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Abstract. Logical frameworks allow the specification of deductive systems us-
ing the same logical machinery. Linear logical frameworks have been success-
fully used for the specification of a number of computational, logics and proof
systems. Its success relies on the fact that formulas can be distinguished as linear,
which behave intuitively as resources, and unbounded, which behave intuitionis-
tically. Commutative subexponentials enhance the expressiveness of linear logic
frameworks by allowing the distinction of multiple contexts. These contexts may
behave as multisets of formulas or sets of formulas. Motivated by applications
in distributed systems and in type-logical grammar, we propose a linear logical
framework containing both commutative and non-commutative subexponentials.
Non-commutative subexponentials can be used to specify contexts which behave
as lists, not multisets, of formulas. In addition, motivated by our applications in
type-logical grammar, where the weakenening rule is disallowed, we investigate
the proof theory of formulas that can only contract, but not weaken. In fact, our
contraction is non-local. We demonstrate that under some conditions such formu-
las may be treated as unbounded formulas, which behave intuitionistically.

1 Introduction

Logical frameworks [7, 8, 13, 33, 23] have been proposed to specify deductive systems,
such as proof systems [7, 13, 26, 24, 33], logics [7, 22] and operational semantics [25,
27, 29, 33]. The systems that can be encoded depend on the expressive power of the
logical framework. Linear logical frameworks, based on Linear Logic [6], allow the
encoding of, for example, stateful systems [33, 22]. Logical Frameworks with subexpo-
nentials allow the encoding of, for example, distributed systems [25, 27], authorization
logics [22]. Ordered Logical Frameworks [29] allow the specification of systems whose
behavior respects some order, for example, evaluation strategies.

One key idea [2] of logical frameworks is to distinguish formulas according to the
structural rules (weakening, contraction and exchange rules) that are applicable. For
example, linear logical frameworks distinguish two types of formulas: Unbounded For-
mulas which behave intuitionistically, that is, can be considered as a set of formulas
and Linear Formulas which behave linearly, that is, should be considered as a multi-
set of formulas. Ordered logical frameworks also consider Ordered Formulas which are



non-commutative, that is, can be considered as a list, not multiset, of formulas. This dis-
tinction is reflected in the syntax. Linear logical frameworks have two contexts Θ : Γ,
where Θ is a set of unbounded formulas and Γ a multiset of linear6 formulas. Ordered
linear logic, on the other hand, has three contexts Θ : Γ : ∆ where ∆ is a list of ordered
formulas.

Logical Frameworks with Subexponentials refine Linear Logical Frameworks by
distinguishing different types of unbounded and linear formulas. They work, therefore,
on sequents with multiple contexts. This increased expressiveness allows for the spec-
ification of a greater number of proof systems [26] and distributed systems [27] when
compared to logical frameworks without subexponentials. However, existing logical
frameworks with subexponentials do not allow ordered formulas.

Our main contribution is the logical framework SNILLF which has the following
two innovations:

1. Non-Commutative Subexponentials: SNILLF allows both commutative and non-
commutative subexponentials [10]. This means that SNILLF works not only with
multiple contexts for unbounded and linear formulas, but also multiple ordered con-
texts. As an illustration of the power of this system, we encode a distributed system
where machines have FIFO buffers storing messages received from the network;

2. Proof Search with formulas that can contract, but not weaken: Motivated by
applications in type-logical grammar, where weakening of formulas is not allowed,
SNILLF allows formulas to be marked with subexponentials that can contract, but
not weaken. We classify such formulas as relevant. Relevant formulas lead to com-
plications for proof search because contracting a formula implies that it should be
necessarily used in the proof. Thus the contraction of relevant formulas involves
a “don’t know” non-determinism. This paper investigates the proof theory of rele-
vant formulas. We demonstrate that in some situations it is safe (sound and com-
plete) to consider relevant formulas as unbounded, that is, formulas that can both
weaken and contract. We illustrate the use relevant formulas by using SNILLF in
type-logical grammar applications.

In Section 2, we review the basic proof theory of non-commutative proof systems,
namely Lambek Calculus, and subexponentials. Then in Section 3 we motivate the use
of non-commutatitive subexponentials and relevant formulas with some concrete exam-
ples. Section 4 investigates the proof theory of relevant formulas. The Logical Frame-
work SNILLF is introduced in Section 5 as a focused proof system. We revisit our main
examples in Section 6. Finally, we comment on related and future work in Sections 7
and 8.

2 Lambek Calculus with Subexponentials

While we assume some familiarity with Lambek Calculus [12], we review some of its
proof theory. Its rules are depicted in Figure 1 contaning atomic formulas, the unit con-
stant 1, universal quantifier ∀, and binary connectives: · (product), \ (left division) and

6 Or affine which can be weakened.



F → F I
Γ1, Γ2 → C
Γ1, 1, Γ2 → C

1L
→ 1 1R

Π → G Γ1, F, Γ2 → C
Γ1, F /G, Π, Γ2 → C

/L
Π, F → G
Π → G / F

/R

Γ1, F,G, Γ2 → C
Γ1, F ·G, Γ2 → C

·L
Γ1 → F Γ2 → G
Γ1, Γ2 → F ·G

·R
Π → F Γ1,G, Γ2 → C
Γ1, Π, F \G, Γ2 → C

\L
F, Π → G
Π → F \G

\R

Π → F{e/x}
Π → ∀x.F

∀R
Γ1, F{t/x}, Γ2 → C
Γ1,∀x.F, Γ2 → C

∀L

Fig. 1. Cut-Free Proof System Lambek Proof System. Here {t/x} denotes the capture avoiding
substitution of x by t. Moreover, e is a fresh eigenvariable, that is, not appearing in Π and F.

