
Submitted to:
c© G. Avni, T.A. Henzinger, and V. Chonev

This work is licensed under the
Creative Commons Attribution License.

Infinite-Duration Richman Bidding Games∗

Guy Avni
IST Austria

Klosterneuburg, Austria
guy.avni@ist.ac.at

Thomas A. Henzinger
IST Austria

Klosterneuburg, Austria
tah@ist.ac.at

Ventsislav Chonev
Google

v.chonev@gmail.com

Two-player games on graphs are widely studied in formal methods as they model the interaction
between a system and its environment. The game is played by moving a token throughout a graph to
produce an infinite path. There are several common modes to determine how the players move the
token through the graph; e.g., in turn-based games the players alternate turns in moving the token.
We study the bidding mode of moving the token, which, to the best of our knowledge, has never been
studied in infinite-duration games. Both players have separate budgets, which sum up to 1. In each
turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not
exceed the available budget. The winner of the bidding pays his bid to the other player and moves
the token. Reachability bidding games, called Richman games, have been studied in [35, 34]. There,
a central question is the existence and computation of threshold budgets; namely, a value t ∈ [0,1]
such that if Player 1’s budget exceeds t, he can win the game, and if Player 2’s budget exceeds
1− t, he can win the game. We focus on parity and mean-payoff games. We show the existence of
threshold budgets and show that the complexity of finding them coincides with the NP∩ coNP com-
plexity of reachability bidding games. The solution for mean-payoff consists of our most technically
challenging contribution, where we construct optimal strategies for the players while extending and
generalizing the probabilistic connection that was known for reachability bidding games.

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal verification [4] and
have deep connections to foundations of logic [44]. Questions about automatic synthesis of a reactive
system from its specification [42] are reduced to finding a winning strategy for the “system” player in a
two-player game. The game is played by placing a token on a vertex in the graph and allowing the players
to move it throughout the graph, thus producing an infinite trace. The winner or payoff of the game is
determined according to the trace. There are several common modes to determine how the players move
the token that are used to model different types of systems (c.f., [4]). The most well-studied mode is
turn-based, where the vertices are partitioned between the players and the player who controls the vertex
on which the token is placed, moves it. Other modes include probabilistic and concurrent moves.

We study a new mode of moving in infinite-duration games, which is called bidding, and in which
the players bid for the right to move the token. The bidding mode of moving was introduced in [34, 35]
for reachability games, where two bidding rules were defined. The first bidding rule, which we focus on
in this paper and is called the Richman rule (named after David Richman), is as follows: Each player has
a budget, and before each move, the players submit bids simultaneously, where a bid is legal if it does not
exceed the available budget. The player who bids higher wins the bidding, pays the bid to other player,
and moves the token. A second bidding rule is called poorman bidding in [34], is similar except that the
winner of the bidding pays the “bank” rather than the other player.
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2 Infinite-Duration Richman Bidding Games

Bidding for moving is a general concept that is relevant in any setting in which a scheduler needs to
decide the order in which selfish agents perform actions. For example, the players in a two-player game
often model concurrent processes. Bidding for moving can model an interaction with a scheduler. The
process that wins the bidding gets scheduled and proceeds with its computation. Thus, moving has a cost
and processes are interested in moving only when it is critical. When and how much to bid can be seen
as quantifying the resources that are needed for a system to achieve its objective, which is an interesting
question. Other takes on this problem include reasoning about which input signals need to be read by
the system at its different states [19, 2] as well as allowing the system to read chunks of input signals
before producing an output signal [27, 26, 31]. Also, our bidding game can model scrip systems that use
internal currencies for bidding in order to prevent “free riding” [30]. Such systems are successfully used
in various settings such as databases [46], group decision making [45], resource allocation, and peer-
to-peer networks (see [28] and references therein). Finally, repeated bidding is a form of a sequential
auction [36], which is used in many settings including online advertising.

Recall that the winner or payoff of the game is determined according to the play, which is an infinite
trace. The simplest objective is reachability, where Player 1 has a target vertex and a trace is winning
for him iff it visits the target. Bidding reachability games were studied in [35, 34], where the bidding
mode of moving was introduced. The central question that is studied is a necessary and sufficient budget
for winning, which we call a threshold budget. Formally, the threshold budget of a vertex v, denoted
TH(v) is a value in [0,1] such that if the game starts at v and Player 1’s budget exceeds TH(v), then he
has a strategy to win the game. On the other hand, if Player 2’s budget exceeds 1−TH(v), he can win
the game (recall that the budgets add up to 1). This is a central property of the game, which is a form
of determinacy, and shows that no ties can occur.1 In [35, 34], the authors show that threshold budgets
exist, are unique, and that finding them is in NP. We slightly improve their result by showing that the
problem is in NP and coNP.

More interesting, from the synthesis and logic perspective, are infinite winning conditions. We intro-
duce and study infinite duration bidding games with richer qualitative objectives as well as quantitative
objectives. We start with qualitative games and show that parity bidding games are linearly-reducible
to bidding reachability games, allowing us to obtain all the positive results from these games; threshold
budgets exist, are unique, and computing them is no harder than for bidding reachability games, i.e., the
problem is in NP and coNP. We show that in a strongly-connected game, one of the players can win with
any positive initial budget. In a general game, we first classify the bottom strongly-connected components
(BSCCs, for short) of the graph to the ones that are winning for each player, and construct a reachability
game in which each player tries to force the game to a BSCC that is winning for him.

