
Hilbert Meets Isabelle?

Formalisation of the DPRM Theorem in Isabelle/HOL

Deepak Aryal1, Jonas Bayer1, Bogdan Ciurezu1, Marco David1, Yiping Deng1,
Prabhat Devkota1, Simon Dubischar2, Malte Sophian Hassler1, Yufei Liu1,

Maria Antonia Oprea1, Abhik Pal1, and Benedikt Stock1

1 Jacobs University Bremen gGmbH. Campus Ring 1, 28759 Bremen, Germany.
2 Kippenberg-Gymnasium. Schwachhauser Heerstraße 62-64, 28209 Bremen, Germany.
3 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of

Sciences. 27 Fontanka, St. Petersburg, Russia.

Abstract. Hilbert’s tenth problem, posed in 1900 by David Hilbert,
asks for a general algorithm to determine the solvability of any given
Diophantine equation. In 1970, Yuri Matiyasevich proved the DPRM
theorem which implies such an algorithm cannot exist. This paper will
outline our attempt to formally state the DPRM theorem and verify
Matiyasevich’s proof using the proof assistant Isabelle/HOL.

Keywords: Hilbert’s tenth problem · DPRM Theorem · Isabelle · Dio-
phantine equations · recursively enumerable

1 Background

In October 2017, Yuri Matiyasevich visited Jacobs University in Bremen, Germany.
During his short stay, he gave a few talks on Hilbert’s tenth problem and his
negative proof of the problem. He was interested in a formal verification of the
proof. As a result of his visit, we as a small group of undergraduate students
developed into the Hilbert–10 research group at Jacobs University Bremen under
the supervision of Yuri Matiyasevich and Prof. Dierk Schleicher.

2 Hilbert’s Tenth Problem and the DPRM Theorem

David Hilbert formulated the problem as follows: “Given a Diophantine equation
with any number of unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in rational integers.”

Here, “rational integers” refer to integers in the normal sense and “Diophantine”
can be simply replaced by “polynomial” because of the other conditions in the
statement. Further, “process” is today understood as an “algorithm.” Typically,
? The project is being jointly supervised by Yuri Matiyasevich3, Dierk Schleicher1, and
Bernhard Reinke1.

this concept is defined via a Turing machine. An algorithm can be described
as a table the encodes the transitions between states of the Turing machine,
as well as start and halting conditions for the Turing machine that executes it.
Matiyasevich’s proof presented in [1] uses register machines, which are equivalent
to Turing machines.

In 1948, Martin Davis conjectured that every recursively enumerable set is
Diophantine. We first define the following concepts to understand this conjecture.

Definition 1 (Recursively enumerable set). Given n ∈ N, a subset A ⊂ Nn

is said to be recursively enumerable if there exists an algorithm that takes x ∈ Nn

as input and returns 1 if x ∈ A. Such an algorithm may not terminate. In the
case of register machines, we say that A is accepted by some register machine.

Definition 2 (Recursive set). Given n ∈ N, a subset A ⊂ Nn is said to be
recursive if there exists a terminating algorithm that takes x ∈ Nn as input and
returns 1 if x ∈ A and 0 otherwise. In the case of register machines, we say that
A is decided by some register machine.

Definition 3 (Diophantine equation). A Diophantine equation is a polyno-
mial equation with integer coefficients and unknowns.

Note that integer coefficients and unknowns can be further reduced to natural
numbers4. Consequently, this project is only concerned with natural numbers. If
not explicitly stated otherwise, all variables, parameters and coefficients will be
non-negative.

Definition 4 (Diophantine set). Given n ∈ N, a subset A ⊂ Nn is said to be
Diophantine if there exists a Diophantine equation P (x, y) = 0 with x ∈ Nn and
y ∈ Nm for some m ∈ N such that a ∈ A ⇐⇒ ∃b ∈ Nm, P (a, b) = 0.