/ (right division). The formulas in the sequent should be seen as lists, not multisets, of
formulas. For example, the Γ, F1, F2, ∆ −→ G and Γ, F2, F1, ∆ −→ G are not equivalent
in general as there may be a proof for one, but not for the other.

In our previous work [10], we proposed the proof system SNILLΣ (Subexponential
Non-Commutative Intuitionistic Linear Logic)7 which extends propositional Lambek
Calculus with subexponentials. Subexponentials derive from an observation from Lin-
ear Logic [5, 6, 23]. Namely, the linear logic exponentials, !, are non-canonical. That is,
LL allows for an unbounded number of subexponentials, !s, indexed by elements in a
set of indexes s ∈ I.

Formally, SNILLΣ contains all rules in Figure 1. Furthermore, it is parametrized by a
subexponential signature Σ = 〈I,�,W,C,E〉, whereW,C,E ⊆ I and � is a pre-order
over the elements of I upwardly closed with respect toW,C,E, that is, if s1 ∈ W and
s1 � s2, then s2 ∈ W and similar for C,E. SNILLΣ contains the following rules:

– For each s ∈ I, SNILLΣ contains the dereliction and promotion rules:

Γ1, F, Γ2 → G
Γ1, !sF, Γ2 → G

Der
!s1 F1, . . . , !sn Fn −→ F

!s1 F1, . . . , !sn Fn −→ !sF
!s

R, provided, s � si, 1 ≤ i ≤ n

– For each w ∈ W and c ∈ C, SNILLΣ contains the rules:

Γ, ∆ −→ G
Γ, !wF, ∆ −→ G

W
Γ1, !cF, ∆, !cF, Γ2 → G
Γ1, !cF, ∆, Γ2 → G

C1
Γ1, !cF, ∆, !cF, Γ2 → G
Γ1, ∆, !cF, Γ2 → G

C2

– For each e ∈ E, SNILLΣ contains the rules:

Γ1, ∆, !eF, Γ2 → C
Γ1, !eF, ∆, Γ2 → C

E1
Γ1, !eF, ∆, Γ2 → C
Γ1, ∆, !eF, Γ2 → C

E2

Intuitively, the set I specifies the subexponential names, W the subexponentials that
are allowed to weaken, C the subexponentials that allow to contract, and E the subex-
ponentials that allow to exchange.

Notice additionally that contraction is non-local, that is, the contracted formula can
appear anywhere in left hand side of the premise.

In [10], we proved that the propositional fragment of SNILLΣ (with additive connec-
tives), admits cut-elimination. The following extends this result to first-order SNILLΣ .

7 In that paper, the system was called SMALC.



Theorem 1. For any subexponential signature Σ, SNILLΣ admits cut-elimination.

The proof is essentially the same as in [10], since in the interesting cases a formula
of the form ∀x.F is never the active one, and the ∀ rules just permute with the mix rule.

For our applications, we will consider subexponential signatures Σ = 〈I,�,W,C,E〉
with the following restrictions:

W ⊆ E and C ⊆ E

That is, all subexponentials that can be weakened or contracted can also be exchanged.
This restriction on subexponentials will be used to establish conditions for reducing
“don’t know” non-determinism as we describe in Section 4. Moreover, they are enough
to specify our intended applications as described in Section 6.

In the remainder of this paper, we will elide the subexponential signature Σ when-
ever it is clear from the context.

Given the restriction above on subexponential signtures, we can classify formulas
of the form !sF according to the structural rules that are applicable to s:

– Linear Formulas: These formulas are not allowed to be contracted nor weakened,
that is, subexponentials s <W∪ C. Linear subexponentials range over l, l1, l2, . . ..
They can be commutative when l ∈ E or non-commutative otherwise;

– Unbounded Formulas: These formulas can be both weakened and contracted, that
is, subexponentials s ∈ W∩C. Unbounded subexponentials range over u, u1, u2, . . ..
AsW ⊆ E, these formulas are always commutative that is u ∈ E;

– Affine Formulas: These formulas can only be weakened and not contracted, that is,
subexponentials s ∈ W and s < C; Affine subexponentials range over a, a1, a2, . . ..
AsW ⊆ E, these formulas are always commutative that is a ∈ E;

– Relevant Formulas: These formulas cannot be weakened but can be contracted,
that is, subexponentials s ∈ C, s <W. Relevant subexponentials range over r, r1, r2, . . ..
As C ⊆ E, these formulas are always commutative that is r ∈ E.

Logical frameworks have been proposed with unbounded, linear and affine formu-
las, but without relevant formulas. To illustrate the difficulty involving relevant formu-
las, consider the following derivations with an instance of the dot rule and contraction
rules. In the derivation to the left, only the formula !uF is contracted, while in the right
the formula !rH is also contracted.

