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Abstract. We consider the problem of solving floating-point constraints
obtained from software verification. We present UppSAT — an new im-
plementation of a systematic approximation refinement framework [21]
as an abstract SMT solver. Provided with an approximation and a de-
cision procedure (implemented in an off-the-shelf SMT solver), UppSAT
yields an approximating SMT solver. Additionally, UppSAT includes a
library of predefined approximation components which can be combined
and extended to define new encodings, orderings and solving strategies.
We propose that UppSAT can be used as a sandbox for easy and flexible
exploration of new approximations. To substantiate this, we explore en-
codings of floating-point arithmetic into reduced precision floating-point
arithmetic, real-arithmetic, and fixed-point arithmetic (encoded into the
theory of bit-vectors in practice). In an experimental evaluation we com-
pare the advantages and disadvantages of approximating solvers obtained
by combining various encodings and decision procedures.

1 Introduction

The construction of satisfying assignments of a formula, or showing that no such
assignments exist, is one of the most central tasks in automated reasoning. Al-
though this problem has been addressed extensively in research fields including
constraint programming, and more recently in Satisfiability Modulo Theories
(SMT), there are still constraint languages and background theories where effec-
tive model construction is challenging. Such theories are, in particular, arithmetic
domains such as bit-vectors, nonlinear real arithmetic (or real-closed fields), and
floating-point arithmetic; even when decidable, the high computational complex-
ity of such problems turns model construction into a bottleneck in applications
such as model checking, test-case generation, or hybrid systems analysis.

In several recent papers, the notion of approximation has been proposed
as a means to speed up the construction of (precise) satisfying assignments.
Generally speaking, approximation-based solvers follow a two-tier strategy to
find a satisfying assignment of a formula φ. First, a simplified or approximated
version φ̂ of φ is solved, resulting in an approximate solution m̂ that (hopefully)
lies close to a precise solution. Second, a reconstruction procedure is applied
to check whether m̂ can be turned into a precise solution m of the original



formula φ. If no precise solution m close to m̂ can be found, refinement can be
used to successively obtain better, more precise, approximations.

This high-level approach opens up a large number of design choices, some of
which have been discussed in the literature. The approximations considered have
different properties; for instance, they might be over- or under-approximations
(in which case they are commonly called abstractions), or be non-conservative

and exhibit neither of those properties. The approximated formula φ̂ can be
formulated in the same logic as φ, or in some proxy theory that enables more
efficient reasoning. The reconstruction of m from m̂ can follow various strategies,
including simple re-evaluation, precise constraint solving on partially evaluated
formulas, or randomised optimisation. Refinement can be performed with the
help of approximate assignments m̂, using proofs or unsatisfiable cores, or be in-
dependent of the actual reason for failure. The only requirement is that approx-
imations are improved in such a way that finally a most precise approximation
is reached (a “non-approximation” so to speak), in which case UppSAT will fall
back on a back-end, thus guaranteeing that the final result is correct.

In this paper we focus on the case of (quantifier-free) floating-point arith-
metic (FPA) constraints, a particularly challenging domain that has been stud-
ied extensively in the SMT context over the past few years [4, 13, 20, 19, 14, 21].
To enable uniform exploration of approximation, reconstruction, and refinement
methods, as well as simple prototyping and comparative studies, we present
UppSAT3 as a general framework for building approximating solvers. UppSAT
is implemented in Scala, open-sourced under the GPL license, and allows the
implementation of approximation schemes in a modular and high-level fashion,
such that different components can easily be combined with various back-ends.
At this point, we exclusively focus on satisfiable benchmarks, and note that in
the current version of UppSAT unsatisfiable benchmarks will never be solved
faster than by the chosen back-end. This is because a definite statement about
unsatisfiability can only be made after reaching the most precise approximation,
which means that the back-end has to show unsatisfiability of the original, non-
approximated formula. Techniques for unsatisfiable problems are given in [21].

With the help of the UppSAT framework we explore several ways of approx-
imating SMT reasoning for FPA. The main contributions of this paper are:

– a conceptual framework for defining approximations in a modular way, with
the help of a library of approximation components that can easily be instan-
tiated and combined, and which are implemented in the UppSAT tool.