Furthermore, a Diophantine equation can be generalised by including expo-
nentiation, i.e. the exponents are allowed to be unknowns. instance, xy+zx

= 0
is a valid exponential Diophantine equation. Consequently, one can define expo-
nential Diophantine sets using an exponential Diophantine equation. Note that
subtraction is not allowed in the exponent in order to make sure the equation
always has an integer value.

If a set is Diophantine, then we can find a Diophantine equation to “encode”
that set. The set of squares is a simple example: it can be encoded by the
equation x − y2 = 0. Since relations (or functions) are also sets, we can use
Diophantine equations to encode certain relations. One of them is the exponential
relation Rexp: ∀a, b, c, (a, b, c) ∈ Rexp ⇐⇒ a = bc. One can show that if Rexp is
Diophantine, then exponential Diophantine sets are Diophantine [1].

Recursive sets are a proper subset of recursively enumerable sets5. Therefore,
Davis’ conjecture, that every recursively enumerable set is Diophantine, implies
4 As a result of Lagrange’s theorem to express any natural number as the sum of four
squares, for details refer to Section 1.2.1 of [1].

5 This follows from the halting problem. A recursively enumerable but not recursive
set A can be constructed from a set P = {Pi} of all programs by A = {2i3x |
program Pi halts on input x}.

that there exists a Diophantine set that is not recursive, and consequently there
cannot be a general algorithm that decides whether a Diophantine equation has
a solution. In other words, Hilbert’s tenth problem has a negative solution if
Davis’ conjecture is true.

In a 1966 paper, Martin Davis, Hilary Putnam and Julia Robinson showed
that every recursively enumerable set is exponential Diophantine [2]. Hence, the
only step missing from proving Davis’ conjecture is to prove that exponentiation is
Diophantine, i.e. to find a Diophantine representation of the exponential relation
Rexp.

In 1970, Yuri Matiyasevich found the missing puzzle piece and thus proved
Davis’ conjecture, which is now usually known as the Davis-Putnam-Robinson-
Matiyasevich (DPRM) theorem.

Theorem 1 (DPRM). All recursively enumerable sets are Diophantine.

In [1], Matiyasevich uses a slightly different approach from the original proof
that makes it more suitable for formalisation.

3 Formalisation of Matiyasevich’s Proof of the DPRM
Theorem

The proof can be split into three broad parts: number-theoretical prerequisites,
showing that exponentiation is Diophantine, and finally showing that a register
machine can be simulated using exponential equations. These three parts corre-
spond respectively to Chapter 2, 3, and 4 in [1] — the main paper we follow for
our formalisation.

Matiyasevich first shows that that exponentiation is Diophantine i.e. there
exists a suitable polynomial P with the property:

p = qr ⇐⇒ ∃x1, x2, . . . , xm : P (p, q, r, x1, x2, . . . , xm) = 0 .

He next shows that the halting condition of a register machine can be written
as an exponential equation. Together, these two statements give us the required
result: All recursively enumerable sets are Diophantine and, consequently, there
does not exist a general algorithm to determine whether a Diophantine equation
has solutions in the integers.

3.1 Number-theoretical prerequisites

We first formalise that intersection and union of Diophantine sets of same
dimension, the inequality relation {(a, b) : a < b}, the equality relation {(a, b) :
a = b}, the divisibility relations {(a, b) : a|b}, and the congruence relation
{(a, b, c) : (c > 0 ∧ a ≡ b mod c) ∨ (c = 0 ∧ a = b)} are all in fact Diophantine.
Further, also the conjunction and disjunction operators are Diophantine. Consider

for example the intersection of the two Diophantine sets A and B. This means
that there are polynomials PA and PB , such that

a ∈ A ⇐⇒ ∃x1, · · · , xn PA(a, x1, · · · , xn) = 0

b ∈ B ⇐⇒ ∃x1, · · · , xm PB(b, x1, · · · , xm) = 0

Hence, one can obtain a polynomial

P (c, x1, · · · , xm+n) = P 2
A(c, x1, · · · , xn) + P 2

B(c, xn+1, · · · , xn+m) ,

which then has the property that for fixed c,

∃x1, · · ·xm+n : P (c, x1, · · ·xm+n) = 0

⇐⇒ ∃x1, · · ·xm+n : (PA(c, x1, · · · , xn) = 0) ∧ (PB(c, xn+1, · · ·xm) = 0) .

