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Program synthesis automatically constructs programs from specifications. Strategy Logic is a pow-
erful specification language whose goal is to give theoretical foundations for program synthesis in
a multi-agent setting. One limitation of Strategy Logic is that it is purely qualitative. For instance
it cannot specify quantitative properties of executions such as “every request is quickly granted”,
or quantitative properties of trees such as “most executions of the system terminate”. In this work,
we extend Strategy Logic to include quantitative aspects in a way that can express bounds on “how
quickly” and “how many”. We define Prompt Strategy Logic, which encompasses Prompt LTL (itself
an extension of LTL with a prompt eventuality temporal operator), and we define Bounded-Outcome
Strategy Logic which has a bounded quantifier on paths. We supply a general technique, based on
the study of automata with counters, that solves the model-checking problems for both these logics.

1 Introduction

In order to reason about strategic aspects in distributed systems, temporal logics of programs (such as
LTL [34], CTL [5] and CTL∗ [18]) have been extended with operators expressing the existence of strate-
gies for coalitions of components. Among the most successful proposals are Alternating-time Temporal
Logic (ATL) [3] and, more recently, the more expressive Strategy Logic (SL) [12, 32]. Both logics can
express the existence of strategies for coalitions that ensure some temporal properties against all pos-
sible behaviours of the remaining components. Moreover, if such strategies exist, one can also obtain
witnessing finite-state strategies. As a result, synthesising reactive systems from temporal specifica-
tions [35, 27, 28] can be reduced to model checking such strategic logics.

Although quite expressive, for instance Strategy Logic can express important game-theoretic con-
cepts such as the existence of Nash equilibria, such logics can only express qualitative properties. On the
other hand important properties of distributed systems, such as bounding the maximal number of steps
between an event and its reaction, are quantitative. Parametric extensions of temporal logics have been
introduced to capture such properties.

A simple way to extend temporal operators is to annotate them with constant bounds, e.g., F≤kϕ

says that ϕ holds within k steps where k ∈ N is a constant. However, one may not know such bounds
or care for their exact value when writing the specification (or it may not be practical to compute the
bound). Instead, one may replace the constants by variables N and ask about the possible valuations of
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the variables that make the formula true. For instance, PROMPT-LTL [2, 29] is an extension of LTL with
the operator F≤N where N is a variable. The model-checking problem asks if there exists a valuation
of the variable N such that the formula holds. In order to reason about and synthesise strategies that
ensure such parametric properties, we introduce “Prompt Strategy Logic”, an extension of SL with the
F≤N operator. For instance, the formula ∃s1(a1,s1)∀s2(a2,s2)∃NAGF≤N p expresses that there exists a
strategy for agent a1 such that for all strategies of agent a2 there is a bound N (that can depend on the
strategy for a2) such that in all outcomes the atom p holds at least once every N steps.

Another way to parameterise temporal logics is to bound the number of paths to express, for instance,
how well a linear-time temporal property holds, thus giving a measure of “coverage”. We introduce
“Bounding-Outcome Strategy Logic” which extends Strategy Logic with a bounded outcome quantifier
A≤N which allows one to express that all but N outcomes satisfy some property. For instance, the formula
∃s(a,s)∃NA≤NGFp expresses that there exists a strategy for agent a such that for all but finitely many
outcomes, the atom p holds infinitely often.

The algorithmic contribution of this paper is a solution to the model-checking problem for both these
logics (and their combination), which resorts to the theory of regular cost functions. A cost function is
an equivalence class of mappings from the domain (e.g., infinite words) to N∪{∞} with an equivalence
relation that, intuitively speaking, forgets the precise values and focuses on boundedness [13, 15].

Our results allow us to solve a problem left open in [9] that considers games with two players and
a third player called “nature” (indicating that it is uncontrollable), and asks whether there is a strategy
for player 1 (having very general linear-time objectives) such that for all strategies of player 2, in the
resulting tree (i.e., where nature’s strategy is not fixed), the number of plays in which player 1 does not
achieve her objective is “small”. In particular, in case the linear-time objective is the LTL formula ψ and
“small” is instantiated to mean “finite”, our main result allows one to solve this problem by reducing
to model checking Bounding-outcome Strategy Logic formula ∃s1(a1,s1)∀s2(a2,s2)∃NA≤N¬ψ . In fact
our automata construction can be adapted to deal with all omega-regular objectives.

Related work. Parametric-LTL [2] extends LTL with operators of the form F≤x and G≤x, where x is
a variable. The interpretation of F≤xψ is that ψ holds within x steps, and the interpretation of G≤x is
that ψ holds for at least the next x steps. That paper studies variations on the classic decision problems,
e.g., model checking asks to decide if there is a valuation of the variables x1, · · · ,xk such that the formula
ϕ(x1, · · · ,xk) holds in the given structure. Note that for this problem, the formula is equivalent to one in
which all variables are replaced by a single variable.