Our most interesting results concern mean-payoff bidding games, which are quantitative games; an
infinite play π of the game is associated with a value c ∈ IR. Player 1’s payoff in π is c and Player 2’s
payoff is−c. Accordingly, we refer to the players in a mean-payoff game as Max and Min. The payoff of
π is determined according to the weights it traverses and, as in the previous games, the bids are only used
to determine whose turn it is to move. The central question in these games is: Given a value c ∈Q, what
is the initial budget that is necessary and sufficient for Max to guarantee a payoff of c? More formally,
we say that c is the value with respect to an initial budget B ∈ [0,1] if for every ε > 0, we have (1) when
Max’s initial budget is B+ε , he can guarantee a payoff of at least c, and (2) intuitively, Max cannot hope
for more: if Max’s initial ratio is B− ε , then Min can guarantee a payoff of at most c.

The crux of the solution again concerns the BSCCs of the game. We extend the known, somewhat

1When the initial budget of Player 1 is exactly TH(v), the winner of the game depends on how we resolve draws in biddings,
and our results hold for any tie-breaking mechanism.
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unexpected, probabilistic connection for bidding reachability games to bidding mean-payoff games. A
random-turn based game (RTB game, for short) is a graph game in which in each round, the player who
chooses the next move is selected uniformly at random. More formally, an RTB game is a special case
of a 2.5-player game [21]. For qualitative RTB games, the value of the game is the maximal probability
with which Player 1 can guarantee winning. It was shown in [35] that the threshold budget in a Richman
reachability game coincides with the value of a RTB game played on the same structure.

We extend this probabilistic connection to mean-payoff games. The mean-payoff value of a mean-
payoff RTB game is the maximal expected payoff Max can guarantee. We show that in a strongly-
connected Richman mean-payoff game, no matter what the initial budgets are, the optimal payoff Max
can guarantee coincides with the mean-payoff value in a mean-payoff RTB game played on the same
structure. We provide two proofs of this claim. The first relies on a connection between bidding mean-
payoff games and one-counter 2.5-player games [13, 14]. In turn, these games are equivalent to discrete
quasi-birth-death processes [23] and generalize solvency games [10], which can be thought of as a re-
warded Markov decision process with a single vertex.

The drawback of the approach above is that it is existential in nature and does not give any insight on
how to construct optimal strategies. The second proof technique, which constitutes our most technically
challenging results, is direct; we construct optimal strategies for Min and Max. Beyond the importance
of constructing strategies, the ideas developed in the construction were later used to solve mean-payoff
games with poorman bidding rules [7] for which a probabilistic connection does not exist (see more
details in Section 5). The idea of our construction is to tie between changes in Min’s budget with changes
in the energy; investing one unit of budget (with the appropriate normalization) implies a decrease of a
unit of energy, and on the other hand, an increase of a unit of energy implies a gain of one unit of budget.
One of the technical challenges is that in general strongly-connected graphs the bids must differ between
the vertices, and we need to decide in each vertex how “important” it is to move. Our technique relies
on the concept of potential, which was developed in the context of the strategy improvement algorithm
to solve graph games (c.f., [25]).

Further related work Beyond the works that are directly relevant to us, which we have compared to
above, we list previous work on Richman games. Motivated by recreational games, e.g., bidding chess
[11, 33], discrete bidding games are studied in [22], where the money is divided into chips, so a bid
cannot be arbitrarily small unlike the bidding games we study. In all-pay bidding games [37], both the
winner and loser of a bidding pay their bids to the bank. Non-zero-sum two-player Richman games were
recently studied in [29]. In addition to these works, Richman games where studied in the context of the
equivalent model of RTB games (c.f., [41]) and the infinity Laplacian (c.f., [40]).

Due to lack of space, most of the proofs appear in the full version [6].

2 Preliminaries

A graph game is played on a directed graph G = 〈V,E〉, where V is a finite set of vertices and E ⊆V ×V
is a set of edges. The neighbors of a vertex v∈V , denoted N(v), is the set of vertices {u∈V : 〈v,u〉 ∈ E},
and we say that G has out-degree 2 if for every v ∈ V , we have |N(v)| = 2. A path in G is a finite or
infinite sequence of vertices v1,v2, . . . such that for every i≥ 1, we have 〈vi,vi+1〉 ∈ E.

Objectives An objective O is a set of infinite paths. In reachability games, Player 1 has a target vertex
vR and an infinite path is winning for him if it visits vR. In parity games each vertex has a parity index
in {1, . . . ,d}, and an infinite path is winning for Player 1 iff the maximal parity index that is visited
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infinitely often is odd. We also consider games that are played on a weighted graph 〈V,E,w〉, where
w : V →Q. Consider an infinite path π = v1,v2, . . .. For n ∈N, we use πn to denote the prefix of length
n of π . We call the sum of weights that πn traverses the energy of the game, denoted E(πn). Thus,
E(πn) = ∑1≤ j<n w(v j). In energy games, the goal of Player 1 is to keep the energy level positive, thus
he wins an infinite path iff for every n ∈N, we have E(πn)> 0. Unlike the previous objectives, a path
in a mean-payoff game is associated with a payoff, which can be thought of as a reward for Player 1 and
a cost for Player 2. Thus, Player 1’s goal is to maximize the payoff and Player 2’s goal is to minimize
it. Accordingly, in mean-payoff games, we refer to Player 1 as Max and Player 2 as Min. We define the
payoff of π to be liminfn→∞

1
n E(πn). We say that Max wins an infinite path of a mean-payoff game if the

payoff is non-negative.