From this we conclude that

c ∈ A ∩B ⇐⇒ ∃x1, · · · , xn+m : P (c, x1, . . . , xn+m) = 0 .

Note that this technique can be extended to a more general context. Suppose one
has a system of Diophantine equations of the form P (a, x1, · · ·xn) = 0 that have
a solution whenever a ∈ A. Then by adding up the squares of the left hand sides
of all these equations, one obtains a polynomial that is zero, if and only if all the
equations are zero. Hence, one can always construct a Diophantine formulation
of A from such a system of equations.

After having stated that these operators are Diophantine, we will now continue
with some prerequisites that will facilitate describing register machines later. It
is often convenient to work with the positional notation of a number a in some
base b with the digits ak i.e.

a =

∞∑
k=0

akb
k (1)

where only finitely many ak are non-zero.
We implement this first as a data type that stores the base b as a natural

number and the digits ak as numbers in a list.

datatype pos = Pos nat "nat list"

We next show that this data type is consistent with the number it represents
by first checking if the k-th digits of both the data type a natural number are the
same and that a list of numbers in a given base represents the correct number

lemma pn_consistency:
fixes digits :: "nat list"
fixes base :: nat
assumes "base > 1"
assumes "digits ~= []"
assumes "pn_digit_smaller_than_base (Pos base digits)"

shows "(n = pnval (Pos base digits))
= ((Pos base (hl_clean_zeroes digits))
= (pnconvert n base))"

(is "?P = ?Q")

lemma pn_digit_equivalence:
fixes digits :: "nat list"
fixes base k :: nat
assumes "base > 1"
assumes "pn_digit_smaller_than_base (Pos base digits)"
shows "(d = digit (pnval (Pos base digits)) base k)

= (d = (digits!k))"
(is "?P = ?Q")

In the particular case when the base b = 2 we consider two important relations:
orthogonality and masking. We define the orthogonality of two numbers a and a
via

(a ⊥ b) ⇐⇒ ∀k : akbk = 0. (2)

Using a orthogonal function that encodes this behaviour, it can be shown that

lemma lm02_41_ortho_odd_binomial:
fixes a b :: nat
shows "(orthogonal a b) = (odd ((a + b) choose b))"
(is "?P = ?Q")

Similarly, we say that c masks b whenever bk ≤ ck for all k. Using Kummer’s
theorem and the fact that Binomial coefficients are Diophantine, we can find a
Diophantine representation for the masking relation. This requires us to prove

lemma lm02_43_masking:
fixes b c :: nat

shows "(masks c b) = (odd (c choose b))" (is "?P = ?Q")

Finally, using these relations we can show that digit-by-digit multiplication
(a·b = c with ck = ak ·bk) can be written as a generalised exponential Diophantine
equation by proving:

lemma lm02_47_digit_mult:
fixes a b c :: nat
shows "(c = (digit_binary_mult a b))

= ((masks a c)
& (masks b c)
& (orthogonal (a - c) (b - c)))"

3.2 Exponentiation is Diophantine

The first major part of the proof relies on the fact that a second order re-
currence (similar to Fibonacci numbers) exhibits exponential growth and that
exponentiation can be made Diophantine.