!uF, !rH, Γ −→ G1 !uF, ∆ −→ G2

!uF, !rH, Γ, !uF, ∆ −→ G1 ·G2
⊗R

!uF, !rH, Γ, ∆ −→ G1 ·G2
C

!uF, !rH, Γ −→ G1 !uF, !rH, ∆ −→ G2

!uF, !rH, Γ, !uF, !rH, ∆ −→ G1 ·G2
⊗R

!uF, !rH, Γ, ∆ −→ G1 ·G2
2 ×C

As unbounded formulas can always be weakened, it is always safe to contract them. If
the contracted formula is needed then it can be used and if it turns out not to be needed,
the unbounded formula can be weakened before applying the initial rule. Thus, a col-
lection of unbounded formulas can be safely treated as a set of formulas. This means
that the non-determinism due to unbounded formulas is a don’t care non-determinism.

The same is not the case for relevant formulas. As these formulas cannot be weak-
ened, provability may depend on whether one contracts a relevant formula or not. For



example, in the derivation to the right, the formula !rH has to be necessarily used in
both premises, while in the derivation to the left, the formula !rH can only be used in
the left premise. This means that the choice of contracting a relevant formula or not
involves a don’t know non-determinism.

3 Examples

We detail two different domain applications for which SNILLF can be applied. The first
is on the specification of distributed systems. The second is on type-logical grammar.

3.1 Distributed Systems Semantics

Computer systems work with data structures which behave as sets, multisets and as
lists. As an example, consider a system with n machines called m1, . . . ,mn. Assume
that each machine has an input FIFO buffer. Whenever a machine receives a message,
it is stored at the beginning of the buffer, and the message at the end of the buffer is
processed first by a machine.

A buffer at machine mi with elements Γi is specified as the list of formulas where
start and end mark the start and end of the list [start, Γi, end]mi. Thus a system with n
machines is specified as the collection of contexts of the form which are associated to
non-commutative subexponentials m1, . . . ,mn, respectively:

[start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

As we describe in detail in Section 6, since these contexts behave as lists, the order of
the elements of the buffers allows to specify the correct FIFO behavior of such buffers.

3.2 Type-Logical Grammar

The Lambek calculus was initially designed by Joachim Lambek [12] as a basic logic
in a framework for describing natural language syntax. The idea of such frameworks
goes back to works of Ajdukiewicz [1] and Bar-Hillel [3]; nowadays formal grammars
of such sort are called type-logical, or categorial grammars.

The idea of a type-logical grammar is simple: the central part of the grammar is the
lexicon, a finite binary correspondence B between words of the language and formulae
of the basic logic (such as Lambek Calculus) . These formulae are also called syntactic
categories, or types. Thus, in this framework the grammar is fully lexicalised, i.e., all
syntactic information is kept in the types associated to words, and one does not need to
formulate “global” syntactic rules like “a sentence is a combination of a noun phrase
and a verb phrase.” The second component of a type-logical grammar is the goal type.
Usually it is a designated variable (primitive type) S (meaning “sentence”).

A sentence w = a1 a2 . . . an is accepted by the grammar, if there exist such formulae
F1, F2, . . . , Fn that aiBFi for 1 ≤ i ≤ n and the sequent F1, F2, . . . , Fn → S is derivable.
The language generated by the grammar is defined as the set of all accepted sentences.

As shown by Pentus [28], grammars based on the Lambek calculus can generate
only context-free languages. It is known, however, that certain natural language struc-
tures are beyond the context-free formalism (as discussed, for example, by Shieber [31]



on Swiss German material). This also served as motivation for extending the Lambek
calculus with extra connectives, in particular, subexponential modalities.

In order to show how a subexponential connective can be useful in type-logical
grammar, let us consider the following series of examples. The syntactic analysis shown
in these examples is due to Morrill and Valentı́n [19]. In our toy grammar for a small
fragment of English we associate the following types to words:

John, Mary B N (noun phrase)
loves, signed B N \ S /N (transitive verb)

girl, paper B CN (common noun)
the B N /CN (article: transforms a common noun into a noun phrase)

without B (N \ S ) \(N \ S ) /GC
reading B GC /N (“reading the paper” is a gerund clause, GC)

that, whom B (CN \CN) /(S / !sN) (dependent clause coordinator)

The simplest example, “John loves Mary,” is justified as a correct sentence (of type
S ) by the following derivation in Lambek calculus:

N → N
N → N S → S

N,N \ S → S
N,N \ S /N,N → S

There are more sophisticated syntactic constructions for which the contraction rule
is used. First consider the following sentence: “John signed the paper without reading
it” (of type S ), supported by the following Lambek derivation:

CN → CN
N → N

GC /N,N → GC N,N \ S , (N \ S ) \(N \ S )→ S
N,N \ S , (N \ S ) \(N \ S ) /GC,GC /N,N → S

N,N \ S /N,N, (N \ S ) \(N \ S ) /GC,GC /N,N → S
N,N \ S /N,N /CN,CN, (N \ S ) \(N \ S ) /GC,GC /N,N → S

Now let us transform this sentence into a dependent clause: “the paper that John
signed without reading” (this phrase should be of type N, noun phrase). Notice that
here we removed not only “the paper,” but also “it,” forming two gaps which should
be filled with the same !sN. This phenomenon is called parasitic extraction and can be
handled using dereliction, exchange and contraction:

N,N \ S /N,N, (N \ S ) \(N \ S ) /GC,GC /N,N → S

N,N \ S /N, !sN, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
Der

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
CL

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → N

Contraction can be used several times, generating examples like “the paper that the
editor of received, but left in the office without reading.”