Strategies and plays A strategy prescribes to a player which action to take in a game, given a finite
history of the game, where we define these two notions below. For example, in turn-based games,
histories are paths and actions are vertices. Thus, a strategy for Player i, for i ∈ {1,2}, takes a finite path
that ends in a Player i vertex, and prescribes to which vertex the token moves to next. In bidding games,
histories and strategies are more complicated as they maintain the information about the bids and winners
of the bids. Intuitively, a strategy prescribes an action 〈b,v〉, where b is a bid that does not exceed the
available budget and v is a vertex to move to upon winning. Formally, a history in a bidding game is a
sequence τ = v0,〈v1,b1, `1〉,〈v2,b2, `2〉, . . . ,〈vk,bk, `k〉 ∈ V · (V × IR×{1,2})∗, where, for j ≥ 1, in the
j-th round, the token is placed on vertex v j−1, the winning bid is b j, and the winner is Player ` j, and
Player ` j moves the token to vertex v j. For i ∈ {1,2}, let Wi(τ) denote the indices in which Player i
wins the bidding, thus Wi(τ) = {1 ≤ j ≤ k : ` j = i}. The payment of Player i in τ , denoted payi(τ), is
∑ j∈Wi(τ) b j. Let B and 1−B be Player 1 and 2’s initial budgets, respectively. Player 1’s budget following
τ is B− pay1(τ)+ pay2(τ) and Player 2’s budget is (1−B)+ pay1(τ)− pay2(τ). We restrict attention
to legal strategy in which 〈vk,v〉 must be an edge and b must not exceed the available budget.

An initial vertex v0 and strategies f1 and f2 for Players 1 and 2, respectively, determine a unique
play π for the game, denoted play(v0, f1, f2), which is an infinite sequence in V · (V × IR×{1,2})ω .
We sometimes abuse notation and refer to play(v0, f1, f2) as a finite prefix of the infinite play. We drop
v0 when it is clear from the context. We define the play inductively. The first element is v0. Suppose
π1, . . . ,π j is defined. The players bids are given by 〈b1,v1〉= f1(π1, . . . ,π j) and 〈b2,v2〉= f2(π1, . . . ,π j).
If b1 > b2, then Player 1 wins the bidding and decides where to move the token to, thus π j+1 = 〈v1,b1,1〉.
Dually when b1 < b2 Player 2 wins the bidding and we have π j+1 = 〈v2,b2,2〉. We assume there is some
tie-breaking mechanism that determines who the winner is when b1 = b2, and our results are not affected
by what the tie-breaking mechanism is.

Consider an objective O. An infinite play v0,〈v1,b1, `1〉,〈v2,b2, `2〉, . . . satisfies O iff the infinite path
v0,v1,v2, . . . satisfies O. We call a strategy f1 winning for Player 1 if for every strategy f2 of the other
player play(v0, f1, f2) satisfies O. Winning strategies for Player 2 are defined dually.

The first question that arises in the context of bidding games asks what is the necessary and sufficient
initial ratio to guarantee an objective. We generalize the definition in [34, 35]:

Definition 1. (Threshold budgets) Consider a bidding game G , a vertex v, and an initial budget B ∈
[0,1] for objective O for Player 1. The threshold budget in v, denoted TH(v), is a number in [0,1] such
that

• if B > TH(v), then Player 1 has a winning strategy that guarantees O is satisfied, and

• if B < TH(v), then Player 2 has a winning strategy that violates O.
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Random-turn based games A 2.5-player mean-payoff game is played on an arena 〈V1,V2,VN ,E,Pr〉,
where the sets of vertices V1,V2, and VN are disjoint and respectively represent the set of states that are
controlled by Player 1, Player 2, and nature, E ⊆ (V1 ∪V2)×VN is a set of deterministic edges, and
Pr : VN × (V1 ∪V2)→ [0,1] assigns probabilities to outgoing edges from nature vertices. Whenever the
token reaches a vertex in v ∈ V1, Player 1 chooses how to move it, where a legal move is u ∈ VN such
that E(v,u), and similarly for Player 2. When the token reaches u ∈VN , it continues to v ∈ (V1∪V2) with
probability Pr(u,v). We denote V = (V1∪V2∪VN).

A 2.5-player game with reachability objectives is called a simple stochastic game (SSG, for short)
[21]. Intuitively, the value of an SSG G , denoted val(G ), is the maximal probability with which Player 1
can guarantee reaching the target. Formally, let G = 〈V1,V2,VN ,E,Pr,vR〉, where vR ∈V is the target for
Player 1. It is well known that optimal positional strategies exist in SSGs. Given two positional strategies
we construct a Markov chain M f ,g by trimming away edges that do not comply with the strategies. That
is, we leave edges of the form 〈v,u〉 ∈ E, where v ∈V1 and u = f (v), or v ∈V2 and u = g(v).2 Then, the
value of v ∈ V with respect to f and g, denote val f ,g

G (v), is the probability of reaching vR in M f ,g. The
value of v is valG (v) = max f ming val f ,g

G (v). It is well known that valG (v) = ming max f val f ,g
G (v).

A mean-payoff 2.5-player game is G = 〈V1,V2,VN ,E,Pr,w〉, where w : V → Q. We again restrict
attention to ergodic 2.5-player games in which each player has a strategy fu,v, for every u,v∈V , such that
fu,v guarantees reaching v starting from u with probability 1. Intuitively, the mean-payoff value of a mean-
payoff 2.5-player game G , denoted MP(G ), is the maximal expected payoff Max can guarantee, and it is
easy to see that the mean-payoff value does not depend on the initial vertex. Formally, a rewarded Markov
chain is a tuple M = 〈V,Pr,w〉, where V is a set of vertices, Pr : (V×V )→ [0,1] is a probability function,
and w : V →Q assigns weights to vertices. The stationary distribution in a vertex v ∈V intuitively states
what precent of the time a random infinite walk on M stays in v. In order to compute it, we construct
a linear program with a variable xv, for every vertex v ∈ V , a constraint xv = ∑v′∈V Pr[v′,v] · xv′ , and a
normalizing constraint ∑v∈V xv = 1. The mean-payoff value in M , denoted MP(M ), is ∑v∈V xv ·w(v).
It is well known that optimal positional strategies exist in mean-payoff 2.5-player games. As in the
qualitative case, given such an ergodic game G and two strategies f and g, we construct a rewarded
Markov chain M f ,g, and define MP f ,g(G ) = MP(M f ,g). We define MP(G ) = max f mingMP f ,g(G ).

