
Submitted to:
SR 2018

c© R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi
This work is licensed under the
Creative Commons Attribution License.

Strategy Logic with Imperfect Information

Raphaël Berthon
École Normale Supérieure de Rennes

Rennes, France
raphael.berthon@ens-rennes.fr

Bastien Maubert
University of Naples “Federico II”

Naples, Italy
bastien.maubert@gmail.com

Aniello Murano
University of Naples “Federico II”

Naples, Italy
murano@na.infn.it

Sasha Rubin
University of Naples “Federico II”

Naples, Italy
sasha.rubin@unina.it

Moshe Vardi
Rice University

Houston, Texas, U.S.A.
vardi@cs.rice.edu

We introduce an extension of Strategy logic for the imperfect-information setting, called SLii, and
study its model-checking problem. As this logic naturally captures multi-player games with imper-
fect information, the problem turns out to be undecidable. We introduce a syntactical class of “hier-
archical instances” for which, intuitively, as one goes down the syntactic tree of the formula, strategy
quantifications are concerned with finer observations of the model. We prove that model-checking
SLii restricted to hierarchical instances is decidable. This result, because it allows for complex pat-
terns of existential and universal quantification on strategies, greatly generalises previous ones, such
as decidability of multi-player games with imperfect information and hierarchical observations, and
decidability of distributed synthesis for hierarchical systems.

1 Introduction

Logics for strategic reasoning are a powerful tool for expressing correctness properties of multi-player
graph-games, which in turn are natural models for reactive systems and discrete event systems. In par-
ticular, ATL∗ and its related logics were introduced to capture the realisability/synthesis problem for
open systems with multiple components. These logics were designed as extensions of branching-time
logics such as CTL∗ that allow one to write alternating properties directly in the syntax, i.e., statements
of the form “there exist strategies, one for each player in A, such that for all strategies of the remaining
players, the resulting play satisfies ϕ”. Strategy logic (SL) [26] generalises these by treating strategies
as first-order objects x that can be quantified 〈〈x〉〉 (read “there exists a strategy x”) and bound to play-
ers (a,x) (read “player a uses strategy x”). This syntax has flexibility very similar to first-order logic,
and thus allows one to directly express many solution concepts from game-theory, e.g., the SL formula
〈〈x1〉〉〈〈x2〉〉(a1,x1)(a2,x2)∧i=1,2 [〈〈yi〉〉(ai,yi)goali]→ goali expresses the existence of a Nash equilibrium
in a two-player game (with individual Boolean objectives).

An essential property of realistic multi-player games is that players only have a limited view of
the state of the system. This is captured by introducing partial-observability into the models, i.e.,
equivalence-relations o (called observations) over the state space that specify indistinguishable states.
In the formal-methods literature it is typical to associate observations to players. In this paper, instead,
we associate observations to strategies. Concretely, we introduce an extension SLii of SL that annotates
the strategy quantifier 〈〈x〉〉 by an observation o, written 〈〈x〉〉o. Thus, both the model and the formulas
mention observations o. This novelty allows one to express, in the logic, that a player’s observation
changes over time.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Strategy Logic with Imperfect Information

Our logic SLii is very powerful: it extends SL and the imperfect-information strategic logics ATL∗i,R [5]
and ATL∗sc,i [23]. A canonical specification in multi-player games of partial observation is that the play-
ers, say a1, . . . ,an, can form a coalition and beat the environment player, say b. This can be expressed
in SLii as ΦSYNTH := 〈〈x1〉〉o1 . . .〈〈xn〉〉on [[y]]o(a1,x1) . . .(an,xn)(b,y)ϕ , where ϕ is quantifier- and binding-
free. Also, SLii can express more complicated specifications by alternating quantifiers, binding the same
strategy to different agents and rebinding (these are inherited from SL), as well as changing observations.

The complexity of SLii is also visible from an algorithmic point of view. Its satisfiability problem is
undecidable (this is already true of SL), and its model-checking problem is undecidable (this is already
true of ATL∗i,R, even for the single formula 〈{a,b}〉Fp [8]). In fact, similar undecidability occurs in
foundational work in multi-player games of partial observation, and in distributed synthesis [31, 29].
Since then, the formal-methods community has spent much effort finding restrictions and variations that
ensure decidability [17, 28, 12, 30, 32, 7, 3, 2, 4]. The common thread in these approaches is that the
players’ observations (or what they can deduce from their observations) are hierarchical.

Motivated by the problem of finding decidable extensions of strategy logic in the imperfect-information
setting, we introduce a syntactic class of “hierarchical instances” of SLii, i.e., formula/model pairs, and
prove that the model-checking problem on this class of instances is decidable. Intuitively, an instance
of SLii is hierarchical if, as one goes down the syntactic tree of the formula, the observations annotating
strategy quantifications can only become finer. Although the class of hierarchical instances refers not
only to the syntax of the logic but also to the model, the class is syntactical in the sense that it depends
only on the structure of the formula and the observations in the model.

The class of hierarchical instances generalises some existing approaches and supplies new classes of
systems and properties that can be model-checked. For instance, suppose that there is a total order �
among the players such that a � b implies player b’s observation is finer than player a’s observation —
such games are said to yield “hierarchical observation” in [4]. In such games it is known that synthesis
for ω-regular specifications is decidable [28, 4]). This corresponds to hierarchical instances of SLii in
which the observations form a total order in the model and the formula is of the form ΦSYNTH above. On
the other hand, in hierarchical instances of SLii, the ordering on observations can be a pre partial-order,
and one can arbitrarily alternate quantifiers in the formulas. For instance, hierarchical instances allow
one to decide if a game that yields hierarchical information has a Nash equilibrium.

As a tool to study SLii we introduce QCTL∗ii, an extension to the imperfect-information setting of
QCTL∗ [21], itself an extension of CTL∗ by second-order quantifiers over atoms. This is a low-level
logic that does not mention strategies and into which one can effectively compile instances of SLii. States
of the models of the logic QCTL∗ii have internal structure, much like the multi-player game structures
from [27] and distributed systems [16]. Model-checking QCTL∗ii is also undecidable (indeed, we show
how to reduce from the MSO-theory of the binary tree extended with the equal-length predicate, known
to be undecidable [24]). We introduce the syntactical class QCTL∗i,⊆ of hierarchical formulas as those in
which innermost quantifiers observe more than outermost quantifiers, and prove that model-checking is
decidable using an extension of the automata-theoretic approach for branching-time logics (our decision
to base models of QCTL∗ii on local states greatly eases the use of automata). Moreover, the compilation
of SLii into QCTL∗ii preserves being hierarchical, thus establishing our main contribution, i.e., that model
checking the hierarchical instances of SLii is decidable.
Related work. Formal methods for reasoning about reactive systems with multiple components have
been studied mainly in two theoretical frameworks: a) multi-player graph-games of partial-observation [29,
28, 4] and b) synthesis in distributed architectures [31, 17, 12, 32, 15] (the relationship between these
two frameworks is discussed in [4]). All of these works consider the problem of synthesis, which (for
objectives in temporal logics) can be expressed in SLii using the formula ΦSYNTH mentioned above. Lim-

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 3

ited alternation was studied in [7] that, in the language of SLii, considers the model-checking problem
of formulas of the form 〈〈x1〉〉o1 [[x2]]

o2〈〈x3〉〉o3(a1,x1)(a2,x2)(a3,x3)ϕ , where ϕ is an ω-regular objective.
They prove that this is decidable in case player 3 has perfect observation and player 2 observes at least
as much as player 1.

