers. Some can
be eliminated, but the rest are typically projected by a model witness. Instead, we keep them
in the POB, and ultimately, when the POB is blocked, get a universally quantified lemma.
Nonetheless, this might still lead to proof obligations with concrete values, hindering conver-
gence. To tackle this obstacle, we introduce an additional mechanism, that identifies concrete
values in lemmas and generalizes them into universally quantified variables.

Handling Instantiations. Generating quantifiers on demand gives more control over the validity
checks of a candidate solution (which corresponds to the pushing phase of IC3, or, inductiveness
checks in software verification). This requires deciding satisfiability of universally quantified for-
mulas over the combined theory of Arrays and LIA – an undecidable problem. Such checks are
typically addressed in SMT solvers by quantifier instantiation where a universally quantified
formula ∀x · ϕ(x) is approximated by a finite set of ground instances of ϕ. SMT solvers, such
as Z3 [10], employ sophisticated heuristics (e.g., [13]) to find a sufficient set of instantiations.
However, these heuristics are only complete in limited situations (recall, the problem is unde-
cidable in general). It is typical for the solver to return unknown, or, even worse, diverge in an
infinite set of instantiations.

Instead of using an SMT solver as a black-box, Quic3 generates and maintains a set of
instantiations on demand. This ensures that Quic3 always makes progress and is never stuck
in any single SMT call. The generation of instances is driven by the blocking phase of IC3 and
is supplemented by traditional pattern-based triggers. Generating both universally quantified
lemmas and their instantiations on demand, driven by the property, offers additional flexibility
compared to the eager quantifier instantiation approach of [5, 26, 17].

Refutation Completeness. Combining the search for all of the ingredients (quantified and
quantifier-free formulas, and instantiations) in a single procedure gives better control over the
solving process. In particular, even though there is no guarantee of convergence (the problem
is, after all, undecidable), we guarantee that Quic3 makes progress, exploring more of the prob-
lem, and discovering a refutation (even the shortest one) if the CHC system is unsatisfiable.
In verification applications, refutations to CHC correspond to counterexamples, thus, Quic3
guarantees to find the shortest counterexample if it exists.

Implementation. We have implemented Quic3 in Z3 based on existing engines for Generalized



PDR [18, 23]. The input is a CHC instance in SMT-LIB format. The output is either a
solution described in LIA and Arrays or a refutation derivation. To evaluate Quic3, we have
used it to verify CHC instances from the domain of program verification. The instances are
generated by SeaHorn from Array category of SV-COMP and other examples in the literature.
We show that Quic3 extends applicability of SeaHorn to new problems, while maintaining
competitive performance on SV-COMP benchmarks. Our implementation is competitive and
can automatically discover non-trivial quantified invariants.

Related Work. Classical predicate abstraction [14, 2] has been adapted to quantified invari-
ants by extending predicates with skolem (fresh) variables [12, 24]. This approach easily ex-
tends to finding quantified solutions to CHC. These techniques require a decision procedure
for satisfiability of universally quantified formulas, and, significantly complicate predicate dis-
covery (e.g., [25]). Quic3 extends this work to the IC3 framework in which the predicate
discovery is automated and quantifier instantiation and instance discovery are carefully man-
aged throughout the procedure.

Most CHC solvers do not support generating quantified solutions. Most common techniques
for the ones that do support them is to use eager quantifier instantiations to approximate quan-
tified solutions by quantifier free ones [5, 26, 17]. To our knowledge, UPDR [21] is the only
current extension of IC3 to quantified solutions. While there are many differences in the sup-
ported input language, the key difference is that UPDR focuses on generating invariants in the
Effectively PRopositional (EPR) fragment of first order logic for which quantified satisfiabil-
ity is decidable. For that reason, UPDR does not need to deal with quantifier instantiation.
Furthermore, UPDR does not use quantifier generalization and is limited to abstract counterex-
amples (i.e., counterexamples to existence of universal solutions, as opposed to counterexamples
to satisfiability).

Contributions. In summary, we make the following contributions: (1) we extend the IC3
framework to deal with universally quantified lemmas in the combined theory of LIA and
Arrays by discovering and maintaining quantified lemmas as well as their instantiations; (2) we
develop new generalization techniques geared towards discovering universal quantifiers; (3) we
implemented the algorithm in Z3; and (4) experimented with the approach in the context of
software verification.
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