Parametric-LTL has been studied in the context of open systems and games. For instance, [36] studies
the problem of synthesising a strategy for an agent with a parametric-LTL objective in a turn-based graph-
game against an adversarial environment. A number of variations are studied, e.g., decide whether there
exists a valuation (resp. for all valuations) of the variables such that there exists a strategy for the agent
that enforces the given parametric-LTL formula.

Promptness in multi-agent systems was first studied in [4], which introduces PROMPT-ATL∗ and
studies its model-checking problem. We remark that the formula of Prompt Strategy Logic mentioned
above is not a formula of PROMPT-ATL∗ because the bound N can depend on the strategy of agent a2,
which is not possible in PROMPT-ATL∗.

Promptness has also been studied in relation with classic infinitary winning conditions in games on
graphs. In bounded parity games, even colours represent requests, odd colours represent grants, and the
objective of the player is to ensure that every request is promptly followed by a larger grant [11, 33] (see
also Example 1). Such winning conditions have been generalised to games with costs in [20, 21], leading
to the construction of efficient algorithms for synthesising controllers with prompt specifications.
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Promptness in automata can be studied using various notions of automata with counters that only
affect the acceptance condition. For instance, a run in a prompt Büchi-automaton is successful if there
is a bound on the time between visits to the Büchi set. The expressive power, the cost of translating
between such automata, and decision problems such as containment have been studied in [1, 11].

The theory of regular cost functions [13, 15] defines automata and logics able to express boundedness
properties in various settings. For instance, the logics PROMPT-LTL, PLTL and kTL are in some precise
sense subsumed by the LTL≤ logic from [25], which extends LTL with a bounded until ϕU≤Nϕ ′ allowing
ϕ not to hold in at most N (possibly nonconsecutive) places before ϕ ′ holds. A decision procedure for
this logic has been given through the compilation into cost automata on words. In this paper, we rely
on several results from the theory of regular cost functions, and develop some new ones for the study of
Prompt Strategy Logic and Bounding-outcome Strategy Logic. A major open problem in the theory of
regular cost functions over infinite trees is the equivalence between general cost automata. To handle the
bounded until operator in branching-time logics one would need to first prove this equivalence, which
has been proved to be beyond our reach today [19]. In this work we rely on a weaker version of this
equivalence for distance automata.

To the best of our knowledge, the only previous works on quantitative extensions of Strategy Logic
consider games with counters and allow for the expression of constraints on their values in formulas.
The model-checking problem for these logics is undecidable, even when restricted to the case of energy
constraints, which can only state that the counters remain above certain thresholds [22]. For the Boolean
Goal fragment of Strategy Logic in the case of one counter, the problem is still open [8, 22]. The present
work thus provides the first decidable quantitative extension of Strategy Logic.
Plan. In Section 2 we recall Branching-time Strategy Logic. We introduce and motivate our two quanti-
tative extensions, PROMPT-SL and BOSL, in Section 3 and Section 4 respectively. In Section 5 we solve
their model-checking problem by introducing the intermediary logic BOUND-QCTL∗ and developing an
automata construction based on automata with counters.

2 Branching-time Strategy Logic

We first recall Branching-time Strategy Logic [24], a variant of Strategy Logic [32]. We fix a number of
parameters: AP is a finite set of atomic propositions, Ag is a finite set of agents or players, Act is a finite
set of actions, and Var is a finite set of strategy variables. The alphabet is Σ = 2AP.
Notations. A finite (resp. infinite) word over Σ is an element of Σ∗ (resp. Σω ). The length of a finite
word w = w0w1 . . .wn is |w|= n+1, and last(w) = wn is its last letter. Given a finite (resp. infinite) word
w and 0≤ i < |w| (resp. i ∈ N), we let wi be the letter at position i in w, w≤i is the prefix of w that ends
at position i and w≥i is the suffix of w that starts at position i. We write w 4 w′ if w is a prefix of w′. The
cardinal of a set S is written Card(S).

2.1 Games

We start with classic notions related to concurrent games on graphs.

Definition 1 (Game) A concurrent game structure (or game for short) is a structure G = (V,v0,∆, `)
where V is the set of vertices, v0 ∈ V is the initial vertex, ∆ : V ×ActAg→ V is the transition function,
and ` : V → Σ is the labelling function.
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Joint actions. In a vertex v ∈ V , each player a ∈ Ag chooses an action c(a) ∈ Act, and the game
proceeds to the vertex ∆(v,c), where c ∈ ActAg stands for the joint action (c(a))a∈Ag. Given a joint
action c = (c(a))a∈Ag and a ∈ Ag, we let c(a) denote c(a).
Plays and strategies. A finite (resp. infinite) play is a finite (resp. infinite) word ρ = v0 . . .vn (resp.
π = v0v1 . . .) such that for every i such that 0≤ i < |ρ|−1 (resp. i≥ 0), there exists a joint action c such
that ∆(vi,c) = vi+1. A strategy is a partial function σ : V+ ⇀ Act mapping each finite play to an action,
and Strat is the set of all strategies.
Assignments. An assignment is a partial function χ : Ag∪Var ⇀ Strat, assigning to each player and
variable in its domain a strategy. For an assignment χ , a player a and a strategy σ , χ[a 7→ σ ] is the
assignment of domain dom(χ)∪ {a} that maps a to σ and is equal to χ on the rest of its domain,
and χ[s 7→ σ ] is defined similarly, where s is a variable; also, χ[a 7→?] is the assignment of domain
dom(χ)\{a}, on which it is equal to χ .
Outcomes. For an assignment χ and a finite play ρ , we let Out(χ,ρ) be the set of infinite plays that
start with ρ and are then extended by letting players follow the strategies assigned by χ . Formally,
Out(χ,ρ) is the set of plays of the form ρ · v1v2 . . . such that for all i≥ 0, there exists c such that for all
a ∈ dom(χ)∩Ag, ca ∈ χ(a)(ρ · v1 . . .vi) and vi+1 = ∆(vi,c), with v0 = last(ρ).