In contrast to all these works, formulas of SLii can express much more complex specifications by
alternating quantifiers, sharing strategies, rebinding, and changing observations.

We are aware of two papers that (like we do) give simultaneous structural constraints on both the
formula and the model that result in decidability: in the context of synthesis in distributed architecture
with process delays, [15] considers CTL∗ specifications that constrain external variables by the input
variables that may effect them in the architecture; and in the context of asynchronous perfect-recall, [30]
considers a syntactical restriction on instances for Quantified µ-Calculus with partial observation (in
contrast, we consider the case of synchronous perfect recall).

The work closest to ours is [13] which introduces a decidable logic CL in which one can encode many
distributed synthesis problems. However, CL is close in spirit to our QCTL∗i,⊆, and is more appropriate as
a tool than as a high-level specification logic like SLii. Furthermore, by means of a natural translation we
derive that CL is strictly included in the hierarchical instances of SLii (Section 2.5). In particular, we find
that hierarchical instances of SLii can express non-observable goals, while CL does not. Non-observable
goals arise naturally in problems in distributed synthesis [31].

Finally, our logic SLii is the first generalisation of SL to include strategies with partial observation
and, unlike CL, to generalise previous logics with partial-observation strategies, i.e., ATL∗i,R [5] and
ATL∗sc,i [23]. A comparison of SLii to SL, ATL∗i,R, ATL∗sc,i and CL is given in Section 2.5.
Outline. The definition of SLii and of hierarchical instances, and the discussion about Nash equilibria,
are in Section 2. The definition of QCTL∗ii and its hierarchical fragment QCTL∗i,⊆ are in Section 3,
together with the decidability result for model checking QCTL∗i,⊆. The translation of SLii into QCTL∗ii,
and the fact that this preserves hierarchy, are in Section 4.

2 SL with imperfect information

In this section we introduce SLii, an extension of SL [26] to the imperfect-information setting with syn-
chronous perfect-recall. Our logic presents two original features: first, observations are not bound to
players (as is done in imperfect information extensions of ATL [1] or logics for reasoning about knowl-
edge [11]), and second, we have syntactic observations in the language, which need to be interpreted.

2.1 Notation

Let Σ be an alphabet. A finite (resp. infinite) word over Σ is an element of Σ∗ (resp. Σω). Words are
written w = w0w1w2 . . ., i.e., indexing begins with 0. The length of a finite word w = w0w1 . . .wn is
|w| := n+ 1, and last(w) := wn is its last letter. Given a finite (resp. infinite) word w and 0 ≤ i ≤ |w|
(resp. i ∈ N), we let wi be the letter at position i in w, w≤i is the prefix of w that ends at position i and
w≥i is the suffix of w that starts at position i. We write w 4 w′ if w is a prefix of w′, and w4 is the set
of finite prefixes of word w. Finally, the domain of a mapping f is written dom(f), and for n ∈ N we let
[n] := {i ∈ N : 1≤ i≤ n}. The literature sometimes refers to “imperfect information” and sometimes to
“partial observation”; we will use the terms interchangeably.

4 Strategy Logic with Imperfect Information

2.2 Syntax

The syntax of SLii is similar to that of strategy logic SL as defined in [26]: the only difference is that we
annotate strategy quantifiers 〈〈x〉〉 by observation symbols o. For the rest of the paper, for convenience
we fix a number of parameters for our logics and models: AP is a finite set of atomic propositions, Ag
is a finite set of agents or players, Var is a finite set of variables and Obs is a finite set of observation
symbols. When we consider model-checking problems, these data are implicitly part of the input.

Definition 1 (SLii Syntax). The syntax of SLii is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕUϕ | 〈〈x〉〉oϕ | (a,x)ϕ

where p ∈ AP, x ∈ Var, o ∈ Obs and a ∈ Ag.

We use abbreviations > := p∨¬p, ⊥:= ¬>, ϕ → ϕ ′ := ¬ϕ ∨ϕ ′, ϕ ↔ ϕ ′ := ϕ → ϕ ′∧ϕ ′→ ϕ for
boolean connectives, Fϕ :=>Uϕ , Gϕ :=¬F¬ϕ for temporal operators, and finally [[x]]oϕ :=¬〈〈x〉〉o¬ϕ .

The notion of free variables and sentences are defined as for SL: A variable x appears free in a formula
ϕ if it appears out of the scope of a strategy quantifier, and a player a appears free in ϕ if a temporal
operator (either X or U) appears in ϕ out of the scope of any binding for player a. We let free(ϕ) be the
set of variables and players that appear free in ϕ . If free(ϕ) is empty, ϕ is a sentence.

2.3 Semantics

The models of SLii are like those of SL, i.e., concurrent game structures, but extended by a finite set of
observations Obs and, for each o ∈ Obs, by an equivalence-relation O(o) over positions that represents
what a player using a strategy with that observation can see. That is, O(o)-equivalent positions are
indistinguishable to a player using a strategy associated with observation o.

Definition 2 (CGSii). A concurrent game structure with imperfect information (or CGSii for short) is a
structure G = (Ac,V,E, `,vι ,O) where Ac is a finite non-empty set of actions, V is a finite non-empty
set of positions, E : V ×AcAg→ V is a transition function, ` : V → 2AP is a labelling function, vι ∈ V
is an initial position, and O : Obs→ 2V×V is an observation interpretation mapping observations to
equivalence relations on positions.