Consider a game G = 〈V,E〉. The random-turn based game that is associated with G is a 2.5-player
game that intuitively simulates the fact that the player to choose the next move is chosen uniformly at
random. Formally, we define RTB(G ) = 〈V1,V2,VN ,E,Pr〉, where each vertex in V is split into three
vertices, each controlled by a different player, thus for α ∈ {1,2,N}, we have Vα = {vα : v ∈V}, nature
vertices simulate the random choice, thus Pr[vN ,v1] = Pr[vN ,v2] = 0.5, and reaching a vertex that is
controlled by one of the two players means that he chooses the next move, thus E = {〈vα ,uN〉 : 〈v,u〉 ∈
E and α ∈ {1,2}}. When G is weighted, then the weights of v1,v2, and vN equal that of v.

3 Qualitative objectives

Bidding games with reachability objectives where studied in [35, 34]. They study a slightly different
model, which we call double-reachability games, and in which each player has a target and the game
ends once one of the targets is reached. They show the following.

Theorem 2. [35] Threshold budgets exist in double-reachability games. Moreover, threshold budgets
have the following property. Consider a double-reachability bidding game G = 〈V,E,vR,vS〉. We have

2A similar construction can be obtained for arbitrary strategies, and these simple definitions suffice for our needs.
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TH(vR) = 0 and TH(vS) = 1, and for every v ∈ V \ {vR,vS}, we have TH(v) = 1
2

(
TH(v+)+ TH(v−)

)
,

where v−,v+ ∈ N(v) are such that for every v′ ∈ N(v), we have TH(v−)≤ TH(v′)≤ TH(v+).

We make precise the equivalence between the two types of reachability objectives.

Lemma 3. Consider a bidding reachability game G = 〈V,E,T 〉, where T ⊆V is a target set of vertices
for Player 1. Let S ⊆ V be the vertices with no path to T . Consider the Richman game G ′ = 〈V ∪
{vR,vS},E ′,vR,vS〉, where E ′ = E ∪{〈v,vR〉 : v ∈ T}∪{〈v,vS〉 : v ∈ S}. For every v ∈ V , the threshold
budget of v in G equals the threshold budget of v in G ′.

An important probabilistic connection was recognized in [35], which we formalize below.

Corollary 4. [35] Consider a double-reachability bidding game G = 〈V,E,vR,vS〉. For v ∈V , we have
TH(v) = valRTB(G )(v).

We turn to study the problem of finding threshold budgets. Formally, the THRESH-BUDG problem
gets as input a bidding game and a vertex v in it and the goal is to determine whether TH(v)≥ 0.5. It is
shown in [34] that THRESH-BUDG is in NP, and it is explicitly stated that it is not known whether the
problem is in P or NP-hard. Since finding the value in an SSG is in NP and coNP, using the corollary
above we can slightly improve their result.

Theorem 5. THRESH-BUDG for double-reachability games is in NP ∩ coNP.

We continue to study threshold budgets in bidding parity games. We first study strongly-connected
parity games and show a classification for them; either Player 1 wins with every initial budget or Player 2
wins with every initial budget.

Lemma 6. Consider a strongly-connected parity game G = 〈V,E, p〉. There exists ρ ∈ {0,1} such that
for every v ∈V , we have TH(v) = ρ . Moreover, we have ρ = 0 iff maxv∈V p(v) is odd.

Proof. The proof relies on the following claim: in a reachability bidding game with a target that is
reachable from every vertex, Player 1 wins with every positive initial budget. The claim clearly implies
the lemma as we view a strongly-connected bidding parity game as a reachability bidding game in which
Player 1 tries to force the game to the vertex with the highest parity index. The proof of the claim follows
from the fact that the threshold budget of a vertex v ∈ V is some average between TH(vR) and TH(vS),
and the average depends on the distances of v to the two targets. When only Player 1’s target is reachable,
we have TH(v) = 0. The details of the proof can be found in the full version.

Lemma 6 allows us to reduce a bidding parity game G = 〈V,E, p〉 to a double reachability game
(and in turn to a reachability game). Consider a BSCC S ⊆ V . We call S winning for Player 1 if for
every v ∈ S, we have TH(v) = 0. Otherwise, we have TH(v) = 1, and we call S losing. Then, in the
double-reachability game, the target for Player 1 is the set of winning BSCCs and the target for Player 2
is the set of losing BSCCs. Formally, we have the following.

Lemma 7. Parity bidding games are linearly reducible to reachability bidding games. Consider a bid-
ding parity game G = 〈V,E, p〉, and let W,L ⊆ V be the set of vertices in BSCCs that are winning and
losing for Player 1, respectively. For v∈V \(L∪W ), TH(v) in G equals TH(v) in the double-reachability
game 〈V \ (L∪W ),E,L,W 〉.

Lemma 7 allows us to obtain the positive results of reachability bidding games in parity bidding
games.

Theorem 8. Threshold budgets exist in parity bidding games and THRESH-BUDG is in NP ∩ coNP.
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4 Mean-Payoff Bidding Games

This section consists of our most technically challenging contribution. We show that threshold budgets
exist in mean-payoff bidding games and construct optimal strategies for the players. The crux of the
proof considers the BSCCs of the game.

Consider a strongly-connected mean-payoff bidding game G . For an initial budget B ∈ [0,1], we
denote by MPB(G ) the mean-payoff value of G , which is intuitively the optimal payoff Min can guarantee.
More formally, suppose Min starts with a budget of B. Then, he can guarantee a payoff of at most
MPB(G ), and he cannot hope for more: for every ε > 0, Max can guarantee a payoff of at least MPB(G )−
ε . Lemma 7 implies that the optimal payoff does not depend on the initial vertex.