2.2 BSL syntax

The core of Branching-time Strategy Logic, on which we build Prompt Strategy Logic and Bounding-
outcome Strategy Logic, is the full branching-time temporal logic CTL∗. This differs from usual variants
of Strategy Logic which are based on the linear-time temporal logic LTL. The main difference is the
introduction of an outcome quantifier which quantifies on outcomes of the currently fixed strategies.
While in SL temporal operators could only be evaluated in contexts where all agents were assigned a
strategy, this outcome quantifier allows for evaluation of (branching-time) temporal properties on partial
assignments of strategies to agents. We recall Branching-time Strategy Logic, introduced in [24], which
has the same expressive power as SL but allows to express branching-time properties without resorting
to computationally expensive strategy quantifications.

In addition to usual boolean connectives and temporal operators, we have four syntactic constructs:
• strategy quantification: ∃sϕ , which means “there exists a strategy s such that ϕ holds”,

• assigning a strategy to a player: (a,s)ϕ , which is interpreted as “when the agent a plays according
to s, ϕ holds”,

• unbinding a player: (a,?)ϕ , which is interpreted as “ϕ holds after agent a has been unbound from
her strategy, if any”, and

• quantifying over outcomes: Aψ , which reads as “ψ holds in all outcomes of the strategies currently
assigned to agents”.

The difference between BSL and SL lies in the last two constructs. Note that unbinding agents was
irrelevant in linear-time SL, where assignments need to be total to evaluate temporal properties.

Definition 2 (BSL syntax) The set of BSL formulas is the set of state formulas given by the grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | ∃sϕ | (a,s)ϕ | (a,?)ϕ | Aψ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ,

where p ∈ AP,a ∈ Ag and s ∈ Var.

We use classic abbreviations >= p∨¬p, Fψ =>Uψ , Gψ = ¬F¬ψ and ∀sϕ = ¬∃s¬ϕ .
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2.3 BSL semantics

Given a formula ϕ ∈ BSL, an assignment is variable-complete for ϕ if its domain contains all free
strategy variables of ϕ .

Definition 3 (BSL semantics) The semantics of a state formula is defined on a game G, an assignment
χ variable-complete for ϕ , and a finite play ρ . For a path formula ψ , the finite play is replaced with an
infinite play π and an index i ∈ N. The definition is as follows (classic boolean cases are as follows):

G,χ,ρ |= p if p ∈ `(last(ρ))
G,χ,ρ |= ∃sϕ if there exists σ ∈ Strat s.t. G,χ[s 7→ σ ],ρ |= ϕ

G,χ,ρ |= (a,s)ϕ if G,χ[a 7→ χ(s)],ρ |= ϕ

G,χ,ρ |= (a,?)ϕ if G,χ[a 7→?],ρ |= ϕ

G,χ,ρ |= Aψ if for all π ∈ Out(χ,ρ), G,χ,π, |ρ|−1 |= ϕ

G,χ,π, i |= ϕ if G,χ,π≤i |= ϕ

G,χ,π, i |= Xψ if G,χ,π, i+1 |= ψ

G,χ,π, i |= ψUψ ′ if ∃ j ≥ i s.t. G,χ,π, j |= ψ ′ and ∀k s.t. i≤ k < j, G,χ,π,k |= ψ

BSL has the same expressivity as SL, and there are linear translations in both directions [24]. More
precisely, the translation from BSL to SL is linear in the size of the formula times the number of players;
indeed, the outcome quantifier is simulated in SL by a strategy quantification and a binding for each
player who is not currently bound to a strategy. This translation may thus increase the nesting and
alternation depth of strategy quantifiers in the formula, which is known to increase the complexity of the
model-checking problem [12, 32].

3 Prompt Strategy Logic

In this section we introduce PROMPT-SL, an extension of both BSL and PROMPT-LTL.

3.1 PROMPT-SL syntax

The syntax of PROMPT-SL extends that of branching-time strategy logic BSL with two additional con-
structs, where N is a variable over natural numbers:

• a bounded version of the classical “eventually” operator written F≤N , and

• an existential quantification on the values of variable N, written ∃N.