We may write ∼o for O(o), and v ∈ G for v ∈V .
Joint actions. In a position v ∈ V , each player a chooses an action ca ∈ Ac, and the game proceeds to
position E(v,ccc), where ccc ∈AcAg is a joint action (ca)a∈Ag. Given a joint action ccc = (ca)a∈Ag and a ∈Ag,
we let ccca denote ca. For each position v ∈V , `(v) is the set of atomic propositions that hold in v.
Plays and strategies. A finite (resp. infinite) play is a finite (resp. infinite) word ρ = v0 . . .vn (resp.
π = v0v1 . . .) such that v0 = vι and for all i with 0≤ i < |ρ|−1 (resp. i≥ 0), there exists a joint action ccc
such that E(vi,ccc) = vi+1. We let Plays be the set of finite plays. A strategy is a function σ : Plays→ Ac,
and the set of all strategies is denoted Str.
Assignments. An assignment is a function χ : Ag∪Var→ Str, assigning a strategy to each player and
variable. For an assignment χ , player a and strategy σ , χ[a 7→ σ] is the assignment that maps a to σ and
is equal to χ on the rest of its domain, and χ[x 7→ σ] is defined similarly, where x is a variable.
Outcomes. For an assignment χ and a finite play ρ , we let out(χ,ρ) be the only infinite play that starts
with ρ and is then extended by letting players follow the strategies assigned by χ . Formally, out(χ,ρ) :=
ρ · v1v2 . . . where, for all i≥ 0, vi+1 = E(vi,ccc), where v0 = last(ρ) and ccc = (χ(a)(ρ · v1 . . .vi))a∈Ag.
Synchronous perfect recall. In this work we consider players with synchronous perfect recall, meaning
that each player remembers the whole history of a play, a classic assumption in games with imperfect

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 5

information and logics of knowledge and time. Each observation relation is thus extended to finite plays
as follows: ρ ∼o ρ ′ if |ρ| = |ρ ′| and ρi ∼o ρ ′i for every i ∈ {0, . . . , |ρ|− 1}. For o ∈ Obs, an o-strategy
is a strategy σ : V+ → Ac such that σ(ρ) = σ(ρ ′) whenever ρ ∼o ρ ′. The latter constraint captures
the essence of imperfect information, which is that players can base their strategic choices only on the
information available to them. For o ∈ Obs we let Stro be the set of all o-strategies.

Definition 3 (SLii Semantics). The semantics G ,χ,ρ |= ϕ is defined inductively, where ϕ is an SLii-
formula, G = (Ac,V,E, `,vι ,O) is a CGSii, ρ is a finite play, and χ is an assignment:

G ,χ,ρ |= p if p ∈ `(last(ρ))
G ,χ,ρ |= ¬ϕ if G ,χ,ρ 6|= ϕ

G ,χ,ρ |= ϕ ∨ϕ ′ if G ,χ,ρ |= ϕ or G ,χ,ρ |= ϕ ′

G ,χ,ρ |= 〈〈x〉〉oϕ if ∃σ ∈ Stro s.t. G ,χ[x 7→ σ],ρ |= ϕ

G ,χ,ρ |= (a,x)ϕ if G ,χ[a 7→ χ(x)],ρ |= ϕ

and, writing π = out(χ,ρ):

G ,χ,ρ |= Xϕ if G ,χ,π≤|ρ| |= ϕ

G ,χ,ρ |= ϕUϕ ′ if ∃ i≥ 0 s.t. G ,χ,π≤|ρ|+i−1 |= ϕ ′

and ∀ j s.t. 0≤ j < i, G ,χ,π≤|ρ|+ j−1 |= ϕ

Clearly, the satisfaction of a sentence is independent of the assignment. For an SLii sentence ϕ we
thus let G ,ρ |= ϕ if G ,χ,ρ |= ϕ for some assignment χ , and we write G |= ϕ if G ,vι |= ϕ .

2.4 Model checking and hierarchical instances

Model Checking. An SLii-instance is a formula/model pair (Φ,G) where Φ ∈ SLii and G is a CGSii.
The model-checking problem for SLii is the decision problem that, given an SLii-instance (Φ,G), returns
‘yes’ if G |= Φ, and ‘no’ otherwise.

It is well known that deciding the existence of winning strategies in multi-player games with imper-
fect information is undecidable for reachability objectives [27]. Since this problem is easily reduced to
the model-checking problem for SLii, we get the following result:

Theorem 1. The model-checking problem for SLii is undecidable.

Hierarchical instances. We isolate a sub-problem obtained by restricting attention to hierarchical in-
stances. Intuitively, an SLii-instance (Φ,G) is hierarchical if, as one goes down a path in the syntactic
tree of Φ, the observations tied to quantifications become finer.

Definition 4. An SLii-instance (Φ,G) is hierarchical if for all subformulas ϕ1,ϕ2 of Φ of the form ϕ2 =
〈〈x〉〉o2ϕ ′2 and ϕ1 = 〈〈y〉〉o1ϕ ′1 where ϕ1 is a subformula of ϕ ′2, it holds that O(o1)⊆ O(o2).

If O(o1)⊆O(o2) we say that o1 is finer than o2 in G , and that o2 is coarser than o1 in G . Intuitively,
this means that a player with observation o1 observes game G no worse than, i.e., is not less informed, a
player with observation o2.

Example 1 (Security levels). We illustrate hierarchical instances in a “security levels” scenario, where
higher levels have access to more data. Assume that the CGSii G has O(o3) ⊆ O(o2) ⊆ O(o1) (level
3 is the highest security clearance, level 1 is the lowest). Let ϕ = (a1,x1)(a2,x2)(a3,x3)Gp. The SLii
formula Φ := 〈〈x1〉〉o1 [[x2]]

o2〈〈x3〉〉o3ϕ and G together form a hierarchical instance. It expresses that
player a1 (with lowest clearance) can collude with player a3 (with highest clearance) to ensure a safety
property p, even in the presence of an adversary a2 (with intermediate clearance), as long as the strategy

6 Strategy Logic with Imperfect Information

used by a3 can depend on the strategy used by a2. On the other hand, formula 〈〈x1〉〉o1〈〈x3〉〉o3 [[x2]]
o2ϕ ,

which is similar to Φ except that the strategy used by a3 cannot depend on the adversarial strategy used
by a2, does not form a hierarchical instance with G .

Here is the main contribution of this paper:

Theorem 2. The model-checking problem for SLii on the class of hierarchical instances is decidable.

This is proved in Section 4 by reducing it to the model-checking problem of the hierarchical fragment
of a logic called QCTL∗ii, which we introduce, and prove decidable, in Section 3. We now give an
important corollary of Theorem 2.