Recall that RTB(G ) is a 2.5-player game in which the player who moves next is chosen uniformly at
random, and that MP(RTB(G )) is the optimal expected payoff both players can guarantee. We show the
following probabilistic connection.

Theorem 9. Consider a strongly-connected bidding mean-payoff game G . The mean-payoff value of
G exists, does not depend on the initial budget, and equals the mean-payoff value of the random-turn
based mean-payoff game RTB(G ) in which the player who chooses the next move is selected uniformly
at random, thus for every B ∈ [0,1], we have MPB(G ) = MP(RTB(G )).

We illustrate an existential proof for Theorem 9 the details of which can be found in the full version.
The proof relies on the probabilistic connection and extensive work on one-counter SSG [13, 14]. In the
following sections we show an alternative constructive proof. The draw-back of the existential proof is
that it does not give any insight on how to construct optimal strategies. Indeed, a strategy in a 2.5-player
game only prescribes which edges a player should choose and does not give any insight on how much to
bid, which is the difficult part of constructing strategies in bidding games.

Reasoning about the payoff of a play is complicated. Instead, we reason about the energy of finite
plays, which, recall, is the sum of weights that are traversed by the play. Consider a strongly-connected
mean-payoff game G . We view G as an energy game, thus Max wins an infinite play iff the energy in
every finite prefix is positive. We construct a RTB game RTB(G ), which is a one-counter SSG. We show
in the full version that the threshold budget of the energy game G that starts in a vertex v with energy
k ∈N is equivalent to the value of RTB(G ) that starts in v, and with a counter value of k. It is shown
in [13, 14] that when MP(RTB(G )) = 0, then the value of the game is 1 for every initial counter value,
thus Min has a strategy that wins with probability 1 no matter what the initial counter value is. Also,
when MP(RTB(G ))> 0, then the value tends to 0 as the initial counter value increases. Lemma 10 shows
that these properties suffice for showing that MP(G ) = 0. Its proof is simple and can be found in the full
version.

Lemma 10. Consider a strongly-connected bidding mean-payoff game G and a vertex u in G .

• Suppose that for every initial budget and initial energy, Min has a strategy fm and there is a
constant N ∈ N such that for every Max strategy fM, a finite play π = play(u, fm, fM) either
reaches energy 0 or the energy is bounded by N throughout π . Then, Min can guarantee a non-
positive payoff in G .

• If for every initial budget for Max there exists an initial energy level n ∈ N such that Max can
guarantee a non-negative energy level in G , then Max can guarantee a positive payoff in G .

Similar to the qualitative case, we reduce mean-payoff bidding games to reachability games by first
reasoning about the BSCCs of the game. Solving one-counter SSGs can be done in NP and coNP, thus
we are obtain the same complexity upper bound as for reachability games. The details of the following
theorem can be found in the full version.
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Theorem 11. Threshold budgets exist in mean-payoff bidding games and THRESH-BUDG is in NP ∩
coNP.

4.1 Constructing an optimal strategy for Min

Consider a strongly-connected game G with MP(RTB(G )) = 0. We show the first direction in Theorem 9
and construct a strategy for Min that guarantees a non-positive payoff no matter what the initial budget
is. We construct a Min positional strategy that guarantees that for every initial energy and every initial
budget, either the energy level reaches 0 or it is bounded. By Lemma 10, this suffices for Min to guar-
antee a non-positive mean-payoff value in G . We develop intuition for the construction in the following
example.

Example 12. Consider the bidding mean-payoff game that is depicted in Figure 1. We show a Min
strategy that guarantees a non-positive payoff no matter what the initial energy is. Consider an initial
Min budget of Binit

m ∈ [0,1] and an initial energy level of kI ∈N. Let N ∈N be such that Binit
m > kI

N . Min
bids 1

N and takes the (−1)-weighted edge upon winning. Intuitively, Min invests 1
N for every decrease of

unit of energy and, since by losing a bidding he gains at least 1
N , this is also the amount he gains when the

energy increases. Formally, it is not hard to show that the following invariant is maintained: if the energy
level reaches k ∈N, Min’s budget is at least k

N . Note that the invariant implies that either an energy level
of 0 is reached infinitely often, or the energy is bounded by N. Indeed, in order to cross an energy of N,
Max would need to invest a budget of more than 1. Lemma 10 implies that the payoff is non-positive,
and we are done.

1 −1

Figure 1: A bidding mean-payoff game where the weights are depicted on the edges.

Extending this result to general strongly connected games is not immediate. Consider a strongly-
connected game G = 〈V,E,w〉 and a vertex u ∈ V . We would like to maintain the invariant that upon
reaching u with energy k, the budget of Min exceeds k/N, for a carefully chosen N. The game in the
simple example above has two favorable properties that general SCCs do not necessarily have. First,
unlike the game in the example, there can be infinite paths that avoid u, thus Min might need to invest
budget in drawing the game back to u. Moreover, different paths from u to itself may have different
energy levels, so bidding a uniform value (like the 1

N above) is not possible.
Consider a strongly-connected mean-payoff bidding game G = 〈V,E,w〉. We need a way to deter-

mine how “important” it is to move in a vertex in V . Our solution relies on the concept of potential, which
was defined in the context of the strategy improvement algorithm to solve probabilistic games. Consider
two optimal positional strategies f and g in RTB(G ), for Min and Max, respectively. Recall that when
constructing RTB(G ), for every vertex v ∈ V , we add two copies vMin and vMax, that are controlled by
Min and Max, respectively. For v ∈V , let v−,v+ ∈V be such that f (vMin) = v− and g(vMax) = v+. The
potential of v, denoted Po(v), is a known concept in probabilistic models and its existence is guaranteed
[43]. We use the potential to define the strength of v, denoted Str(v), which intuitively measures how
much the potentials of the neighbors of v differ. We assume w.l.o.g. that MP(RTB(G )) = 0 as otherwise
we can decrease all weights by this value. The potential of v is a function that satisfies the following:

Po(v) =
1
2
(
Po(v+)+Po(v−)

)
+w(v) and St(v) =

1
2
(
Po(v+)−Po(v−)

)
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There are optimal strategies for which Po(v−) ≤ Po(v′) ≤ Po(v+), for every v′ ∈ N(v), which can be
found for example using the strategy iteration algorithm.