As in PROMPT-LTL, the formula F≤Nψ states that ψ will hold in at most N steps from the present.
For a formula ϕ of PROMPT-SL there is a unique bound variable N: indeed, in the spirit of PROMPT-LTL
where a unique bound must exist for all prompt-eventualities, formulas of our logic cannot use more than
one bound variable. However, in PROMPT-SL, existential quantification on N is part of the syntax, which
allows to freely combine quantification on the (unique) bound variable N with other operators of the
logic. In particular one can express the existence of a unique bound that should work for all strategies,
or instead that the bound may depend on the strategy (see Example 1).

Definition 4 (PROMPT-SL syntax) The syntax of PROMPT-SL formulas is as follows:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | ∃sϕ | (a,s)ϕ | (a,?)ϕ | Aψ | ∃Nϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ | F≤N
ψ
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where p ∈ AP, s ∈ Var, a ∈ Ag and N is a fixed bounding variable. A PROMPT-SL sentence is a state
formula in which every F≤N is in the scope of some ∃N, and F≤N and ∃N always appear positively, i.e.
under an even number of negations.

3.2 PROMPT-SL semantics

We now define the semantics of PROMPT-SL.

Definition 5 (PROMPT-SL semantics) The semantics is defined inductively as follows, where ϕ (resp.
ψ) is a cost-SL state (resp. path) formula, G is a game, χ is an assignment variable-complete for ϕ

(resp. ψ), ρ is a finite play, π an infinite one, i ∈ N is a point in time and n ∈ N is a bound. We only give
the definitions for the new operators, the others are as in Definition 3, with the bound n carrying over.

G,χ,ρ,n |= ∃Nϕ if there exists n′ ∈ N such that G,χ,ρ,n′ |= ϕ

G,χ,π, i,n |= F≤Nψ if there exists j ∈ [i,n] such that G,χ,π, j,n |= ψ.

Example 1 In bounded parity games [11, 33] the odd colours represent requests and even colours rep-
resent grants, and the objective of the player a1 is to ensure against player a2 that every request is
promptly followed by a larger grant. Solving such games can be cast as a model-checking problem of the
PROMPT-SL formula

∃s1(a1,s1)∀s2(a2,s2)∃NAG

[ ∧
c odd

c→ F≤N
∨

d>c even

d

]

on the structure in which every vertex is labelled by its color. The finitary parity condition relaxes the
constraint by only requiring requests that appear infinitely often to be promptly granted, and solving
such games can be reduced to model-checking the PROMPT-SL formula

∃s1(a1,s1)∀s2(a2,s2)∃NAG

[ ∧
c odd

(c∧GFc)→ F≤N
∨

d>c even

d

]
.

Observe that in both definitions, the bound on the delay between requests and grants can depend on the
opponent’s strategy. We could express uniform variants of these objectives by moving the quantification
on the bound ∃N before the quantification on opponent’s strategies ∀s2. Such games are studied in the
context of the theory of regular cost functions [13, 15, 14], and their relationship to the non-uniform
variants has been investigated in [10]. The solution to the model-checking problem for PROMPT-SL that
we present here allows us to solve both types of games, uniform and non-uniform.

4 Bounding-outcomes Strategy Logic

Bounding-outcomes Strategy Logic, or BOSL, is our second quantitative extension of Strategy Logic.

4.1 BOSL syntax

The syntax of BOSL extends that of strategy logic BSL with two additional constructs:

• a bounded version of the outcome quantifier written A≤N ,

• an existential quantification on the values of variable N, written ∃N.
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BOSL can also be seen as PROMPT-SL without the bounded eventually F≤N but with the novel
bounded outcome quantifier A≤N . While formula Aψ states that ψ holds in all outcomes of the current
assignment, A≤Nψ states that ψ holds in all of these outcomes except for at most N of them.

Definition 6 (BOSL syntax) The syntax of BOSL formulas is given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | ∃sϕ | (a,s)ϕ | (a,?)ϕ | Aψ | A≤N
ψ | ∃Nϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ

where p ∈ AP, s ∈ Var, a ∈ Ag and N is a fixed bounding variable. A BOSL sentence is a state-formula
in which every A≤N is in the scope of some ∃N, and where A≤N and ∃N always appear positively, i.e.
under an even number of negations.

4.2 BOSL semantics

Definition 7 (BOSL semantics) We only give the definition for the new operator A≤N , the others are as
in Definition 5.