A Nash equilibrium in a game is a tuple of strategies such that no player has the incentive to deviate.
Assuming that Ag = {ai : i∈ [n]} and goals are written in SLii, say goali for i∈ [n], the following formula
of SLii expresses the existence of a Nash equilibrium:

ΦNE :=〈〈x1〉〉o1 . . .〈〈xn〉〉on(a1,x1) . . .(an,xn)ΨNE

where ΨNE :=
∧

i∈[n] [(〈〈yi〉〉oi(ai,yi)goali)→ goali].
A CGSii G is said to yield hierarchical observation [4] if the “finer-than” relation is a total ordering,

i.e., if for all o,o′ ∈Obs, either O(o)⊆O(o′) or O(o′)⊆O(o). Note that even if G yields hierarchical in-
formation, the instance (ΦNE,G) is not hierarchical (unless O(oi) = O(o j) for all i, j ∈ [n]). Nonetheless,
we can decide if a game that yields hierarchical observation has a Nash equilibrium:

Corollary 3. Given a CGSii that yields hierarchical observation, whether G |= ΦNE is decidable.

Proof. The idea is that in a one-player game of partial-observation (such a game occurs when all but
one player have fixed their strategies, as in the definition of Nash equilibrium), the player has a strategy
enforcing some goal iff the player has a uniform strategy enforcing that goal. Here are the details.
Let G = (Ac,V,E, `,vι ,O) be a CGSii that yields hierarchical observation. Suppose the observation
set is Obs. To decide if G |= ΦNE first build a new CGSii G ′ = (Ac,V,E, `,vι ,O′) over observations
Obs′ := Obs∪{op} such that O′(o) = O(o) and O′(op) = {(v,v) : v ∈V}, and consider the sentence

Φ
′ :=〈〈x1〉〉o1 . . .〈〈xn〉〉on(a1,x1) . . .(an,xn)Ψ

′

where Ψ′ :=
∧

i∈[n] [(〈〈yi〉〉op(ai,yi)goali)→ goali].
Then (Φ′,G ′) is a hierarchical instance, and by Theorem 2 we can decide G ′ |= Φ′. We claim that

G ′ |= Φ′ iff G |= ΦNE. To see this, it is enough to establish that:

G ′,χ,vι |= 〈〈yi〉〉op(ai,yi)goali↔ 〈〈yi〉〉oi(ai,yi)goali,

for every i ∈ [n] and every assignment χ such that χ(xi) = χ(ai) is an oi-uniform strategy.
To this end, fix i and χ . The right-to-left implication is immediate (since op is finer than oi). For the

converse, let σ be a p-uniform strategy (i.e., perfect-information) such that G ′,χ[yi 7→ σ ,ai 7→ σ],vι |=
goali. Let π := out(χ[yi 7→ σ ,ai 7→ σ],vι). Construct an oi-uniform strategy σ ′ that agrees with σ on
prefixes of π . This can be done as follows: if ρ ∼oi π≤ j for some j then define σ ′(ρ) = σ(π≤ j) (note
that this is well-defined since if there is some such j then it is unique), and otherwise define σ ′(ρ) = a
for some fixed action a ∈ Ac.

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 7

2.5 Comparison with other logics

The main difference between SL and ATL-like strategic logics is that in the latter a strategy is always
bound to some player, while in the former bindings and quantifications are separated. This separation
adds expressive power, e.g., one can bind the same strategy to different players. Extending ATL with
imperfect-information is done by giving each player an indistinguishability relation that its strategies
must respect [5]. Our extension of SL by imperfect information, instead, assigns each strategy x an
indistinguishability relation o when it is quantified 〈〈x〉〉o. Thus 〈〈x〉〉oϕ means “there exists a strategy
with observation o such that ϕ holds”. Associating observations in this way, i.e., to strategies rather
than players has two consequences. First, it is a clean generalisation of SL in the perfect information
setting [26]. Define the perfect-information fragment of SLii to be the logic SLii assuming that Obs = {o}
and O(o) = {(v,v) : v ∈ G } for every CGSii G ; also let us assimilate such structures with classic perfect-
information concurrent game structures (CGS), which are the models of SL. Finally, let tr1 : SL→ SLii be
the trivial translation that annotates each strategy quantifier 〈〈x〉〉 with observation o. The next proposition
says that the perfect-information fragment of SLii is a notational variant of SL.
Proposition 4. For every SL sentence ϕ and every CGS G , it holds that G |= ϕ iff G |= tr1(ϕ).

Second, SLii subsumes imperfect-information extensions of ATL∗ that associate observations to
players. We recall that an ATL∗i,R formula1 〈A〉ψ reads as “there are strategies for players in A such
that ψ holds whatever players in Ag \ A do”. Consider the translation tr2 : ATL∗i,R → SLii that re-
places each subformula of the form 〈A〉ψ , where A = {a1, . . . ,ak} ⊂ Ag is a coalition of players and
Ag \ A = {ak+1, . . . ,an}, with formula 〈〈x1〉〉o1 . . .〈〈xk〉〉ok [[xk+1]]

op . . . [[xn]]
op(a1,x1) . . .(an,xn)ψ

′, where
ψ ′ = tr2(ψ). Also, for every CGSii as considered in the semantics of ATLi, i.e., where each agent is
assigned an equivalence relation on positions (let us refer to such structures as ATL-CGSii), define the
CGSii G ′ by interpreting each oi as the equivalence relation for agent ai in G , and interpreting op as the
identity relation.
Proposition 5. For every ATL∗i,R formula ϕ and ATL-CGSii G , it holds that G |= ϕ iff G ′ |= tr2(ϕ).

Third, SLii also subsumes the imperfect-information extension of ATL∗ with strategy context (see [23]
for the definition of ATL∗sc with partial observation, which we refer to as ATL∗sc,i). The only difference
between ATL∗sc,i and ATL∗i,R is the following: in ATL∗i,R, when a subformula of the form 〈A〉ψ is met, we
quantify existentially on strategies for players in A, and then we consider all possible outcomes obtained
by letting other players behave however they want. Therefore, if any player in Ag \A had previously
been assigned a strategy, it is forgotten. In ATL∗sc,i on the other hand, these strategies are stored in a
strategy context, which is a partial assignment χ , defined for the subset of players currently bound to a
strategy. A strategy context allows one to quantify universally only on strategies of players who are not
in A and who are not already bound to a strategy. It is then easy to define a translation tr3 : ATL∗sc,i→ SLii
by adapting translation tr2 from Proposition 5, with the strategy context as parameter. For an ATL-CGSii
G , the CGSii G ′ is defined as for Proposition 5.
Proposition 6. For every ATL∗sc,i formula ϕ and ATL-CGSii G , it holds that G |= ϕ iff G ′ |= tr3(ϕ).

Fourth, there is a natural and simple translation of instances of the model-checking problem of CL
[13] into the hierarchical instances of SLii. Moreover, the image of this translation consists of instances
of SLii with a very restricted form, i.e., atoms mentioned in the SLii-formula are observable for all obser-
vations of the CGSii, i.e., players know the truth value of all atoms in all positions, for any observation
they are assigned.