Finally, the last example shows that weakening should not be allowed. Consider
“the girl whom John loves Mary.” This should not be a legal noun phrase, but can be
derived using weakening:

N,N \ S /N,N → S
N,N \ S /N,N, !sN → S

WL

N,N \ S /N,N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N,N → N



Thus, the subexponential used for type-logical grammar is a relevant one; in other
words, s ∈ E, s ∈ C, s <W.

4 Treating Relevant Formulas as Unbounded Formulas

Given that contraction of relevant formulas involves “don’t know non-determinism”,
during proof search, we would like to postpone (from a bottom-up perspective) as much
as possible the application of contraction of relevant formulas. The following lemma
provides us with insight on which rules are problematic:

Lemma 1. Contraction rules permute over all rules except rules ·R, \L, /L and Der.

For proof search, this means that for rules R other than ·R, \L, /L and Der, it is safe to not
contract relevant formulas. This is because from the lemma above, if there is a proof
where a formula is contracted before the application of R, then there is also a proof
where the formula is contracted after R.

However, the same is not the case for ·R, \L, /L and Der. For example, it is not
possible to permute contraction over \L in the following derivation as the occurrences
of !rF are split among the premises:

Π1, !rF, Π2 −→ F1 Γ1, !rF, Γ2, F2, Γ3 −→ G
Γ1, !rF, Γ2, Π1, !rF, Π2, F1\F2, Γ3 −→ G

\L

Γ1, Γ2, Π1, !rF, Π2, F1\F2, Γ3 −→ G
CL

We analyse the rules ·R, \L, /L and Der individually and investigate how to reduce don’t
know non-determinism.

Consider the following derivation to the left containing an instance of ·R rule where
r is a relevant formula and the relevant formula !rH is moved to the right premise. The
symmetric reasoning applies if !rH is moved to the left premise.

Γ1 → F Γ2, !rH, Γ3 → G
Γ1, Γ2, !rH, Γ3 → F ·G

·R

Γ′1 → F Γ2, !rH, Γ3 → G

Γ′1, Γ2, !rH, Γ3 → F ·G
·R

Γ1, Γ2, !rH, Γ3 → F ·G
n ×CL

As !rH cannot be weakened, it should be necessarily used in the right premise. That
is, it behaves as a linear formula. How about the left premise? Since contraction is not
local, it is possible to contract !rH as many times such that the contracted formulas are
moved to the left premise. This means that during proof search, it is safe to consider the
formula H unbounded in the left premise. If n copies of H are used in the proof of the
left premise, where n ≥ 0, we can contract it as illustrated by the derivation above to
the right where Γ′1 contains the contracted occurrences of the formula !rH.

Similarly, consider the following instance of \L to the left where the relevant formula
!rH is moved to the left premise. A symmetric observation can be carried out for /L.

Π1, !rH, Π2 → F Γ1,G, Γ2 → C
Γ1, Π1, !rH, Π2F \G, Γ2 → C

\L

Π1, !rH, Π2,→ F Γ′1,G, Γ
′
2 → C

Γ′1, Π1, !rH, Π2, F \G, Γ′2 → C
\L

Γ1, Π1, !rH, Π2, F \G, Γ2 → C
n ×CL



As before, since !rH cannot be weakened, it should be necessarily used in the left
premise. That is, it behaves like a linear non-commutative formula. By similar rea-
soning as for ·, we can treat this formula as unbounded in the right premise. Since
contractions are non-local, we can copy !rH so that they are moved to the right premise
as illustrated by the derivation above to the right where Γ′1, Γ

′
2 contain the contracted

occurrences of the formula !rH.
The same reasoning applies for relevant formulas moved to the right premise. It is

safe to consider the formula H as unbounded in the left premise.
The leads to the our first key observation:

Key Observation 1: During proof search, any relevant formula moved to one premise
of ·R, \L, /L can be considered unbounded in the other premise.

Finally, consider the following instance of DerL on a relevant formula:

Γ1,H, Γ2 −→ G
Γ1, !rH, Γ2 −→ G

Der

Applying the same reasoning as above, the formula !rH can be treated as unbounded
as one can make as many copies as needed before the dereliction. This leads to the
following key observation:

Key Observation 2: During proof search, any relevant formula derelicted by Der can
be considered unbounded in its premise.

Example 1. Consider the derivation below left with the relevant formula !rA:

!rA −→ A
Der, I

A′ −→ A · A′ · A
!rA, A \ A′ −→ A · A′ · A

\L
!rA −→ A

Der, I
!rA, A′ −→ A · A′ · A

!rA, A \ A′ −→ A · A′ · A
\L

Following the Key Observation 1 above, as !rA is moved to the left premise, we can treat
!rA as unbounded in the right premise. This is denoted by the formula !rA as shown in
the derivation to the right. We can now prove the right premise using !rA as illustrated
by the derivation Ξ below. (Recall unbounded formulas can be contracted safely):

Ξ =

!rA −→ A
Der, I A′ −→ A′ I

!rA, A′ −→ A′
WL !rA −→ A

Der, I

!rA, A′ −→ A · A′ · A
2 × ·R

Notice that it may seem unsound to weaken !rA in the middle branch. However, as we
can control the number of times !rA is contracted, we can transform this derivation into
a SNILL proof: In particular, we can infer from Ξ that we require two copies of !rA.
Thus the corresponding SNILL proof starts with two contractions:

!rA −→ A
Der, I

!rA, A′, !rA −→ A · A′ · A
!rA, !rA, A \ A′, !rA −→ A · A′ · A

\L

!rA, A \ A′ −→ A · A′ · A
2 ×CL

It remains to construct a proof based on Ξ.