Consider a finite path π = v1, . . . ,vn in G . We intuitively think of π as a play, where for every
1≤ i < n, the bid of Min in vi is St(vi) and he moves to v−i upon winning. Thus, if vi+1 = v−i , we say that
Min won in vi, and if vi+1 6= v−i , we say that Min lost in vi. Let W (π) and L(π) respectively be the indices
in which Min wins and loses in π . We call Min wins investments and Min loses gains, where intuitively
he invests in increasing the energy and gains a higher ratio of the budget whenever the energy decreases.
Let G(π) and I(π) be the sum of gains and investments in π , respectively, thus G(π) = ∑i∈L(π) St(vi)
and I(π) = ∑i∈W (π) St(vi). Recall that the energy of π is E(π) = ∑1≤i<n w(vi). The following lemma
connects the strength, potential, and accumulated energy.

Lemma 13. Consider a strongly-connected game G such that MP(RTB(G )) = 0, and a finite path π in
G from v to u. Then, Po(v)−Po(u)≤ E(π)−G(π)+ I(π).

Proof. We prove by induction on the length of π . For n = 1, the claim is trivial since both sides of
the equation are 0. Suppose the claim is true for paths of length n and we prove for paths of length
n+ 1. We distinguish between two cases. In the first case, Min wins in v, thus the second vertex in π

is v−. Let π ′ be the prefix of π starting from v−. Note that since Min wins the first bidding, we have
G(π) = G(π ′) and I(π) = St(v)+ I(π ′). Also, we have E(π) = E(π ′)+w(v). Combining these, we
have E(π)−G(π)+ I(π) = E ′(π)+w(v)−G(π ′)+ I(π ′)+St(v). By the induction hypothesis, we have
Po(v−)− Po(u) ≤ E(π ′)−G(π ′) + I(π ′). Combining these with the definition of St(v), we have the
following.

E(π)−G(π)+ I(π)≥ St(v)+Po(v−)+w(v)−Po(u) =

=
1
2
(
−Po(v−)+Po(v+)

)
+Po(v−)+w(v)−Po(u) = Po(v)−Po(u)

We continue to the second case in which Max wins in v and let v′ be the second vertex in π . Recall
that we have Po(v+)≥ Po(v′). Dually to the first case, we have G(π) = St(v)+G(π ′) and I(π) = I(π ′).
Combining with the induction hypothesis, we have E(π)−G(π)+I(π)≥w(v)+St(v)+Po(v+)−Po(u).
Plugging in St(v)= 1

2

(
Po(v+)−Po(v−)

)
, we have E(π)−G(π)+I(π)≥ 1

2

(
Po(v−)+Po(v+)

)
−Po(u)=

Po(v)−Po(u), and we are done.

We are ready to describe a strategy fm for Min. Consider a positive initial budget B ∈ (0,1] for
Min and an initial energy kI ∈ N. Let PoM = maxv∈V |Po(v)| and StM = maxv∈V |St(v)|. We choose
N ∈N such that B > kI+StM+2PoM

N . When the game reaches v ∈ V , Min bids St(v)/N and moves to v−

upon winning. We formalize the intuition of tying energy and budget by means of an invariant that is
maintained throughout a play.

Lemma 14. Consider a Max strategy fM, and let π = play( fm, fM) be a finite play after which the energy
is k, i.e., k = kI +E(π). Then, Min’s budget following π is at least k+StM

N .

Proof. The invariant clearly holds initially. Let B be Min’s initial budget and B′ his budget following π ,
thus B′ = B+

(
G(π)− I(π)

)
/N. From Lemma 13, we have 2PoM ≤ E(π)−

(
G(π)− I(π)

)
. Recall that

that B > kI+StM+2PoM
N . We combining with k = kI +E(π) and re-arranging:

2PoM ≤
k− kI

N
−B′+B≤ k− kI

N
−B′+B≤ k− kI

N
−B′+

kI +StM +2PoM

N
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Lemma 14 implies that Min always has sufficient budget to bid according to fm, thus the strategy
is legal. Moreover, since Min’s budget cannot exceed 1, Lemma 14 implies that if the energy does not
reach 0, then it is bounded by N−StM. Combining with Lemma 10, we have the following.

Theorem 15. Given a positive initial budget for Min and any initial initial energy, the strategy fm

guarantees that either an energy level 0 is reached or that the energy is bounded from above.

4.2 Constructing an optimal strategy for Max

Constructing an optimal strategy for Max is more involved since our definition of payoff gives Min the
advantage. Consider a strongly-connected bidding mean-payoff game G with MP(RTB(G )) > 0. Given
an initial budget B for Max, we provide an initial energy level kI such that when the game starts at kI , Max
keeps the energy level non-negative. By Lemma 10, this suffices to construct a strategy that guarantees
a positive payoff in G . In this section we describe the construction for a fragment of the general case
called recurrent SCCs. The difficulties of the general case and the main ideas in its solution already
appear in this simpler case, and the extension to general games can be found in the full version. An SCC
G = 〈V,E〉 is recurrent, if there is a vertex u ∈V such that every cycle in G includes u. We refer to u as
the root of G. We consider mean-payoff games played on recurrent SCCs.