G,χ,ρ,n |= A≤Nψ if Card({π ∈ Out(ρ,χ) : G,χ,π, |ρ|−1,n 6|= ψ})≤ n

Example 2 In [9] Carayol and Serre consider games with two players and a third player called “na-
ture”. The usual semantics is for nature to be a random player, in which case we are interested in
the probability of satisfying a linear-time objective ψ . More specifically, one can write the following
Strategy Logic formula extended with a probability operator ∃s1(a1,s1)∀s2(a2,s2)P(ψ) = 1, stating that
player 1 has a strategy ensuring to win almost all paths. Paper [9] suggests other formalisations for
the third player, of topological, measure-theoretic, and combinatorial nature, and provides general re-
ductions. For instance, one may fix a constant N and write the formula ∃s1(a1,s1)∀s2(a2,s2)A≤N¬ψ ,
stating that player a1 has a strategy ensuring to win all but N paths. If N is a constant the above question
is solved in [9]. However the latter work leaves open the question of ensuring that player a1 wins all
but a bounded number of paths, which is expressible with the Bounding-outcome Strategy Logic formula
∃s1(a1,s1)∀s2(a2,s2)∃NA≤N¬ψ . In this paper we show that the model-checking problem for Bounding-
outcome Strategy Logic is decidable, thereby giving a solution to this question.

5 Model checking

In this section we solve the model-checking problem for both PROMPT-SL and BOSL with a uniform
approach which, in fact, works also for the combination of the two logics. As done in [31, 6, 7] for various
strategic logics, we go through an adequate extension of QCTL∗, itself an extension of CTL∗ with second-
order quantification. This approach makes automata constructions and their proof of correctness easier
and clearer. In our case we define an extension of QCTL∗ called BOUND-QCTL∗, which contains the
bounded eventually F≤N from PROMPT-LTL and PROMPT-SL, a bounded path quantifier A≤N similar to
the bounded outcome quantifier from BOSL, and the quantifier on bounds ∃N present in both PROMPT-
SL and BOSL. We then recall definitions and results about cost automata, that we use to solve the model-
checking problem for BOUND-QCTL∗. We finally solve the model-checking problem for both PROMPT-
SL and BOSL by reducing them to model checking BOUND-QCTL∗.
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5.1 Bound Quantified QCTL∗

We define Bound Quantified CTL∗, or BOUND-QCTL∗, which extends PROMPT-LTL to the branching-
time setting and adds quantification on atomic propositions. One can also see it as an extension of
Quantified CTL∗ [31] with the bounded eventually operator and a bounded version of the universal path
quantifier. Unlike PROMPT-LTL, but similarly to our PROMPT-SL and BOSL, a quantifier on the bound
variable is also part of the syntax.

5.1.1 BOUND-QCTL∗ syntax

Definition 8 The syntax of BOUND-QCTL∗ is defined by the following grammar:

ϕ = p | ¬ϕ | ϕ ∨ϕ | Aψ | A≤N
ψ | ∃pϕ | ∃Nϕ

ψ = ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ | F≤N
ψ

where p ∈ AP, and N is a fixed bounding variable.

As usual, formulas of type ϕ are called state formulas, those of type ψ are called path formulas,
and QCTL∗ consists of all the state formulas defined by the grammar. We further distinguish between
positive formulas, in which operators F≤N , A≤N and ∃N appear only positively (under an even number of
negations), and negative formulas, in which operators F≤N , A≤N and ∃N appear only negatively (under
an odd number of negations). A BOUND-QCTL∗ sentence is a positive formula such that all operators
F≤N and A≤N in the formula are in the scope of some ∃N.

5.1.2 BOUND-QCTL∗ semantics

BOUND-QCTL∗ formulas are evaluated on (unfoldings of) Kripke structures.

Definition 9 A (finite) Kripke structure is a tuple S = (S,s0,R, `), where S is a finite set of states, s0 ∈ S
is an initial state, R⊆ S×S is a left-total transition relation1, and ` : S→ Σ is a labelling function.

A path in S is a finite word λ over S such that for all i, (λi,λi+1)∈ R. For s∈ S, we let Paths(s)⊆ S+

be the set of all paths that start in s.

Trees. Let S be a finite set of directions and Σ a set of labels. A (Σ,S)-tree (or simply tree) is a pair
t = (τ, `) where ` : τ → Σ is a labelling and τ ⊆ S+ is the domain such that:

• there exists r ∈ S+, called the root of τ , such that each u ∈ τ starts with r, i.e. r 4 u,

• if u · s ∈ τ and u · s 6= r, then u ∈ τ ,

• if u ∈ τ then there exists s ∈ S such that u · s ∈ τ .

The elements of τ are called nodes. If u · s ∈ τ , we say that u · s is a child of u. A branch in t is an infinite
sequence of nodes λ such that for all i, λi+1 is a child of λi, and Branches(t,u) is the set of branches that
start in node u. We let Branches(t) denote the set of branches that start in the root. If S is a singleton, a
tree becomes an infinite word.

Definition 10 The tree unfolding of a Kripke structure S from state s is the tree tS (s) = (Paths(s), `′)
with `′(u) = `(last(u)). We may write tS for tS (s0), the unfolding from the initial state.

1i.e., for all s ∈ S, there exists s′ such that (s,s′) ∈ R.
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Projection, subtrees and regular trees. Given two trees t, t ′ and a proposition p, we write t ≡p t ′ if they
have same domain τ and for all p′ in AP such that p′ 6= p, for all u in τ , we have p′ ∈ `(u) if, and only
if, p′ ∈ `′(u). Given a tree t = (τ, `) and a node u ∈ τ , we define the subtree of t rooted in u as the tree
tu = (τu, `

′) where τu = {v ∈ S+ : u 4 v} and `′ is ` restricted to τu. A tree t is said regular if it is the
unfolding of a finite Kripke structure.