Example 2. Given that we allow non-local contractions, one could expect that Key Ob-
servation 1 would also work for non-commutative relevant subexponentials s such that
s ∈ C and s < E ∪ W. However this is not true in general. Consider the following
derivation where we attempt to use Key Observation 1, that is, where !sA is treated as
an unbounded formula:

!sA −→ A

!sA, A1, A2 −→ A1 · A · A2

!sA, A1 · A2 −→ A1 · A · A2

!sA −→ (A1 · A2 / A1 · A · A2)
!sA −→ A · (A1 · A2 / A1 · A · A2)

In the open premise, it would be tempting to move !sA to the place between A1 and A2
and finish the “proof”. However, the resulting derivation would not correspond to a valid
SNILL proof as it is not possible to contract the original !sA so that it is placed exactly
between A1 and A2. While we conjecture that this could be solved by also recalling
the places where relevant formulas can be contracted, we leave this investigation for
future work. Moreover, such non-commutative relevant formulas are not needed for our
applications here.

5 Focused Proof System for SNILL

Logical frameworks are defined proof theoretically by a focused proof system. This
section introduces the focused proof system SNILLF for SNILL. We prove that SNILLF
is sound and complete with respect to SNILL.

First proposed by Andreoli [2] for Linear Logic, focused proof systems reduce proof
search space by distinguishing rules which have don’t know non-determinism, classified
as positive, from rules which have don’t care non-determinism, classified as negative.
For SNILL, the rules ·R, \L, /L,∀L are positive rules and the rules ·L, \R, /R,∀R are neg-
ative. Formulas of the form F · G and !sF and 1 are classified as positive while the
remaining formulas as negative.

SNILLF sequents are constructed using the following four types of contexts:

– Commutative Contexts (K): A commutative context K maps a commutative
subexponentials s ∈ E to a set of formulas if s ∈ W ∩ C, that is, it is unbounded,
and to a multiset of formula otherwise. Intutively, such a context K denotes the
formulas: K[s1],K[s2], . . . ,K[sn] where {s1, . . . , sn} = E;

– Unrestricted Relevant Context (Ru): An unrestricted context Ru maps relevant
subexponentials r ∈ C and r <W to sets of formulas. Intuitively, this context stores
the relevant formulas which can be treated as unbounded. Using the notation in
Section 4, Ru represents the formulas Ru[r1], . . . ,Ru[rn], where {r1, . . . , rn} is the set
of all relevant subexponentials;

– Subexponential Boxes: [F1, . . . , Fk]s where s < E and F1, . . . , Fk is a list, not
a multiset, of formulas. This box should be interpreted as the list of formulas
!sF1, . . . , !sFk;

– Unmarked Boxes: [F1, . . . , Fk ⇑ G1, . . . ,Gm], where F1, . . . , Fk and G1, . . . ,Gm

are both lists, not multisets, of formulas. This box should be interpreted as the list of
formulas F1, . . . , Fk,G1, . . . ,Gm. When m = 0, we write such box as [F1, . . . , Fk]?.



We use NC and its variants to denote a sequence of boxed formulas (Subexponen-
tial Boxes and Unmarked Boxes). We write NC? whenever all unmarked boxes are
of the form [F1, . . . , Fk]?. We define the set NC[s] = {F | [Γ1, F, Γ2]s ∈ NC}. Also,
if NC1 = [Γ1]s1 · · · [Γ]si and NC2 = [∆]si · · · [Γ]sn , then NC1 · NC2 is defined to be
[Γ1]s1 · · · [Γi, ∆]si · · · [Γn]sn . Empty boxes [·]s, [·]? are always elided. These also act as
identity elements, that is [F1, . . . , Fn]s · []s = [F1, . . . , Fn]s and similarly for unmarked
boxes. Finally, we define the following auxiliary operations on commutative contexts:

K[S] =
⋃

s∈SK[s] (K +s F)[s′] =

{
K[s′] ] {F} if s′ = s
K[s′] otherwise

(K1 ⊗ K2)[s] =

{
K1[s] ] K2[s] if s <W∩C

K1[s] otherwise K ≤s=

{
K[s1] if s � s1
∅ otherwise

(K1 ?K2) |S is true if and only if for all s ∈ S,K1[s] ?K2[s], for ? ∈ {⊂,⊆,=}

Similar operations are also defined (mutatis mutandis) for Unrestricted Relevant Con-
texts (Ru). These operations are similar to the ones proposed in [23] used in the formal-
ization of the side conditions of the rules for proof systems with subexponentials.

The rules for the focused proof system SNILLF for SNILL are depicted in Figure 2.
They contain the following types of sequents:

– Negative: K : Ru : NC1, [∆ ⇑ Γ],NC2 −→ G and K : Ru : NC −→ [⇑ F]. Here
G can be either [⇑ F] or [F]. Moreover, Γ, ∆ are lists of formulas.

– Positive: K : Ru : NC? −→ [⇓ F] and K : Ru : NC?1 [⇓ F] NC?2 −→ [G]s. In the
former, the formula F on the r.h.s. is focused on and the latter on the l.h.s.;

– Decision: K : Ru : NC? −→ [G]: Sequents at the border of negative and positive
phases.