– detailed definition of three concrete FPA approximations within the Upp-
SAT framework: reduced-precision approximation [21]; fixed-point approxi-
mation; and real arithmetic approximation.

– an extensive experimental evaluation of all three approximations, considering
as back-end solvers the decision procedures available in Z3 [11] and Math-
SAT5 [7]. This evaluation confirms that approximations can significantly
boost the performance of bit-blasting-based FPA solvers, but interestingly
do not help much in combination with the ACDCL solver of MathSAT5.

3 https://github.com/uuverifiers/uppsat/releases/tag/v0.5-alpha
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1.1 Related Work

The SMT solvers MathSAT5 [7], Z3 [11], and Sonolar [17] feature bit-precise
conversions from FPA to bit-vector constraints, known as bit-blasting, and rep-
resent the currently most commonly used solvers in program verification. As
we show in our experiments, the performance of bit-blasting can be boosted
significantly with the help of our approximation approach. An alternative, con-
straint programming-based approach to solve FPA constraints is implemented in
COLIBRI [1]. We became aware of this solver only late and have thus not been
able to make a thorough experimental comparison, but note that it does display
competitive performance. As future work, it would in particular be interesting
to experiment with COLIBRI as a back-end solver in UppSAT.

A general framework for decision procedures is Abstract CDCL, introduced
by D’Silva et al. [12], which was also instantiated for FPA [13, 3]. This approach
relies on the definition of suitable abstract domains (as defined for abstract
interpretation [8]) for constraint propagation and learning.

The work presented in this paper builds on previous research on the use of
approximations for solving FPA constraints [20, 21]. UppSAT is also close in spirit
to the framework presented by Ramachandran and Wahl [19] for efficiently solv-
ing FPA constraints based on the notion of ‘proxy’ theories, which correspond to
our ‘output theories’. This framework applies a sophisticated method of recon-
struction, by applying a fall-back FPA solver to a version of the input constraint
in which all but one variables have been substituted by their value in a failing
candidate model. Such reconstruction could also be realized in UppSAT, and an
implementation in UppSAT is planned as future work.

A further recent approximation-based solver for FPA is XSat [14]. In XSat,
reconstruction of models is implemented with the help of randomized optimiza-
tion, which results in good performance, but does not give rise to a decision
procedure (incorrect sat/unsat results can be produced).

Specific instantiations of abstraction schemes in related areas also include
the bit-vector abstractions by Bryant et al. [6] and Brummayer and Biere [5], as
well as the (mixed) floating-point abstractions by Brillout et al. [4].

There is a long history of formalization and analysis of FPA concerns using
proof assistants, among others in Coq by Melquiond [18] and in HOL Light by
Harrison [15]. Coq has also been integrated with a dedicated FPA prover called
Gappa by Boldo et al. [2], which is based on interval reasoning and forward error
propagation to determine bounds on arithmetic expressions in programs [10].
The ASTRÉE static analyzer [9] features abstract interpretation-based analyses
for FPA overflow and division-by-zero problems in ANSI-C programs.

2 Reduced-Precision FPA by Example

We begin by illustrating key notions of the UppSAT framework using the reduced-
precision floating-point approximation (RPFP). This approximation uses float-
ing-point operations of reduced precision, i.e., with fewer bits for the exponent
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Fig. 1: The approximation refinement algorithm implemented by UppSAT.

and significand. Approximations of this kind have previously been studied in [20,
21], and found to be an effective way to boost the performance of bit-blasting-
based SMT solvers, since the size of FPA circuits tends to grow quickly with the
bit-width. The approximation encodes the same floating-point constraints, but
over smaller floating-point domains, resulting in a smaller propositional formula.