1See [5] for the definition of ATL∗i,R, where subscript i refers to “imperfect information” and subscript R to “perfect recall”.
Also, we consider the so-called objective semantics for ATL∗i,R.

8 Strategy Logic with Imperfect Information

Proposition 7. There is an effective translation that, given a CL-instance (S,ϕ) produces a hierarchical
SLii-instance (G ,Φ) such that S |= ϕ iff G |= Φ, and for all atoms p in Φ, observations o ∈ Obs and
positions v,v′ ∈ G , if v∼o v′ then p ∈ `(v)↔ p ∈ `(v′).

To do this, one first translates CL into (hierarchical) QCTL∗ii, the latter is defined in the next section.
This step is a simple reflection of the semantics of CL in that of QCTL∗ii. Then one translates QCTL∗ii into
SLii by a simple adaptation of the translation of QCTL∗ into ATL∗sc [22].

3 QCTL∗ with imperfect information

In this section we introduce an imperfect-information extension of QCTL∗ [33, 10, 18, 19, 14, 21]. In
order to introduce imperfect information, instead of considering equivalence relations between states as
in concurrent game structures, we will enrich Kripke structures by giving internal structure to their states,
i.e., we see states as n-tuples of local states. This way of modelling imperfect information is inspired
from Reif’s multi-player game structures [27] and distributed systems [16], and we find it very suitable
to application of automata techniques, as discussed in Section 3.3.

The syntax of QCTL∗ii is similar to that of QCTL∗, except that we annotate second-order quantifiers
by subsets o⊆ [n]. The idea is that quantifiers annotated by o can only “observe” the local states indexed
by i ∈ o. We define the tree-semantics of QCTL∗ii: this means that we interpret formulas on trees that are
the unfoldings of Kripke structures, which is necessary to capture synchronous perfect recall.

We then define the syntactic class of hierarchical formulas and state that model checking this class
of formulas is decidable.

3.1 QCTL∗ii Syntax

The syntax of QCTL∗ii is very similar to that of QCTL∗: the only difference is that we annotate quantifiers
by a set of indices that defines the “observation” of that quantifier.

Definition 5 (QCTL∗ii Syntax). Fix n ∈ N. The syntax of QCTL∗ii is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ϕ | Eψ | ∃o p.ϕ

ψ := ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ

where p ∈ AP and o⊆ [n].

Formulas of type ϕ are called state formulas, those of type ψ are called path formulas, and QCTL∗ii
consists of all the state formulas defined by the grammar. We use standard abbreviation Aψ := ¬E¬ψ .
We also use ∃p.ϕ as a shorthand for ∃[n]p.ϕ , and we let ∀p.ϕ := ¬∃p.¬ϕ .

Given a QCTL∗ii formula ϕ , we define the set of quantified propositions AP∃(ϕ) ⊆ AP as the set of
atomic propositions p such that ϕ has a subformula of the form ∃o p.ϕ . We also define the set of free
propositions AP f (ϕ)⊆AP as the set of atomic propositions that appear out of the scope of any quantifier
of the form ∃o p. Observe that AP∃(ϕ)∩AP f (ϕ) may not be empty in general, i.e., a proposition may
appear both free and quantified in (different places of) a formula.

3.2 QCTL∗ii tree-semantics

We define the semantics on structures whose states are tuples of local states.

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 9

Local states. Let {Li}i∈[n] denote n∈N disjoint finite sets of local states. For I ⊆ [n], we let LI := ∏i∈I Li

if I 6= /0, and L /0 := {0} where 0 is a special symbol.
Concrete observations. A set o⊆ [n] is called a concrete observation (to distinguish it from observations
o in the definitions of SLii).
Compound Kripke structures. These are Kripke structures where states are from L[n]. A compound
Kripke structure, or CKS, over AP, is a tuple S = (S,R,sι , `) where S ⊆ L[n] is a set of states, R⊆ S×S
is a left-total2 transition relation, sι ∈ S is an initial state, and ` : S→ 2AP is a labelling function.

A path in S is an infinite sequence of states λ = s0s1 . . . such that for all i ∈ N, (si,si+1) ∈ R. For
s ∈ S, we let Paths(s) be the set of all paths that start in s. A finite path is a finite non-empty prefix of a
path. We may write s∈ S for s∈ S. Since we will interpret QCTL∗ii on unfoldings of CKS, we now define
infinite trees.
Trees. Let X be a finite set (typically a set of states). An X-tree τ is a nonempty set of words τ ⊆ X+

such that:

• there exists r ∈ X , called the root of τ , such that each u ∈ τ starts with r (r 4 u);

• if u · x ∈ τ and u 6= ε , then u ∈ τ , and

• if u ∈ τ then there exists x ∈ X such that u · x ∈ τ .

The elements of a tree τ are called nodes. If u ·x ∈ τ , we say that u ·x is a child of u. A path in τ is an
infinite sequence of nodes λ = u0u1 . . . such that for all i ∈N, ui+1 is a child of ui, and Paths(u) is the set
of paths that start in node u. An AP-labelled X-tree, or (AP,X)-tree for short, is a pair t = (τ, `), where
τ is an X-tree called the domain of t and ` : τ → 2AP is a labelling. For a labelled tree t = (τ, `) and an
atomic proposition p ∈ AP, we define the p-projection of t as the labelled tree t ⇓p := (τ, `⇓p), where
for each u ∈ τ , `⇓p (u) := `(u)\{p}. Finally, two labelled trees t = (τ, `) and t ′ = (τ ′, `′) are equivalent
modulo p, written t ≡p t ′, if t⇓p= t ′⇓p (in particular, τ = τ ′).
Quantification and uniformity. In QCTL∗ii the intuitive meaning of ∃o p.ϕ in a tree t is that there is
some equivalent tree t ′ modulo p such that t ′ is o-uniform in p and satisfies ϕ . Intuitively, a tree is
o-uniform in p if it is uniformly labelled by p, i.e., if every two nodes that are indistinguishable when
projected onto the local states indexed by o⊆ [n] agree on their labelling of p.

Definition 6 (o-indistinguishability and o-uniformity in p). Fix o⊆ [n] and I ⊆ [n].

• Two tuples x,x′ ∈ LI are o-indistinguishable, written x≈o x′, if x↓I∩o= x′ ↓I∩o.

• Two words u = u0 . . .ui and u′ = u′0 . . .u
′
j over alphabet LI are o-indistinguishable, written u≈o u′,

if i = j and for all k ∈ {0, . . . , i} we have uk ≈o u′k.