We first consider the sequence ab, depending on b, defined by

αb(0) = 0, αb(1) = 1, αb(n+ 2) = bαb(n+ 1)− αb(n).

and implement it in Isabelle as

fun alpha :: "nat => nat => int" where
"alpha b 0 = 0" |
"alpha b (Suc 0) = 1" |
"alpha_n: "alpha b (Suc (Suc n)) = (int b) *

(alpha b (Suc n)) -
(alpha b n)"

Note that this sequence has several useful properties: it shows linear growth
for b = 2 and grows exponentially with b > 2; x = αb(m) and y = αb(m+1) give
us solutions to the Pell equation x2 − bxy + y2 = 1; and that it satisfies:

αb(k)|αb(m) ⇐⇒ k|m,αb(k)
2|αb(m) ⇐⇒ kαb(k)|m. (3)

Once all these components are in place one can show that the relation between
numbers a, b and c given by the formula:

3 < b ∧ a = αb(c) (4)

is Diophantine by combining all the proprieties of the sequence αb into a system
of 15 equations with variables (a, b, c, s, r, u, v, t, w) (for the actual system of
equations refer to [1]). The implication goes in both directions: the system has
solutions if relation (4) is satisfied (sufficiency) and, simultaneously, if Eq. 4 is
satisfied then one can find numbers s, r, t, u, v, w satisfying all the equations in
the system (necessity).

We have found a Diophantine representation for a sequence that grows expo-
nentially. From here there is a small step to a generalisation of the representation
for any exponential relation p = qr.

p = qr ⇐⇒ ∃m, b : p < m ∧ qαb(r)− αb(r − 1) ≡ p mod m (5)

with m = bq − q2 − 1, b = αq+4(r + 1) + q2 + 2. Particular cases such as q = 0,
r = 0 and p = 1; and q = 0, 0 < r and p = 0 can be treated separately and
then added to the final system of equations using the Diophantine operator
conjunction.

The formalisation for this part of the proof is fairly straightforward and only
requires stating and simply proving the lemmas listed in the paper. For instance
the main result (3.23)

∀b ≥ 2 ∀k > 0 : αb(m) ≡ 0 (mod αb(k))⇐⇒ m ≡ 0 (mod k), (6)

of section 3.4 in [1], can be implemented using the previously defined function
alpha:

theorem divisibility_alpha:
fixes b k m :: nat
assumes "b > 2" and "k > 0"
shows "alpha b m mod alpha b k = 0 --> m mod k = 0"
(is "?P --> ?Q")

The beginning of the implemented proof has the following form:

proof
assume Q: "?Q"

define n where "n = m mod k"
from Q n_def have n0: "n=0" by simp
from n0 have Abn: "alpha b n = 0" by simp
from Abn divisibility_lemma1 assms(1) assms(2) n_def
mult_eq_0_iff show "?P" by simp

next assume P: "?P"
[...]

qed

We make use of the predefined template: First, we assume Q and show that it
implies P and afterwards assume that Q holds to prove P. This is a very basic
and straight forward proof. In order to present a more sophisticated proof we
introduce our own data type. It corresponds to 2× 2 matrices which are used
frequently in chapter 3.

datatype mat2 = mat (mat_11 : int) (mat_12 : int)
(mat_21 : int) (mat_22 : int)

The functions mat_11, mat_12, mat_21, mat_22 give us access to the indi-
vidual entries of our 2× 2 matrices. Using these functions we can formulate a
lemma which has a more interesting proof than the previous one. It has no direct
correspondence in [1] but is a consequence of equation (3.38):

lemma congruence_Abm:
fixes b m n :: nat
assumes "b>2"
defines "v == alpha b (m+1) - alpha b (m-1)"
shows "mat_21 (mat_pow n (mat_pow 2 (A b m))) mod v

= 0 mod v &
mat_22 (mat_pow n (mat_pow 2 (A b m))) mod v

= ((-1) ^ n) mod v"
(is "?P n & ?Q n")

The statement is composed of two sub-statements (abbreviated with ?P n
and ?Q n) which are connected with a logical and. The two statements are put in
one lemma because the statements depend on each other: In the following proof
by induction we need both ?P n and?Q n to prove ?Q (Suc(n)). Furthermore,
for one step (Q4) there has to be made a case distinction on m because the case m
= 0 has to be treated separately.