We describe the intuition of the construction. A first attempt for constructing a Max strategy would
be to tie energy and budget as in the strategy for Min in the previous section. This attempt fails since
Min can allow Max to win for a while, draw the energy to N, where Max’s budget runs out. When Min
has all (or most) of the budget, he can win an arbitrary number of biddings in a row, which means that
he can draw the energy arbitrary low, causing Max to lose. Avoiding the exhaustion of the budget is the
key difficulty in constructing Max’s strategy. The moral of this attempt is that the “normalization factor”,
which was 1/N in the previous section, must decrease as the energy increases.

We split the natural numbers into blocks, and define a different normalization factor in each block,
which we call the currency of the block. For n ∈ N, when the energy is in the n-th block, Max bids
in the currency of the n-th block. Inside the n-th block, we tie between energy and budget, thus if the
energy stays within a block, we are done. The difficulty is handling plays that switch between blocks.
Indeed, consider a play with a sinusoidal energy behavior: Min loses for a bit and causes the energy to
increase by, say, c units from the top of Block n to the bottom of Block n+ 1 and then wins for a bit
causing the energy to decrease by c units into the top of Block n. Since energy is tied with budget, every
time the energy increases, Max “invests” c units in the higher currency of the n-th block, and every time
the energy decreases, he “gains” c units in the lower currency of the (n+ 1)-th block. His budget will
eventually run out. To overcome this issue, we develop the idea of tying energy and budget to give an
advantage to Max: investing is done in the currency of the current block while gaining is done in the
higher currency of the lower block.

We formalize this intuition. Consider a strongly-connected recurrent mean-payoff bidding game
G = 〈V,E,w〉 with MP(RTB(G )) > 0. We alter the weights to give advantage to Min. For z > 1, let
G z = 〈V,E,wz〉, where wz(v) = w(v) if w(v)≥ 0 and otherwise wz(v) = z ·w(v). Clearly, MP(RTB(G ))≥
MP(RTB(G z)). We select z > 1 such that MP(RTB(G z)) ≥ 0. We respectively denote by Poz and Stz,
the potential and strength functions of G z as in the previous section. We define the partition into energy
blocks. Let cycles(u) be the set of simple cycles from u to itself and EM = maxπ∈cycles(u) |E(π)|. We
choose M ∈ N such that M ≥ (StzM + 3EM)/(1− z−1), where StzM is the maximal strength as in the
previous section. We partition N into blocks of size M. For n≥ 1, we refer to the n-th block as Mn, and
we have Mn = {M(n− 1),M(n− 1)+ 1, . . . ,Mn− 1}. We use β

↓
n and β

↑
n to mark the upper and lower

boundaries of Mn, respectively. We use a M≥n to denote the set {Mn,Mn+1, . . .}. Consider a finite play π
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that ends in u and let visitu(π) be the set of indices in which π visits u. Let kI ∈N be an initial energy.
We say that π visits Mn if kI +E(π) ∈Mn. We say that π stays in Mn starting from an index 1≤ i≤ |π|
if for all j ∈ visitu(π) such that j ≥ i, we have kI +E(π1, . . . ,π j) ∈Mn.

We are ready to describe Max’s strategy fM. Suppose the game reaches a vertex v and the energy in
the last visit to u was in Mn, for n ≥ 1. Then, Max bids z−n ·Stz(v) and proceeds to v+ upon winning.
Thus, the currency in Mn is z−n. Note that currency changes occur only in u. We formalize the asymmetry
between “gaining” and “investing”. Let Ez(π) be the change in energy in G z.

Lemma 16. Consider an play π ∈ cycles(u). Then, E(π)≥ Ez(π) and zE(π)≥ Ez(π).

Proof. Let E≥0(π) and E<0(π) be the sum of non-negative weights and negative weights in π , respec-
tively. We have E(π)=E≥0(π)+E<0(π) and Ez(π)=E≥0(π)+zE<0(π). The inequality E(π)≥Ez(π)
is immediate. For the second inequality, we multiply the first equality by z and subtract it from the first
to get Ez(π)− zE(π) = E≥0(π)− zE≥0(π)≤ 0, and we are done.

Let payM(π) denote the amount that Max pays in a finite play π , thus it is negative when Max gains
budget. Adjusting Lemma 13 to our setting, for π ∈ cycles(u), we have Ez(π)≥ zn · payM(π). Intuitively,
the corollary states that in Mn, investing in the increase of energy is done in the currency z−n of Mn while
gaining due to decrease of energy is done in the higher currency z−(n−1) of Mn−1.

Corollary 17. Consider a Min strategy fm, and let π = play( fm, fM) be a finite play such that π ∈
cycles(u). Then, we have E(π)≥ zn · payM(π) and zE(π)≥ zn · payM(π).

Consider an initial Max budget Binit
M ∈ [0,1]. We choose an initial energy kI ∈ N with which fM

guarantees that energy level 0 is never reached. Recall the intuition that increasing the energy by a unit
requires an investment of a unit of budget in the right currency. Thus, increasing the energy from the
lower boundary β

↓
n of Mn to its upper boundary β

↑
n , costs M · z−n. We define cost(Mn) = M · z−n and

cost(M≥n) = ∑
∞
i=n cost(Mn). Finally, we need some wiggle room to allow for changes in the currency.

Let wiggle = 2EM +StzM.

Definition 18. Let kI be β
↓
n such that Binit

M > wiggle · z−(n−1)+ cost(M≥n) and ∑
n
i=1 cost(Mi)> 1.

Consider a Min strategy fm, and let π = play( fm, fM) be a finite play. We partition π into subse-
quences in which the same currency is used. Let π = π1 ·π2 · . . . ·π` be a partition of π . For 1≤ i≤ `, we
use π i to refer to the prefix π1 · . . . ·πi of π , and we use ei = kI +E(π i) to refer to the energy at the end of
π i. Consider the partition in which, for 1≤ i≤ `, the prefix π i visits u and πi is a maximal subsequence
that stays in some energy block.