• A tree t is o-uniform in p if for all u,u′ ∈ τ such that u≈o u′, we have p ∈ `(u) iff p ∈ `(u′).

Finally, we inductively define the satisfaction relation |= for the semantics on trees, where t = (τ, `)
is a 2AP-labelled LI-tree, u is a node and λ is a path in τ:

t,u |= p if p ∈ `(u)
t,u |= ¬ϕ if t,u 6|= ϕ

t,u |= ϕ ∨ϕ ′ if t,u |= ϕ or t,u |= ϕ ′

t,u |= Eψ if ∃λ ∈ Paths(u) s.t. t,λ |= ψ

t,u |= ∃o p.ϕ if ∃ t ′ ≡p t s.t. t ′ is o-uniform in p and t ′,u |= ϕ.

2i.e., for all s ∈ S, there exists s′ such that (s,s′) ∈ R.

10 Strategy Logic with Imperfect Information

t,λ |= ϕ if t,λ0 |= ϕ

t,λ |= ¬ψ if t,λ 6|= ψ

t,λ |= ψ ∨ψ ′ if t,λ |= ψ or t,λ |= ψ ′

t,λ |= Xψ if t,λ≥1 |= ψ

t,λ |= ψUψ ′ if ∃ i≥ 0 s.t. t,λ≥i |= ψ ′ and
∀ j s.t. 0≤ j < i, t,λ≥ j |= ψ

We write t |= ϕ for t,r |= ϕ , where r is the root of t.

Example 2. Consider the following CTL formula:

border(p) := AFp∧AG(p→ AXAG¬p).

This formula holds in a labelled tree if and only if each path contains exactly one node labelled with
p. Now, consider the following QCTL∗ii formula:

level(p) := ∃ /0 p.border(p).

For a blind quantifier, two nodes of a tree are indistinguishable if and only if they have same depth.
Therefore, this formula holds on a tree iff the p’s label all and only the nodes at some fixed depth. This
formula can thus be used to capture the equal level predicate on trees. Actually, just as QCTL∗ captures
MSO, one can prove that QCTL∗ii with tree semantics subsumes MSO with equal level [9, 24, 34]. In
Theorem 8 we make use of a similar observation to prove that model-checking QCTL∗ii is undecidable.

Model-checking problem for QCTL∗ii under tree semantics. For the model-checking problem, we
interpret QCTL∗ii on unfoldings of CKSs.
Tree unfoldings tS(s). Let S = (S,R,sι , `) be a compound Kripke structure over AP, and let s ∈ S. The
tree-unfolding of S from s is the (AP,S)-tree tS(s) := (τ, `′), where τ is the set of all finite paths that start
in s, and for every u ∈ τ , `′(u) := `(last(u)). Given a CKS S, a state s ∈ S and a QCTL∗ii formula ϕ , we
write S,s |= ϕ if tS(s) |= ϕ . Write S |= ϕ if tS(sι) |= ϕ .

The model-checking problem for QCTL∗ii is the following decision problem: given an instance (ϕ,S)
where S is a CKS, and ϕ is a QCTL∗ii formula, return ‘Yes’ if S |= ϕ and ‘No’ otherwise.

3.3 Discussion of the definition of QCTL∗ii
Modelling of imperfect information. We model imperfect information by means of local states (rather
than equivalence relations) since this greatly facilitates the use of automata techniques. More precisely, in
our decision procedure for the hierarchical fragment of QCTL∗ii, we make extensive use of an operation
on tree automata called narrowing, which was introduced in [20] to deal with imperfect-information
in the context of distributed synthesis for temporal specifications. Given an automaton A that works
on X ×Y -trees, where X and Y are two finite sets, and assuming that we want to model an operation
performed on trees while observing only the X component of each node, this narrowing operation allows
one to build from A an automaton A ′ that works on X-trees, such that A ′ accepts an X-tree if and
only if A accepts its widening to X ×Y . One can then make this automaton A ′ perform the desired
operation, which will by necessity be performed uniformly with regards to the partial observation, since
the Y component is absent from the input trees.

With our definition of compound Kripke structures, their unfoldings are trees over the Cartesian
product L[n]. To model a quantification ∃o p with observation o ⊆ [n], we can thus use the narrowing

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 11

operation to forget about components Li, for i ∈ [n] \ o. We then use the classic projection of nondeter-
ministic tree automata to perform existential quantification on atomic proposition p. Since the choice of
the p-labelling is made directly on Lo-trees, it is necessarily o-uniform.
Choice of the tree semantics. QCTL∗ is obtained by adding to CTL∗ second-order quantification on
atomic propositions. Several semantics have been considered. The two most studied ones are the struc-
ture semantics, in which formulas are evaluated directly on Kripke structures, and the tree semantics, in
which Kripke structures are first unfolded into infinite trees. Tree semantics thus allows quantifiers to
choose the value of a quantified atomic proposition in each finite path of the model, while in structure
semantics the choice is only made in each state. When QCTL∗ is used to express existence of strategies,
existential quantification on atomic propositions labels the structure with strategic choices; in this kind of
application, structure semantics reflects so-called positional or memoryless strategies, while tree seman-
tics captures perfect-recall or memoryfull strategies. Since in this work we are interested in perfect-recall
strategies, we only consider the tree semantics.

3.4 Model checking QCTL∗ii

We now prove that the model-checking problem for QCTL∗ii under tree semantics is undecidable. This
comes as no surprise since, as we will show, QCTL∗ii can express the existence of winning strategies in
imperfect-information games.

Theorem 8. The model-checking problem for QCTL∗ii under tree-semantics is undecidable.

Proof. Let MSOeq denote the extension of the logic MSO by a binary predicate symbol eq. Formulas of
MSOeq are interpreted on trees, and the semantics of eq(x,y) is that x and y have the same depth in the
tree. There is a translation of MSO-formulas to QCTL∗-formulas that preserves satisfaction [21]. This
translation can be extended to map MSOeq-formulas to QCTL∗ii-formulas using the formula level(·) from
Example 2 to help capture the equal-length predicate. Our result follows since the MSOeq-theory of the
binary tree is undecidable [24].

The main result of this section is the identification of an important decidable fragment of QCTL∗ii.

Definition 7 (Hierarchical formulas). A QCTL∗ii formula ϕ is hierarchical if for all subformulas ϕ1,ϕ2
of the form ϕ1 = ∃o1 p1.ϕ

′
1 and ϕ2 = ∃o2 p2.ϕ

′
2 where ϕ2 is a subformula of ϕ ′1, we have o1 ⊆ o2.

In other words, a formula is hierarchical if innermost propositional quantifiers observe at least as
much as outermost ones. We let QCTL∗i,⊆ be the set of hierarchical QCTL∗ii formulas.