During the negative phase, formulas (∆) to the right of Unmarked Boxes ([Γ ⇑ ∆])
are introduced or moved to the left (Γ) or to other contexts using the Reaction rules
⇑L, ⇑R. Notice the negative rule !ne. There since the formulas ∆ are all not marked with
subexponentials, the rule creates a new box [∆]?.

Once a negative phase ends, that is, all unmarked boxes are of the form [Γ]?, one
should decide in a formula to focus on using one of the Decide Rules. Decide rules
implicitly apply the Dereliction rule whenever applicable. The rules Du,Dnc,Dr choose
a formula marked with a subexponential for which exchange rule applies. Therefore,
one can place F any where in the context. This Dnc which forces the formula F to be
where it is. It also causes the box where the formula is to be split. Finally, notice that if
an unbounded formula is focused on then it is contracted (as in Andreoli’s original sys-
tem). Moreover following Key Observation 2 described Section 4, whenever a relevant
formula is added to the context Ru and is treated as an unbouded formula.

In the positive phase, one can only introduce the formula that is focused on. The
rules \L, /L, ·R implement the Key Observation 1 described in Section 4 . That is, all
relevant formula moved to one premise are added to the Ru context of the other premise
and treated as unbounded formulas in that premise. This is specified by the side condi-
tions of that rule.

For soundness of SNILLF with respect to SNILL, we rely on the transformations
described in Section 4, namely, that is sound to consider relevant formulas as unbounded



Negative Phase

K : Ru : NC1, [∆ ⇑ F1, F2, Γ],NC2 −→ G

K : Ru : NC1, [∆ ⇑ F1 · F2, Γ],NC2 −→ G
·L

K : Ru : NC1, [∆ ⇑ Γ],NC2 −→ G

K : Ru : NC1, [∆ ⇑ 1, Γ],NC2 −→ G
1L

K : Ru : NC [· ⇑ F] −→ [⇑ G]
K : Ru : NC −→ [⇑ G / F]

/R
K : Ru : [· ⇑ F] NC −→ [⇑ G]
K : Ru : NC −→ [⇑ F /G]

\R
K : Ru : NC −→ [⇑ F{x/e}]
K : Ru : NC −→ [⇑ ∀x.F]

∀R

K +e F : Ru : NC1, [∆ ⇑ Γ],NC2 −→ G

K : Ru : NC1, [∆ ⇑ !eF, Γ],NC2 −→ G
!e K : Ru : NC1, [∆]? [F]ne [⇑ Γ],NC2 −→ G

K : Ru : NC1, [∆ ⇑ !neF, Γ],NC2 −→ G
!ne

Positive Phase

K1 : Ru ⊗ R1 : NC?2 −→ [⇓ F] K2 : Ru ⊗ R2 : NC?1 [⇓ G] NC?3 −→ [H]

K1 ⊗ K2 : Ru : NC?1 · NC
?
2 [⇓ F \G] NC?3 −→ [H]

\L

K1 : Ru ⊗ R1 : NC?2 −→ [⇓ G] K2 : Ru ⊗ R2 : NC?1 [⇓ F] NC?3 −→ [H]

K1 ⊗ K2 : Ru : NC?1 [⇓ F /G] NC?2 · NC
?
3 −→ [H]

/L

where R1[r] = K2[r] and R2[r] = K1[r] for all r ∈ C and r <W.

K1 : Ru ⊗ R1 : NC?1 −→ [⇓ F] K2 : Ru ⊗ R2 : NC?2 −→ [⇓ G]

K1 ⊗ K2 : Ru : NC?1 · NC
?
2 −→ [⇓ F ·G]

·R

where R1[r] = K2[r] and R2[r] = K1[r] for all r ∈ C and r <W.

K : Ru : · −→ [⇓ 1]
1R

K : Ru : [⇓ A] −→ [A] I where K[s] = ∅ for all s <W

K : Ru : NC?1 [F{t/x}] NC?2 −→ [H]

K : Ru : NC?1 [⇓ ∀x.F] NC?2 −→ [H]

K ≤s: Ru ≤s: NC? −→ [⇑ F]
K : Ru : NC? −→ [⇓ !sF]

!s
R, if K[x] = ∅ = NC?[x] for all s � x

Decide Rules

K +u F : Ru : NC? [Γ1]s [⇓ F] [Γ2]s NC
?
2 −→ [G]

K +u F : Ru : NC? [Γ1, Γ2]s NC
?
2 −→ [G]

Du
K : Ru : NC? [Γ1]s [⇓ F] [Γ2]s NC

?
2 −→ [G]

K +nc F : Ru : NC? [Γ1, Γ2]s NC
?
2 −→ [G]

Dnc

K : Ru +r F : NC? [Γ1]s [⇓ F] [Γ2]s NC
?
2 −→ [G]

K +r F : Ru : NC? [Γ1, Γ2]s NC
?
2 −→ [G]

Dr

K : Ru : NC? [Γ1]s [⇓ F] [Γ2]s NC
?
2 −→ [G]

K : Ru : NC? [Γ1, F, Γ2]s NC
?
2 −→ [G]

Ds
K : Ru : NC? −→ [⇓ G]
K : Ru : NC? −→ [G]

DR

Reaction Rules

K : Ru : NC? [· ⇑ P] NC?2 −→ [G]