Definition 11 The semantics t,u,n |=ϕ and t,λ ,n |=ψ are defined inductively, where ϕ is a BOUND-QCTL∗

state formula, ψ is a BOUND-QCTL∗ path formula, t = (τ, `) is a tree, u is a node, λ is a branch in t,
and n in N a bound (we omit the inductive cases for classic CTL∗ operators):

t,u,n |= A≤Nψ if Card({λ ∈ Branches(t,u) : t,λ ,n 6|= ψ})≤ n
t,u,n |= ∃pϕ if ∃ t ′ ≡p t such that t ′,u,n |= ϕ

t,u,n |= ∃Nϕ if ∃n′ ∈ N such that t,u,n′ |= ϕ,
t,λ ,n |= F≤Nψ if ∃ j such that 0≤ j ≤ n and t,λ≥ j,n |= ψ

The value JϕKinf(t) (resp. JϕKsup(t)) of a positive (resp. negative) state formula ϕ on a tree t with root
r is defined as JϕKinf(t) = inf{n ∈ N : t,r,n |= ϕ} and JϕKsup(t) = sup{n ∈ N : t,r,n |= ϕ}, with the
usual convention that inf /0 = ω and sup /0 = 0. In case it is not a positive or negative formula, its value is
undefined. We remark that {n ∈ N : t,r,n |= ϕ} is upward (resp. downward) closed if ϕ is positive (resp.
negative). The value of a sentence Φ is always either 0 or ω (sentences are positive formulas in which N
is always quantified), and given a Kripke structure S , we write S |= Φ if JΦKinf(tS ) = 0.

5.2 Regular cost functions

In this section we develop the theory of regular cost functions over trees for distance automata. To this
end we define and study the two dual models of distance and distance-automata for recognising cost
functions [13], referred to as cost automata.

Let E be a set of structures (such as infinite words or trees). We define an equivalence relation ≈ on
functions E → N∪{∞} by f ≈ g if for all X ⊆ E, f (X) is bounded if, and only if, g(X) is bounded. A
cost function over E is an equivalence class of the relation ≈.

In Section 5.2.1 we define cost games whose objectives may refer to a single counter that, in each
step, can be incremented or left unchanged. In Section 5.2.2 we define automata whose semantics are
given using cost games. We introduce distance-automata and their duals distance-automata that compute
functions E → N∪{∞}. In Section 5.2.3 we focus on automata over infinite words and the notion of
history-deterministic automata.

The novel technical contribution of this section is an extension of the classical property of history-
deterministic automata: the original result says that given a history-deterministic automaton over infinite
words, one can simulate it along every branch of a tree. This is the key argument to handle the A
operator in PROMPT-SL. In Section 5.2.4 we extend this result by allowing the automaton to skip a
bounded number of paths, which will allow us to capture the bounded-outcome operator A≤N in BOSL.

5.2.1 Cost games

The semantics of cost automata are given by turn-based two-player games, which are essentially a special
case of the general notion of games given in Section 3.2. We give here a slightly modified definition
better fitting the technical developments. The definition of such games is parameterised by an objective
W ⊆Ωω , where Ω is a finite set of labels.



10 Quantifying Bounds in Strategy Logic

Definition 12 A W -game is given by G = (V,VE ,VA,v0,E,c), where V = VE ]VA is a set of vertices
divided into the vertices VE controlled by Eve and the vertices VA controlled by Adam, v0 ∈V is an initial
vertex, E ⊆V ×V is a left-total transition relation, and c : V →Ω is a labelling function.

A finite (resp. infinite) play is a finite (resp. infinite) word ρ = v0 . . .vn (resp. π = v0v1 . . .) such
that for every i such that 0 ≤ i < |ρ| − 1 (resp. i ≥ 0), (vi,vi+1) ∈ E. A strategy for Eve (resp. for
Adam) is a function σ : V ∗ ·VE → V (resp. σ : V ∗ ·VA → V ) such that for all finite play ρ ∈ V ∗ ·VE

(resp. ρ ∈ V ∗ ·VA), we have (last(ρ),σ(ρ)) ∈ E. Given a strategy σ for Eve and σ ′ for Adam, we let
Outcome(σ ,σ ′) be the unique infinite play that starts in v0 and is consistent with σ and σ ′. We say that
a strategy σ ensures W ⊆ Ωω if for all σ ′, the infinite word obtained by applying c to each position of
the play Outcome(σ ,σ ′) is in W . We say that Eve wins the W -game G if there exists a strategy for her
that ensures W . The same notions apply to Adam.

We now introduce the objectives we will be using.

• Given d ∈ N∗, the parity objective parity ⊆ {1, . . . ,d}ω is the set of infinite words in which the
maximum label appearing infinitely many times is even.