Theorem 9. Model checking QCTL∗i,⊆ under tree semantics is non-elementary decidable.

4 Model checking hierarchical instances of SLii

In this section we establish that the model-checking problem for SLii restricted to the class of hierarchical
instances is decidable (Theorem 2). We build upon the proof in [22] that establishes the decidability of
the model-checking problem for ATL∗sc by reduction to the model-checking problem for QCTL∗. The
main difference is that we use quantifiers on atomic propositions parameterised with observations that
reflect the ones used in the SLii model-checking instance.

Let (Φ,G) be a hierarchical instance of the SLii model-checking problem, where G =(Ac,V,E, `,vι ,O).
We will first show how to define a CKS SG and a bijection ρ 7→ uρ between the set of finite plays ρ start-
ing in a given position v and the set of nodes in tSG (sv).

12 Strategy Logic with Imperfect Information

Then, for every subformula ϕ of Φ and partial function f : Ag ⇀ Var, we will define a QCTL∗ii
formula (ϕ) f (that will also depend on G) such that the following holds:

Proposition 10. Suppose that free(ϕ)∩Ag ⊆ dom(f), and f (a) = x implies χ(a) = χ(x) for all a ∈
dom(f). Then

G ,χ,ρ |= ϕ if and only if tSG (sρ) |= (ϕ) f .

Applying this to the sentence Φ, any assignment χ , and the empty function /0, we get that

G ,χ,vι |= Φ if and only if tSG (svι
) |= (Φ) /0.

Constructing the CKS SG . We define SG so that (indistinguishable) nodes in its tree-unfolding corre-
spond to (indistinguishable) finite plays in G . Let APv := {pv | v ∈ V}, that we assume to be disjoint
from AP, and let APc := {px

c | c ∈ Ac and x ∈ Var} that we assume, again, are disjoint from AP∪APv.
Suppose Obs = {o1, . . . ,on}. For i ∈ [n], define the local states Li := {[v]oi | v ∈V} where [v]o is the

equivalence class of v for relation ∼o. Since we need to know the actual position of the CGSii to define
the dynamics, we also let Ln+1 :=V .

Define the CKS SG := (S,R,sι , `
′) where

• S := {sv | v ∈V} with sv := ([v]o1 , . . . , [v]on ,v) ∈∏i∈[n+1] Li,

• R := {(sv,sv′) | ∃ccc ∈ AcAg s.t. E(v,ccc) = v′} ⊆ S×S,

• sι := svι
, and

• `′(sv) := `(v)∪{pv} ⊆ AP∪APv,

For every finite play ρ = v0 . . .vk, define the node uρ := sv0 . . .svk in tSG (sv0) (which exists, by defini-
tion of SG and of tree unfoldings). Note that the mapping ρ 7→ uρ defines a bijection between the set of
finite plays and the set of nodes in tSG (sι).
Constructing the QCTL∗i,⊆ formulas (ϕ) f . We now describe how to transform an SLii formula ϕ and
a partial function f : Ag ⇀ Var into a QCTL∗ii formula (ϕ) f (that will also depend on G). Suppose
that Ac = {c1, . . . ,cl}, and define (ϕ) f by induction on ϕ . We begin with the simple cases: (p) f := p;
(¬ϕ) f := ¬(ϕ) f ; and (ϕ1∨ϕ2)

f := (ϕ1)
f ∨ (ϕ2)

f .
We continue with the second-order quantifier case:

(〈〈x〉〉oϕ) f := ∃õ px
c1
. . .∃õ px

cl
.ϕstr(x)∧ (ϕ) f

where õi := { j | O(oi)⊆ O(o j)}, and

ϕstr(x) := AG
∨

c∈Ac

(px
c∧

∧
c′ 6=c

¬px
c′).

We describe this formula in words. For each possible action c ∈ Ac, an existential quantification on the
atomic proposition px

c “chooses” for each finite play ρ = v0 . . .vk of G (or, equivalently, for each node
uρ of the tree tSG (sv0)) whether strategy x plays action c in ρ or not. Formula ϕstr(x) ensures that in
each finite play, exactly one action is chosen for strategy x, and thus that atomic propositions px

c indeed
characterise a strategy, call it σx.3

3More precisely, if ϕstr(x) holds in node uρ , it ensures that propositions from APc define a partial strategy, defined on all
nodes of the subtree rooted in uρ . This is enough because SLii can only talk about the future: when evaluating a formula in a
finite play ρ , the definition of strategies on plays that do not start with ρ is irrelevant.

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 13

Moreover, a quantifier with concrete observation õi receives information corresponding to observa-
tion oi (observe that for all i ∈ [n], i ∈ õi) as well as information corresponding to coarser observations.
Note that including all coarser observations does not increase the information accessible to the quantifier:
indeed, one can show that two nodes are {i}-indistinguishable if and only if they are õi-indistinguishable.
However, this definition of õi allows us to obtain hierarchical formulas. Since quantification on proposi-
tions px

c is done uniformly with regards to concrete observation õi, it follows that σx is an oi-strategy.
Here are the remaining cases:

((a,x)ϕ) f := (ϕ) f [a7→x]

(Xϕ1)
f := A

(
ψout(f)→ X(ϕ1)

f)
(ϕ1Uϕ2)

f := A
(
ψout(f)→ (ϕ1)

f U(ϕ2)
f)

where

ψout(f) := G

(∧
v∈V

∧
ccc∈AcAg

(
pv∧

∧
a∈Ag

p f (a)
ccca → XpE(v,ccc)

))
.

The formula ψout(f) is used to select the unique path assuming that every player, say a, follows the
strategy σ f (a). This completes the justification of Proposition 10.
Preserving hierarchy. We show that (Φ) /0 is a hierarchical QCTL∗ii formula. This simply follows from
the fact that Φ is hierarchical in G and that for every two observations oi and o j in Obs such that O(oi)⊆
O(o j), by definition of õk we have that õi ⊆ õ j. This completes the proof of Theorem 2.

5 Outlook

We introduced SLii, a logic for reasoning about strategic behaviour in multi-player games with imperfect
information. The syntax mentions observations, and thus allows one to write formulas that talk about
dynamic observations. We isolated the class of hierarchical formula/model pairs (Φ,G) and proved
that one can decide if G |= Φ. The proof reduces (hierarchical) instances to (hierarchical) formulas
of QCTL∗ii, a low-level logic that we introduced, and that serves as a natural bridge between SLii and
automata constructions.