proof(induct n)
case 0

from mat2.exhaust have S1:
"mat_pow 0 (mat_pow 2 (A b m)) = mat 1 0 0 1" by simp

then show ?case by simp
next

case (Suc n)
(* introducing abbreviations for matrices *)
(* after that proof of P *)
from [...] have F1: "?P (Suc(n))" by metis
(* now proof of ?Q n, we use hypothesis on ?P n *)
from Suc.hyps have Q1: "mat_22 (mat_pow n Z) mod v

= (-1)^n mod v" by simp
[...]
(* now we need a a case distinction on m*)
consider (eq0) "m = 0" | (g0) "m>0" by blast
then have Q4: "h mod v = (-1) mod v"
proof cases

case eq0
from eq0 have S1: "A b m = mat 1 0 0 1" by simp
from eq0 v_def have S2: "v = 1" by simp
from S1 S2 show ?thesis by simp
next case g0
(* this case is more involved *)
[...]
from S5 S8 S9 show ?thesis by simp

qed
[...]
from [...] have F2: "?Q (Suc(n))" by simp
from F1 F2 show ?case by blast

qed

In the inductive step, ?Q (Suc(n)) and ?P (Suc(n)) are proved indepen-
dently and put together in a final step to finish the proof.

3.3 Simulation of register machines using equations

The second major part of the proof requires a mathematical description of register
machines; in particular, it describes a method that can be used to simulate a
register machine as a set of exponential equations.

The paper describes a register machine with an arbitrary, but finite number of
registers R1,R2, . . . ,Rn. The machine executes a finite program with instructions
labelled S1, . . . ,Sm where each Sk can be of the type

I Sk : Rl ++; Si
II Sk : Rl −−; Si; Sj
III Sk : HALT

Each of these instructions respectively increase the value of Rl and move to Si;
decrease the value of Rl when Rl > 0 and go to Si, else move to Sj; and HALT.

The proof in [1] describes a “protocol” to handle the data of the register
machine. This protocol can be viewed as three tables merged into one, which
contain the state, register, and zero-indicator data for each register or state over
all time steps, respectively. Each table has q columns where q is the number of
instructions the machine executes before halting. The state table has m rows,
one for each state, and the register and zero-indicator tables have n rows. Hence,
for the t-th iteration of the machine sk,t represents the k-th state and rl,t the l-th
register. The zero-indicator tables contains the “zero indicator” values zl,t such
that zl,t = 0 whenever rl,t = 0 and one otherwise (See an example of a protocol
chart in section 4.3 of [1]).

The register machine checks if a given value a belongs to a listable set and
halts if and only if this value is accepted. That is, for a to be accepted by the
machine there exists a sequence of state transitions such that after a finite number
of time steps q it holds that

sm,q = 1 ∧ s1,q = ... = sm−1,q = 0. (7)

In [3] Xu, Zhang and Urban describe an implementation of a Turing ma-
chine in Isabelle. We adapt their ideas to implement register machines for our
formalisation.

We first describe the state of the machine as its own data type where Add,
Sub and Halt respectively refer to the states transitions Rl + +, Rl − −, and
HALT:

datatype instruction =
Add register state |
Sub register state state |
Halt

Both the Add and Sub instructions refer to arbitrary register Rl, which is
meant to be the “index” l ∈ N of registers here. We call a list of all register values
the tape of the register machine, inspired by the metaphor used while describing
Turing machines. The states are implemented in a similar fashion, with the
program being the list of all instructions

We call a column of the protocol the configuration of the register machine i.e,
the “snapshot” of all current register values and encode it in the configuration
“data type”. Since every unique configuration can be characterised by the specific
active instruction and the tape of register values at the given “time” (iteration)
of the register machine, a type synonym suffices to represent the 2-tuple:

type_synonym configuration = "(instruction * tape)"