• The distance objective uses the set of labels {ε,i} acting on a counter taking values in the natural
numbers and initialised to 0. The labels ε and i are seen as actions on the counter: the action ε

leaves the counter unchanged and i increments the counter by 1. For n ∈N, the distance objective
distance(n)⊆ {ε,i}ω is the set of infinite words such that the counter is bounded by n.
The regular distance objective fininc⊆ {ε,i}ω is the set of infinite words such that the counter is
incremented finitely many times.

• The co-distance objective uses set of labels {ε,i}, where ε and i have the same interpretation as
in distance(n). For n ∈ N, the objective distance(n) ⊆ {ε,i}ω is the set of infinite words such
that the counter eventually reaches value n.

• The objectives can be combined: parity ∩ distance(n) ⊆ ({1, . . . ,d}×{ε,i})ω is the Cartesian
product of the parity and the distance objective (where a pair of infinite words is assimilated with
the infinite word formed of the pairs of letters at same position).

The following result, proven in [10], relates distance and fininc in the context of games.

Lemma 1 Let G be a finite game. There exists n ∈ N such that Eve wins for parity∩distance(n) iff Eve
wins for parity∩fininc.

5.2.2 Cost automata

We now define non-deterministic automata over (Σ,S)-trees with objective W ⊆Ωω .

Definition 13 A W -automaton is a tuple A = (Q,q0,δ ,c) where Q is a finite set of states, q0 ∈ Q is an
initial state, δ ⊆ Q×Σ×QS is a transition relation, and c : Q→Ω is a labelling function.

To define the semantics of W -automata, we define acceptance games. Given an W -automaton A and
a (Σ,S)-tree t = (τ, `), we define the acceptance W -game GA ,t as follows.

The set of vertices is (Q× τ)∪ (Q× τ×QS). The vertices of the form Q× τ are controlled by Eve,
the others by Adam. The initial vertex is (q0,r), where r is the root of t. The transition relation relates
the vertex (q,u) to (q,u,h) if (q, `(u),h) ∈ δ , and (q,u,h) is related to (h(s),u · s) for every s ∈ S. The
label of a vertex (q,u) is c(q), and the other vertices are not labelled. We say that t is accepted by A if
Eve wins the acceptance W -game GA ,t .
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We now instantiate this definition. The objective parity ∩ distance gives rise to the notion of
distance-automata. A distance-automaton A computes the following function JA Kd over trees:

JA Kd(t) = inf{n ∈ N : t is accepted by A with objective parity∩distance(n)} ,

and it recognises the ≈-equivalence class of the function JA Kd.
Dually, the objective parity∩distance(n) gives rise to distance-automata. A distance-automaton

A computes the function JA Kd over trees defined by

JA Kd(t) = sup
{

n ∈ N : t is accepted by A with objective parity∩distance(n)
}

and recognises the ≈-equivalence class of the function JA Kd.
If A recognises the ≈-equivalence class of the function f : E → (N∪{∞}) we abuse notation and

say that A recognises the function f .
The objective parity gives rise to parity automata. The following lemma follows from the observation

that fininc is an ω-regular objective.
Lemma 2 For every parity∩fininc-automaton one can construct an equivalent parity automaton.

5.2.3 Regular cost functions over words

The definitions of cost-automata can be applied to infinite words, which is the particular case where S
is a singleton. A central notion in the theory of regular cost functions is that of history-deterministic
automata over infinite words. Informally, a non-deterministic automaton is history-deterministic if its
non-determinism can be resolved by a function considering only the input read so far. This notion has
been introduced for ω-automata in [23]. We specialise it here to the case of cost functions, involving a
relaxation on the values allowing for a good interplay with the definition of equivalence for cost functions.

We first introduce the notation Aσ for A a W -automaton and a strategy σ : Σ∗→ δ , where δ is the
transition relation of A : Aσ is a (potentially infinite) deterministic W -automaton (Q×Σ∗,(q0,ε),δσ ,cσ )
where ((q,w),a,(q′,wa)) ∈ δσ just if σ(w) = (q,a,q′), and cσ (q,w) = c(q). The automaton Aσ is infi-
nite but deterministic, as for each situation the strategy σ chooses the transition to follow.

Definition 14 ([13, 16]) We say that a distance-automaton A over infinite words is history-deterministic
if there exists a function α : N→ N such that for every n there exists a strategy σ such that for all words
w we have JA Kd(w)≤ n =⇒ JAσ Kd(w)≤ α(n).

We now explain the usefulness of the notion of history-deterministic automata. The situation is the
following: we consider a language L over infinite words, and we want to construct an automaton for the
language of trees “all branches are in L”. Given a deterministic automaton for L one can easily solve this
problem by constructing an automaton running the deterministic automaton on all branches.

In the quantitative setting we consider here, we have a function f : Σω → N∪{∞} instead of L, and
we wish to construct an automaton computing the function over trees t 7→ sup{ f (λ ) : λ ∈ Branches(t)} .
Unfortunately, distance-automata do not determinise, so the previous approach needs to be refined.
The construction fails for non-deterministic automata, because two branches may have very different
accepting runs even on their shared prefix. The notion of history-deterministic automata yields a solution
to this problem, as stated in the following theorem.