We believe that QCTL∗ii is of independent interest and deserves study in its own right. Indeed, it
subsumes MSO with equal-level predicate, which is undecidable and of which we know no decidable
fragment that could be used to reason about imperfect information with perfect recall; yet its syntax
and models make it possible to define a natural fragment (the hierarchical fragment) that has a simple
definition, a decidable model-checking problem, and is suited for strategic reasoning.

Since one can alternate quantifiers in SLii, our decidability result goes beyond synthesis. As we
showed, we can use it to decide if a game that yields hierarchical observation has a Nash equilibrium. A
crude but easy analysis of our main decision procedure shows it is non-elementary.

This naturally leads to a number of avenues for future work: define and study the expressive power
and computational complexity of fragments of SLii [25]; adapt the notion of hierarchical instances to
allow for situations in which hierarchies can change infinitely often along a play [4]; and extend the
logic to include epistemic operators for individual and common knowledge, as is done in [6], which are
important for reasoning about distributed systems [11].

14 Strategy Logic with Imperfect Information

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. JACM
49(5), pp. 672–713.

[2] Francesco Belardinelli, Alessio Lomuscio, Aniello Murano & Sasha Rubin (2017): Verification of Multi-
Agent Systems with Imperfect Information and Public Actions. In: AAMAS’17.

[3] Raphaël Berthon, Bastien Maubert & A. Murano (2017): Decidability Results for ATL* with Imperfect Infor-
mation and Perfect Recall. In: AAMAS’17.

[4] Dietmar Berwanger, Anup Basil Mathew & Marie Van den Bogaard (2015): Hierarchical information pat-
terns and distributed strategy synthesis. In: ATVA’15, pp. 378–393.

[5] Nils Bulling & Wojtech Jamroga (2014): Comparing variants of strategic ability: how uncertainty and
memory influence general properties of games. In: AAMAS’14, 28, pp. 474–518.

[6] Petr Cermák, Alessio Lomuscio, Fabio Mogavero & Aniello Murano (2014): MCMAS-SLK: A Model
Checker for the Verification of Strategy Logic Specifications. In: CAV’14, pp. 525–532.

[7] Krishnendu Chatterjee & Laurent Doyen (2014): Games with a Weak Adversary. In: ICALP’14, pp. 110–121.

[8] Catalin Dima & Ferucio Laurentiu Tiplea (2011): Model-checking ATL under Imperfect Information and
Perfect Recall Semantics is Undecidable. CoRR abs/1102.4225.

[9] Calvin C. Elgot & Michael. O. Rabin (1966): Decidability and Undecidability of Extensions of Second (First)
Order Theory of (Generalized) Successor. JSL 31(2), pp. 169–181.

[10] E Allen Emerson & A Prasad Sistla (1984): Deciding branching time logic. In: STOC’84, pp. 14–24.

[11] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning about knowledge. 4,
MIT press Cambridge.

[12] Bernd Finkbeiner & Sven Schewe (2005): Uniform Distributed Synthesis. In: LICS’05, pp. 321–330.

[13] Bernd Finkbeiner & Sven Schewe (2010): Coordination Logic. In: CSL’10, pp. 305–319.

[14] Tim French (2001): Decidability of quantifed propositional branching time logics. In: AJCAI’01, pp. 165–
176.

[15] Paul Gastin, Nathalie Sznajder & Marc Zeitoun (2009): Distributed synthesis for well-connected architec-
tures. FMSD 34(3), pp. 215–237.

[16] Joseph Y Halpern & Moshe Y Vardi (1989): The complexity of reasoning about knowledge and time. I. Lower
bounds. JCSS 38(1), pp. 195–237.

[17] Orna Kupermann & Moshe Y. Vardi (2001): Synthesizing distributed systems. In: LICS’01, pp. 389–398.

[18] Orna Kupferman (1995): Augmenting Branching Temporal Logics with Existential Quantification over
Atomic Propositions. In: CAV’95, pp. 325–338.

[19] Orna Kupferman, P. Madhusudan, P. S. Thiagarajan & Moshe Y. Vardi (2000): Open Systems in Reactive
Environments: Control and Synthesis. In: CONCUR’00, pp. 92–107.

[20] Orna Kupferman & Moshe Y Vardi (1999): Church’s problem revisited. BSL, pp. 245–263.

[21] François Laroussinie & Nicolas Markey (2014): Quantified CTL: Expressiveness and Complexity. LMCS
10(4).

[22] François Laroussinie & Nicolas Markey (2015): Augmenting ATL with strategy contexts. IC 245, pp. 98–123.

[23] François Laroussinie, Nicolas Markey & Arnaud Sangnier (2015): ATLsc with partial observation. In:
GandALF’15, pp. 43–57.

[24] Hans Läuchli & Christian Savioz (1987): Monadic second order definable relations on the binary tree. JSL
52(01), pp. 219–226.

[25] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2012): What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logic. In: CONCUR’12, pp. 193–208.

R. Berthon, B. Maubert, A. Murano, S. Rubin & M. Vardi 15

[26] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2014): Reasoning About Strategies:
On the Model-Checking Problem. TOCL 15(4), pp. 34:1–34:47.

[27] Gary Peterson, John Reif & Salman Azhar (2001): Lower bounds for multiplayer noncooperative games of
incomplete information. CAMWA 41(7), pp. 957–992.

[28] Gary Peterson, John Reif & Salman Azhar (2002): Decision algorithms for multiplayer noncooperative
games of incomplete information. CAMWA 43(1), pp. 179–206.

[29] Gary L. Peterson & John H. Reif (1979): Multiple-Person Alternation. In: SFCS’79, pp. 348–363.
[30] Sophie Pinchinat & Stéphane Riedweg (2005): A decidable class of problems for control under partial

observation. IPL 95(4), pp. 454–460.
[31] Amir Pnueli & Roni Rosner (1990): Distributed reactive systems are hard to synthesize. In: FOCS’90, pp.

746–757.
[32] Sven Schewe & Bernd Finkbeiner (2007): Distributed Synthesis for Alternating-Time Logics. In: ATVA’07,

pp. 268–283.
[33] A.Prasad Sistla (1983): Theoretical Issues in the Design and Cerification of Distributed Systems. Ph.D.

thesis, Harvard University, Cambridge, MA, USA.
[34] Wolfgang Thomas (1992): Infinite Trees and Automaton-Definable Relations over omega-Words. TCS

103(1), pp. 143–159.

	Introduction
	SL with imperfect information
	Notation
	Syntax
	Semantics
	Model checking and hierarchical instances
	Comparison with other logics

	QCTL* with imperfect information
	QCTL*_ii Syntax
	QCTL*_ii tree-semantics
	Discussion of the definition of QCTL*_ii
	Model checking QCTL*_ii

	Model checking hierarchical instances of SL_ii
	Outlook

