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Abstract

This is an introduction to the remote_build tool for transparent remote session builds.
The intended workflow for a user is to locally issue a build command for some session heap
images and then continue working, while the actual build runs on a remote machine and
the resulting heap images are synchronized incrementally as soon as they are available.

1 Introduction

Many Isabelle users are familiar with the following scenario once their formal developments
reach a certain size:

You make a change high up in the theory hierarchy but then want to continue with
your latest theory that is a leaf of the hierarchy. So you initiate a build of an Isabelle
session that covers all imports of your current theory and . . . take a break, since all
the CPU cycles and gigabytes of RAM your computer has to offer are needed to
finish the build within the next few hours and you will not even be able to read
emails on the same machine in the meantime.

While the above might be slightly exaggerated, it is not that far from the truth. For example,
building IsaFoR/CeTA1 takes almost four hours on my current machine if only a single process is
available, and requires at least 16 GB of RAM to succeed at all.

This is in contrast to only around one hour build time on a workstation with 12 processes
available. Thus the obvious solution is that you build session heap images not on your local
machine but instead on some decent remote machine. Often, you will still want to continue
work on your local machine once the build is finished. So you have to copy the remotely built
heap images to your local machine in such a way that Isabelle does not initiate a new build.

It is surely possible to do all this by hand, but it tends to get tedious after the nth repetition.
Which is why I introduce the Isabelle add-on tool remote_build, enabling transparent remote
session builds. The intended workflow for a user is to locally issue a build command for some
session heap images and then immediately continue work without the performance loss that
often comes with time and computation intensive Isabelle builds. Meanwhile, the actual build
is started on another machine and the resulting heap images are synchronized incrementally as
soon as they are available.

2 Invoking the Build Process

The remote_build tool is implemented in Isabelle/Scala2 and comes with a command line
interface. Its usage is:

∗This work is supported by the Austrian Science Fund (FWF) project P27502.
1http://cl-informatik.uibk.ac.at/isafor
2http://isabelle.in.tum.de/doc/system.pdf (Chapter 4)
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Usage: isabelle remote_build [OPTIONS] SESSIONS ...

Options are:

-B DIR base directory for remote Isabelle installations (default:

$REMOTE_BUILD_REMOTE_BASE, or if former not set ~)
-d DIR include session directory

-r HOST remote host name (default: $REMOTE_BUILD_REMOTE_HOST)
-o OPTION add option for remote isabelle call, e.g., -o -d -o '$ISAFOR'
-i incremental: only synchronize heap images that are newly

built on the remote host (default: synchronize all session

heaps together with their ancestors)

-P PROXY connect to remote host via proxy jump; PROXY may either be a

HOST or a specification HOST:PORT (default PORT: 2222)

-v be verbose

Build and copy heap images, observing implicit settings:

REMOTE_BUILD_REMOTE_HOST="..."

REMOTE_BUILD_REMOTE_BASE="..."

In order for remote_build to work properly, we need (at least) two computers, a local
machine L and a remote machine R, with Isabelle installed. The respective installations should
be reasonably similar (meaning if one of them is x86_64-linux, the other should be too; and
of course the Isabelle versions should coincide). Also, the sessions you want to build and
corresponding theory sources have to be present on both machines (for IsaFoR, I achieve this for
example by using two clones of its mercurial repository, one on L and one on R). Moreover,
communication between L and R runs through SSH and the rsync3 utility is used for heap
image synchronization.

By default, the Isabelle installation on R is expected to be located in the user home direc-
tory. This can be overwritten by explicitly setting the remote base directory with -B, or made
persistent in $ISABELLE_HOME_USER/etc/settings by setting REMOTE_BUILD_REMOTE_BASE.

As for the standard build tool of Isabelle, (local) session directories can be specified via -d.
Usually, this has to be reflected on the remote side. A general way of passing options to the
Isabelle process invoked on R is by -o (which takes a single word, no spaces, as argument).

The hostname/IP address of R can be set explicitly using -r or made persistent by setting
REMOTE_BUILD_REMOTE_HOST.

If -i is set, then remote_build enters incremental mode and only synchronizes heap images
that are generated during the current build. This might occasionally be useful to save some
time (for example, you might already have started to manually copy heap images from R that
existed before the build was initiated). The default behavior is to synchronize all ancestors of
the built sessions.

If R is not directly available via SSH, a proxy P can be specified using -P, which works as
long as P is reachable via SSH from L and R is reachable via SSH from P .

Usage examples. This is, for example, how I build the whole of IsaFoR/CeTA from my office
(“remote host” and “remote base” are implicit in my local settings):

isabelle remote_build -d'$ISAFOR' -o-d'$ISAFOR' CeTA

3https://rsync.samba.org/

2

https://rsync.samba.org/


remote_build C. Sternagel

If I want to do the same from at home, I have to provide a proxy, since the “build machine” of
our research group is not directly available from the outside:

isabelle remote_build -P proxy.uibk.ac.at -d'$ISAFOR' -o-d'$ISAFOR' CeTA

3 Installation Instructions

The remote_build tool is part of the IsaFoR/CeTA project since version 2.32 and compatible
with Isabelle2017. Its sources reside in src/remote_build.scala.

Once you obtained the sources, the following steps are required to make remote_build

locally available as Isabelle tool. Start by compiling the sources

isabelle scalac remote_build.scala

which should create the two files: Remote_Build.class and Remote_Build$.class. Then,
assemble a JAR archive remote_build.jar via:

jar cevf Remote_Build remote_build.jar \

Remote_Build.class 'Remote_Build$.class'

Now, say in a directory tools/, create the tool wrapper remote_build with content

#!/usr/bin/env bash

$ISABELLE_TOOL scala /path/to/remote_build.jar "$@"

and register it as Isabelle tool by adding

ISABELLE_TOOLS="$ISABELLE_TOOLS:/path/to/tools/"

to $ISABELLE_HOME_USER/etc/settings.

4 Some Further Details and Troubleshooting

The remote_build tool employs the available Isabelle/Scala interface to the JSch4 Java im-
plementation of the SSH2 protocol. Since the available interface does not cater for password
authentication (which would be cumbersome anyway), the involved SSH connections assume
key-based authentication. However, the current version does not seem to support ECDSA based
host keys.5 Therefore, it will sometimes be necessary to set up an RSA host key.

To find out what kind of keys are currently known for a given host host, use

ssh-keygen -F host

which looks up host keys in ~/.ssh/known_hosts. To obtain an RSA key for host, use:

ssh-keyscan -t rsa host

Its output can directly be appended to the list of known hosts as follows:

ssh-keyscan -t rsa host >> ~/.ssh/known_hosts

In case a proxy P is used between L and R, remote_build establishes, behind the scenes,
the following SSH connections. First a connection from L to P with port-forwarding from
L : 2222 to the SSH daemon of R. That is, akin to:

ssh -L 2222:R:22 P

4http://www.jcraft.com/jsch/
5The only kind of keys I actually tested is RSA.
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And in addition the actual connection between L and R that is carried inside the above port-
forwarding channel. Which you could establish on a command line via ssh -p 2222 localhost.
This setup, causes the peculiarity that an entry for [localhost]:2222 is needed in ~/.ssh/

known_hosts that provides an RSA key for the remote host R (so, if you change your remote
host, also the key for [localhost]:2222 has to change, even though the hostname of the entry
did not).
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