Theorem 3 ([17]) Let A be a history-deterministic distance-automaton over infinite words. One can
construct a distance-automaton recognising the function over trees

t 7→ sup{JA Kd(λ ) : λ ∈ Branches(t)}
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We present an extension of this result where the function can remove a bounded number of paths in
the computation.

Theorem 4 Let A be a history-deterministic distance-automaton over infinite words. One can construct
a distance-automaton recognising the function over trees

t 7→ inf{max(n,sup{JA Kd(λ ) : λ /∈ B}) : B⊆ Branches(t),Card(B)≤ n} .

5.2.4 Regular cost functions over trees

We introduce the notion of nested automata, parameterised by an objective W ⊆ Ωω . They can be seen
as a special form of alternating automata which will be convenient in the technical developments.

Definition 15 A nested W -automaton with k slaves over (Σ,S)-trees consists of a master W-automaton
over (2k,S)-trees, and k slave W-automata over (Σ,S)-trees (Ai)i∈[k].

The transition relation of the master is δ ⊆Q×2k×QS. We describe the modus operandi of a nested
automaton informally. Let t be a tree and u a node in t, labelled with state q. To take the next transition
the master automaton interrogates its slaves: the transition (q,v,h) ∈ δ is allowed if for all i ∈ v, the
subtree tu is accepted by Ai. The formal semantics of nested W -automata can be found in Appendix ??.

Theorem 5 ([14]) Let f be a cost function over regular trees. The following are effectively equivalent:

• there exists a distance-automaton recognising f ,

• there exists a nested distance-automaton recognising f ,

• there exists a distance-automaton recognising f ,

• there exists a nested distance-automaton recognising f .

5.3 Model checking BOUND-QCTL∗

The model-checking problem for BOUND-QCTL∗ is the following: given an instance (Φ,S ) where Φ is
a sentence of BOUND-QCTL∗ and S is a Kripke structure, return ‘Yes’ if S |= Φ and ‘No’ otherwise.
In this section we prove that this problem is decidable by reducing it to the emptiness problem of parity
automata. We will use the following result about distance-automata over infinite words.

Theorem 6 ([25, 26]) For every PROMPT-LTL formula ψ , we can construct a history-deterministic
distance-automaton A such that JA Kd ≈ JψKinf.

Theorem 7 Let Φ be a sentence of BOUND-QCTL∗. We construct a non-deterministic parity automaton
AΦ over (Σ,S)-trees such that for every Kripke structure S over the set of states S, we have S |= Φ if,
and only if, AΦ accepts the unfolding tS .

Proof sketch The idea of the proof is to build for each subformula ϕ of Φ, a distance-automaton
(resp. distance-automaton) Aϕ such that JAϕKd ≈ JϕKinf (resp. JAϕKd ≈ JϕKsup) if ϕ is positive (resp.
negative).

For formulas of the form ϕ = Aψ , one treats ψ as a PROMPT-LTL formula on infinite words with
maximal state subformulas as atoms. By applying Theorem 6 on ψ we get a history-deterministic
distance-automaton Aψ over infinite words such that JAψKd ≈ JψKinf. One then applies Theorem 3 to
Aψ to get a distance-automaton A such that JA Kd(t) = sup

{
JAψKd(λ ) : λ ∈ Branches(t)

}
. A is the
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master of the nested automaton we build; by induction hypothesis one builds a slave distance-automaton
A ′

ϕ for each maximal state subformula ϕ ′ of ϕ , using Theorem 5 when necessary.
For ϕ = A≤Nψ , the construction is the same as for Aψ , except for the construction of the master A ,

in which we replace Theorem 3 by Theorem 4.
For ϕ = ∃N ϕ ′, one builds a distance-automaton for ϕ ′ and uses Lemma 1 together with Lemma 2

to remove the counter and obtain a parity automaton.

The model-checking problems for both PROMPT-SL and BOSL (as well as their combination) can be
easily reduced to that of BOUND-QCTL∗. As a consequence, by Theorem 7 we get:

Theorem 8 The model-checking problem is decidable for PROMPT-SL and BOSL.

6 Conclusion

We introduced two quantitative extensions of Branching-time Strategy Logic (BSL), i.e., PROMPT-SL
that extends BSL with F≤N that limits the range of the eventuality, and BOSL that extends BSL with
A≤N that limits the range of the outcome quantifier. We proved that model checking both these logics is
decidable. To the best of our knowledge these are the first decidable quantitative extensions of SL.

In order to prove our results we used notions from the theory of regular cost functions to develop new
technical insights necessary to address PROMPT-SL and BOSL. Moreover, as an intermediate formalism
between cost automata and logics for strategic reasoning we introduced BOUND-QCTL∗, a quantitative
extension of QCTL∗, and proved its model checking decidable. Using this, it is easy to see that also the
extension of BSL with ∃N and both F≤N and A≤N has a decidable model-checking problem.
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