K : Ru : NC? [⇓ P] NC?2 −→ [G]
RL

K : Ru : NC? −→ [⇑ Na]
K : Ru : NC? −→ [⇓ Na]

RR

K : Ru : NC [∆, Pa :⇑ Γ] NC2 −→ G

K : Ru : NC [∆ :⇑ Pa, Γ] NC2 −→ G
⇑L

K : Ru : NC −→ [Pa]
K : Ru : NC −→ [⇑ Pa]

⇑R

Fig. 2. SNILLF: Focused Proof System for SNILL. Here P is a positive formula; Na is a negative
or atomic formula; Pa is a positive or atomic formula; e is a fresh eigenvariable, not appearing in
K ,Ru,NC, F; e ∈ E; ne < E; u ∈ W ∩ C ∩ E; nc < C; r ∈ C and r <W.



in some premises. Given this result, soundness just amounts to erasing the focusing
annotations and replacing contexts by formulas. For completeness of focusing, we use
the modular technique proposed in [14] based on the following permutation lemmas.
Lemma 2 justifies the eager application of negative rules (negative phase). Lemma 3
justifies the preservation of focusing in the positive phase.

Lemma 2. All positive rules permute over all negative rules.

Lemma 3. All positive rules permute over all positive rules.

Theorem 2. Let Σ = 〈I,�,W,C,E〉 be a subexponential signature with C,W ⊆ E.
Let K∅ and Ru

∅
be the empty contexts, that is, K[s] = Ru[s] = ∅ for all s. For any

subexponential signature, the sequent Γ −→ G is provable in SNILLΣ if and only if the
sequent K∅ : Ru

∅
: [· ⇑ Γ] −→ [⇑ G] is provable in SNILLFΣ .

6 Applications

We illustrate the power of SNILLF by revisiting the examples described in Section 3.

6.1 Distributed Systems

Assume a subexponential signature Σ = 〈I,�,W,C,E〉 where I = {u,N,m1, . . . ,mn},
� is the reflexive relation, that is i � j, then i = j, E = {u,N} and C = W = {u}.
Intuitively, we use the subexponential mi to specify machine mi’s buffer, N to specify
the messages sent on the network and u to specify the behavior of the system. Notice
that as there are no relevant formulas Ru is always empty and therefore elided.

A buffer at machine mi with elements Γi is specified as the list of formulas where
start and end mark the start and end of the list [start, Γi, end]mi. Thus a system with n
machines is specified as the collection of formulas:

NC = [start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

For a better presentation, instead of using the context K , we show the formulas in the
sequent explicitly where K[u] = U and K[N] = N :
U : N : NC −→ G
Notice that since buffers are lists of formulas, we use non-commutative subexponen-

tials to specify them. However, messages on the network are not necessarily delivered
in a particular order. Moreover, messages should be consumed exactly once. Therefore,
we use the commutative subexponential N to mark these messages.

We now describe how to specify the transmission of messages between machines.
For our example, assume two collections of messages synmj, ackmj specifying, respec-
tively, a synchronization message from mj and an acknowledgement message to mj.
Whenever a machine mi processes the message synmj, it sends the message ackmj to mj.

The following two clauses specifies this behavior:

Deq(i, j) = !misynmj · !
miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart



Deq(i, j) specifies the processing of synmj sending ackmj to the network and Enq(i, j) the
receival of ackmj.

The correctness of this encoding can be easily visualized using focusing. Consider
two machines 1, 2. The focused derivation introducing Deq = Deq(1, 2) is necessarily
of the following form whereM2 = [start, Γ2, end]m2 and Θ = Deq(1, 2),Enq(1, 2):

Θ : · : [synm2, end]m1 −→ [⇓ !m1synm2 · !
m1end]

Θ : N , ackm2 : [start, Γ1, end]m1 M2 −→ [G]

Θ : N : [start, Γ1]m1, [⇑ !m1end · !N ackm2]M2 −→ [G]
Θ : N : [start, Γ1]m1, [⇓ !m1end · !N ackm2]M2 −→ [G]

Θ : N : [start, Γ1, synm2, end]m1, [⇓ Deq]M2 −→ [G]
Θ : N : [start, Γ1, synm2, end]m1,M2 −→ [G]

Notice that the messages in the network N are necessarily moved to the right
premise, i.e., no message is lost. Otherwise, the introduction of !m1 to the left would
fail since N does not allow weakening and m1 � N. Moreover, notice that Deq can only
be focused on at the location shown above (to the left ofM2). Otherwise, the formula
!m1end would not be provable: if it is focused not adjacent to a end atom then it would
not be provable, and if it is focused to the right of M2, then one could not introduce
!m1. Finally, the message synm2 should necessarily appear at the end m1’s buffer.

A similar exercise can be carried out when focusing on Enq = Enq(1, 2). In this
case, the message ackm2 should be necessarily inN and moreover, an element is added
to the beginning of the buffer of m2. The corresponding derivation is elided.

6.2 Type-Logical Grammar

We return to the sentence “the paper that John signed without reading” described in
Section 3. The focused proof system SNILLF considerably reduces the proof search
space for validating this sentence. Assume just a single relevant subexponential r. The
corresponding focused proof is as follows where Γ = CN, (CN \CN) /(S / !rN), Γ1 and
Γ1 = N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N. Moreover, we write explicitly the ele-
ments of K and Ru as in the previous section.