Suppose πi stays in Mn. There can be two options; either the energy decreases in πi, thus the energy
before it ei−1 is in Mn+1 and the energy after it ei is in Mn, or it increases, thus ei−1 ∈Mn−1 and ei ∈Mn.
We then call π i decreasing and increasing, respectively. The definition of wM and the fact that G is
recurrent imply that upon entering Mn, the energy is within EM of the boundary. Thus, in the case that
π i is decreasing, the energy at the end of π i is ei ≥ β

↑
n −EM and in the case it is increasing, we have

ei ≤ β
↓
n +EM. Let `0 = 0, and for i≥ 1, let `i = (β ↓n+1−EM)−ei in the first case and `i = (β ↓n +EM)−ei

in the second case. Note that `i ∈ {0, . . . ,2EM}. In the full version, we prove the following invariant on
Max’s budget when changing between energy blocks.

Lemma 19. For every i ≥ 0, suppose π i ends in Mn. Then, Max’s budget is at least (wiggle+ `i) ·
z−(n̂−1)+ cost(M≥n̂), where n̂ = n+1 if π i is decreasing and n̂ = n if π i is increasing.

It is not hard to show that Lemma 19 implies that fM is legal. That is, consider a finite play π that
starts immediately after a change in currency. Using Lemma 13, we can prove by induction on the length
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of π that Max has sufficient budget for bidding. The harder case is when π decreases, and the proof
follows from the fact that wiggle is in the higher currency of the lower block. Combining Lemma 19
with our choice of the initial energy, we get that the energy never reaches 0 as otherwise Min invests
a budget of more than 1. Lemma 10 implies that Max guarantees a positive mean-payoff value in a
strongly-connected game.

Theorem 20. Consider a strongly-connected recurrent mean-payoff bidding game G with MP(RTB(G ))>
0. Suppose the game starts with a positive initial budget for Max and the corresponding initial energy as
in Definition 18. The strategy fM guarantees that the energy stays non-negative with these initial values.

5 Discussion and Future Directions

We introduce and study infinite-duration bidding games in which the players bid for the right to move
the token. We showed existence of threshold budgets in parity and mean-payoff bidding games and con-
structed optimal strategies for the players. This work belongs to a line of works that transfer concepts
and ideas between the areas of formal verification and algorithmic game theory [39], two fields with a
different take on game theory and with complementary needs. For example, formally reasoning about
multi-agent safety critical systems, e.g., components of an autonomous car, requires insights on rational-
ity. On the other side, formally verifying the correctness of auctions or reasoning about ongoing auctions,
are both challenges that can benefit from the experience of the formal methods community. Examples of
works in the intersection of the two fields include logics for specifying multi-agent systems [3, 18, 38],
studies of equilibria in games related to synthesis and repair problems [17, 16, 24, 1], non-zero-sum
games in formal verification [12, 15, 20], and applying concepts from formal methods to resource allo-
cation games such as rich specifications [9], efficient reasoning about very large games [5, 32], and a
dynamic selection of resources [8].

The concept of bidding for moving is general and there are endless ways to take it. We list several
directions for future studies. It is interesting to study further bidding rules and add concepts like multi-
player games or partial information. A step towards the later is a better understanding of poorman bidding
in which the higher bidder pays the “bank” rather than the other player. Since there is no constraint that
the sum of budgets is 1, poorman bidding is more amendable for extensions. Infinite-duration poorman
bidding games were studied in [7]. We describe some of their results. The central quantity that is studied
in poorman bidding is the ratio of the total budget. For reachability games, the good news that are shown
in [34] is that “threshold ratios” exist, similar to threshold budgets in Richman games. The bad news,
however, are that poorman games are more complicated in that threshold ratios need not be rational and
a probabilistic connection does not exist. Extending the good news to richer qualitative objectives is
similar to the Richman case. Things get interesting in mean-payoff poorman games. There, in strongly-
connected games, unlike the Richman case, the value of the game depends on the initial ratio. Moreover
and quite surprisingly, the probabilistic connection pops up: Suppose Max’s initial ratio is r ∈ [0,1], then
the value of a strongly-connected poorman mean-payoff game G equals the mean-payoff value of a RTB
that is played on G in which Max chooses a move with probability r and Min with probability 1− r.
Interestingly, in a strongly-connected mean-payoff game G , the value of G when viewed as a poorman
game with initial ratio 0.5 equals the value of G when viewed as a Richman game. The constructions for
poorman games use the ideas developed in this paper.
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[36] R. Paes Leme, V. Syrgkanis, and É. Tardos. Sequential auctions and externalities. In Proc. 23rd SODA, pages

869–886, 2012.
[37] M. Menz, J. Wang, and J. Xie. Discrete all-pay bidding games. CoRR, abs/1504.02799, 2015.
[38] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the model-checking

problem. ACM Trans. Comput. Log., 15(4):34:1–34:47, 2014.
[39] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge University

Press, 2007.
[40] Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-War and the Infinity Laplacian, pages 595–638.

Springer New York, 2011.
[41] Y. Peres, O. Schramm, S. Sheffield, and D. Bruce Wilson. Random-turn hex and other selection games. The

American Mathematical Monthly, 114(5):373–387, 2007.
[42] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages 179–190, 1989.
[43] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &

Sons, Inc., New York, NY, USA, 2005.
[44] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the AMS,

141:1–35, 1969.
[45] D. M. Reeves, B. M. Soule, and T. Kasturi. Yootopia! SIGecom Exchanges, 6(2):1–26, 2007.
[46] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A

wide-area distributed database system. VLDB J., 5(1):48–63, 1996.


	Introduction
	Preliminaries
	Qualitative objectives
	Mean-Payoff Bidding Games
	Constructing an optimal strategy for Min
	Constructing an optimal strategy for Max

	Discussion and Future Directions