The execution of the register machine is described by transitioning from one
configuration to the next. This requires us to “fetch” the next instruction from
the program (list of instructions), given the register value:

fun fetch :: "program => instruction => nat => instruction" where
"fetch p (Add r next) val = p!next" |
"fetch p (Sub r next nextalt) val = p!(if val = 0

then nextalt
else next)" |

"fetch p Halt val = Halt"

and also update the tape based on the current instruction:

fun update :: "tape => instruction => tape" where
"update t (Add r _) = list_update t r (t!r + 1)" |
"update t (Sub r _ _) = list_update t r

(if t!r = 0
then 0
else t!r - 1)" |

"update t Halt = t"

Combining these, we finally describe one “step” of the register machine:

fun step :: "configuration => program => configuration"
where

"(step (s, t) p) = (let nexts = fetch p s
(p!s)
(read t (p!s));

nextt = update t (p!s)
in (nexts, nextt))"

A natural next goal here is to use these functions to describe the actual
“protocol” for the register machine and prove subsequent lemmas regarding it.

In particular, once we have a description of the rows of the protocol —
values that give us the “history” of a particular state or register value over the
execution time of the machine — we can describe them using the positional
notation described earlier in Eq. 1. For each of the states, register values, and
zero indicators, we can define

sk =

∞∑
t=0

sk,tb
t rl =

∞∑
t=0

rl,tb
t zl =

∞∑
t=0

zl,tb
t (8)

Here the base b is chosen such that it’s larger than any value that appears in the
protocol. For some appropriate c and using masking relations (which were already
proven to be Diophantine) we can describe Eq.7 as a system of exponential
equations:

b = 2c+1 sm = bq (9)

The final value of sm clearly depends on the register values rl and the zero
indicators zl. The converse is also true here, that is, given numbers s1, . . . , sm,
z1, . . . , zn, r1, . . . , rn and p, q, b, c that satisfy the above conditions, then the
program will stop after q steps given a certain input a.

This equivalence shows that the register machine will terminate after q steps if
and only if there exists a system of Diophantine equations that characterises the
listable set accepted by the machine. And since exponentiation is Diophantine,
every listable (recursively enumerable) set is indeed Diophantine!

4 Conclusion and Future Plans

When we started in October 2017, a computer verification of the entire DPRM
theorem seemed too ambitious for an undergraduate project. However, in the
six months that have followed, we’ve made significant progress towards a full
formalisation. Most of the theorems in Chapter 3 (“Exponentiation is Diophantine”
in [1]) have been stated and proven, we’ve finished stating all the lemmas from
Chapter 2 (“Number theoretical prerequisites” in [1]), and finished the required
formalisation of a register machine in Isabelle (Chapter 4; “Simulation of register
machines using equations”). We intend to finish the formalisation by the end of
May and then refine the proof as required later.

At the time of writing, we weren’t able to find any formally verified proofs
of any Hilbert’s problems. When finished, our attempt would be the first such
verification. One of the major outcomes of our work will be a complete computer
verification of the DPRM-theorem. In the process, we also plan to produce a
proof of Kummer’s theorem, and produce a formalisation of a register machine
as described in [1].

In the larger mathematical context, we see our attempt as bringing the
methods of twenty-first century — formal verification — to one of the major
results from the last century. We also see our work as an ode to Hilbert’s problems
and to more than two decades worth of work that Martin Davis, Hilary Putnam,
Julia Robinson, and Yuri Matiyasevich put to tackle Hilbert’s tenth problem.

References

1. Matiyasevich, Y.: On Hilbert’s Tenth Problem. Lecture notes
from the Pacific Institute for the Mathematical Sciences (2000),
http://www.mathtube.org/lecture/notes/hilberts-tenth-problem.

2. Robinson, J.: Collected Works of Julia Robinson. American Mathematical Society
(1996)

3. Xu, J., Zhang, X., Urban, C.: Mechanising Turing Machines and Computability
Theory in Isabelle/HOL. Springer Berlin Heidelberg (2013)