· : · : [⇓ N] → [N] I

· : · : [Γ1]? → [⇓ S / !rN] · : · : [CN]? [⇓ CN \CN)] → [CN]
· : · : [CN]? [⇓ (CN \CN) /(S / !sN)] [Γ1]? → [CN]

/L

· : · : [Γ]? → [CN]
DL

· : · : [⇓ N \CN] [Γ]? → [N]
/L

· : · : [⇑ N \CN, Γ]→ [N]
7× ⇑L,DL

Continuing the left premise, we obtain the following derivation, we release focus and
apply /R. At this point, the relevant formula !rN is moved to the commutative context:

N : · : [GC /N]→ [GC]

· : N : [N \ S /N]? → [⇓ (N \ S )] · : N : [N]?[⇓ N \ S ]→ [S ]

· : N : [N,N \ S /N]? [⇓ (N \ S ) \(N \ S )]→ [S ]
2 × /L

N : · : [N,N \ S /N]? [⇓ (N \ S ) \(N \ S ) /GC] [GC /N]? → [S ]
N : · : [Γ1]? → [S ]

DL

· : · : [Γ1]? [⇑ !rN]→ [S ]
!r

L

When compared to the derivation in Section 3, focusing reduces proof search in two
different ways. First, the proof follows a “back-chaining” strategy [8]. This means that
one decides on a formula that can immediately prove the goal. For example, decide on



the formula N \GC. Search fails immediately if one decides on other formulas. The
second way is on deciding when to contract the formula !rN. Indeed, in the derivation
above, when the formula N is moved to the left-most branch, it is treated as unbounded
in the remaining two branches. This means that one can freely use it as in the middle
branch or not as in the right branch.

7 Related Work

Logical Frameworks When compared to existing logical frameworks, SNILLF has an
increased expressiveness. When compared to Intuitionistic Linear Logical (ILL) Frame-
works [8, 33], SNILLF also allows ordered and relevant formulas. It also seem pos-
sible to encode Ordered Logical Frameworks [30, 29] in SNILLF. In particular, one
should only consider three subexponentials, one unbounded, one linear (or affine) and
another non-commutative. The resulting system behaves similarly to Ordered Logical
Frameworks. Moreover, ILL frameworks with subexponentials do not consider rele-
vant formulas. It seems possible to apply the ideas here for reducing “don’t know non-
determinism” in the same way as done here. A proof of the focusing completeness
theorem for the ordered logic [29] is detailed in the technical report [32]. We believe
that work could also be extended to prove the completeness of SNILLF.

Finally, as SNILLF is intuitionistic, it cannot be directly compared to classical log-
ical frameworks such as Forum [13] and Classical Linear Logic with Subexponen-
tials [21]. We leave the proposal of a classical version of SNILLF to future work.

Type-Logical Grammar A structural modality closely related to the relevant subexpo-
nential discussed above is used in the CatLog theorem prover and type-logical grammar
parser, which is an ongoing project of Glyn Morrill and his group in Barcelona [17,
18]. The difference of the calculus used in CatLog in comparison to our system is the
use of bracket modalities that introduce controlled non-associativity and also interact
with the relevant subexponential in a non-trivial fashion (see [19] for more details).
Bracket modalities are used to block unwanted derivations like “the girl whom John
loves Mary and Pete loves” or “the paper that John signed the article without reading.”
(Both examples are incorrect from the point of view of English grammar, but accepted
by the grammar discussed above.) As shown by Kanovich et al. [9], the derivability
problem for the Lambek calculus with bracket and subexponential modalities is un-
decidable. There exists, however, a natural decidable fragment, which is actually used
in CatLog. This fragment belongs to the NP class, and CatLog utilises several tech-
niques and heuristics in order to speed-up the parsing procedure. In particular, it uses
count-invariants for pruning proof search [11] (which generalise multiplicative count-
invariants by van Benthem [4]) and focusing for reducing spurious ambiguity. For the
multiplicative-additive fragment focusing for the system used in CatLog is discussed in
detail in [20]; completeness of focusing for the full set of connectives used in CatLog,
including subexponential, is left by Morrill as a topic for further research [18].

There also exist other type-logical grammar frameworks based on different variants
of the Lambek calculus. A notable one is the Grail system developed by Moot [16]



on the basis of Moortgat’s multi-modal extension of the non-associative Lambek cal-
culus [15]. Like the subexponential extension of the Lambek calculus discussed in this
paper, Moortgat’s system uses an indexed family of structural connectives.

8 Conclusions

This paper introduced the logical framework SNILLF which allows for both commuta-
tive and non-commutative subexponentials. We demonstrate the power of SNILLF by
specifying the structural semantics of distributed systems with buffers and specifying
type-logical grammars. For the latter, SNILLF uses commutative relevant formulas, that
is, formulas !sF that can contract, but not weaken. We investigate the proof theory of
such formulas in order to reduce “don’t know non-determinism” involved demonstrat-
ing that under some conditions, these formulas can be treated as unbouded. We believe
that this paper lays the foundations for the development of concrete systems for, e.g.,
type-logical grammars.

We are currently investigating a number of future work directions. We intend to
investigate through prototype implementations the impact of SNILLF for categorial
parsers. Such an implementation will help us investigate possible further uses of subex-
ponentials for capturing other grammatical constructions. From the proof theory, we are
investigating how to reduce the “don’t know non-determism” of non-commutative rel-
evant formulas. We are also investigating classical versions for SNILLF following our
previous work [10].
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