The UppSAT framework implements an abstract approximating SMT solver
with the solving algorithm shown in Fig. 1. The framework relies on a background
solver providing the checkSAT routine, reasoning about approximated formu-
las, while the other (green) boxes have to be implemented in order to specify an
approximation. We showcase these elements using an example on the RPFP ap-
proximation with the following floating-point formula φ over two single-precision
floating-point variables x and y:

y = x+ 1.75 ∧ y ≥ 0 ∧ (x = 2.0 ∨ x = −4.0) (1)

The rounding mode of the addition operation is omitted and assumed to be
RoundTowardZero in this example. The formula can be satisfied by the model
m = {x 7→ 2.08,24, y 7→ 3.758,24}, mapping to single-precision values which use
8 bits to represent the exponent and 24 bits for the significand, denoted FP8,24.

The RPFP approximation initially encodes the formula in the FP3,3 floating-
point format, i.e., the format using 3 bits for the exponent, and 3 bits for the
significand. The approximate formula φ̂3,3 is obtained by replacing the single-
precision variables x and y with re-typed variants x3,3, y3,3, casting all floating-
point literals to the new format, and replacing the addition operator + and
comparison predicates = and ≤ with the operator +3,3 and the predicates =3,3
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and ≥3,3 for reduced-precision arguments (we omit the subscripts for the oper-
ators and predicates for aesthetic reasons, except where relevant):

y3,3 = x3,3 + 1.753,3 ∧ y3,3 ≥ 03,3 ∧ (x3,3 = 2.03,3 ∨ x3,3 = −4.03,3) (2)

Though φ̂3,3 is satisfiable, its models might not be models of the original
formula. The models might satisfy the reduced-precision formula only because
of over/under-flows and rounding errors in the FP3,3 domain, e.g.:

m̂ = {x 7→ 2.0, y 7→ 3.5} (3)

satisfies φ̂3,3 because 2.03,3 + 1.753,3 = 3.53,3 when the rounding mode is
RoundTowardZero.

To determine whether the approximate solution is indeed a solution for the
original formula, we decode the model m̂ into a candidate model m, by cast-
ing the model values from the FP3,3 representation to their FP8,24 represen-
tation. The represented values do not change, but the number of bits used to
represent them does. Model reconstruction checks whether the original con-
straints are satisfied by the decoded model and can even make adjustments to
the model. A näıve model reconstruction strategy would determine that the can-
didate model m based on m̂ does not satisfy formula φ, because 2.0 + 1.75 6= 3.5
in single-precision floating-point arithmetic, and would not attempt to correct
the failed model. Therefore we need to refine the approximation, and a simple
strategy is to increase the precision of every node by the same amount, yielding
for instance (after encoding):

y5,5 = x5,5 + 1.755,5 ∧ y5,5 ≥ 05,5 ∧ (x5,5 = 2.05,5 ∨ x5,5 = −4.05,5) (4)

This formula has sufficient bit-width to avoid rounding errors, and the model:

m̂2 = {x 7→ 2.0, y 7→ 3.75} (5)

which is also a model for the original formula. As a side remark, another pos-
sibility would be to identify that the cause of the imprecision is that the value
y is not correctly represented. Thus it would be necessary only to increase the
precision of y (along with predicates and operators involving y):

y5,5 = x3,3 +5,5 1.753,3 ∧ y5,5 ≥ 03,3 ∧ (x3,3 = 2.03,3 ∨ x3,3 = −4.03,3) (6)

This example shows how the solving proceeds when an approximate solution
is found, depicted by the left cycle in Fig. 1, and exiting with a SAT answer. The
right cycle in Fig. 1 corresponds to the case when the approximation does not
have a model. The satRefine and unsatRefine can implement different refine-
ment strategies, based on models and proofs/unsatisfiable cores, respectively. In
general, the algorithm might take a number of iterations before finding a model
(or concluding that the problem is unsatisfiable).

Theorem 1 (Correctness, paraphrased from [21]). The framework pre-
serves termination, soundness, and completeness of the back-end procedure, pro-
vided that: 1. maximal precision > is reached within a finite amount of steps;
and 2. no approximation takes place at maximal precision.
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Fig. 2: The basic traits necessary to specify an approximation in UppSAT

0 object RPFPApp
1 extends RPFPContext
2 with RPFPCodec
3 with EAAReconstruction
4 with RPFPModelRefinement
5 with RPFPProofRefinement

Fig. 3: RPFP as a Scala object.

0 trait RPFPContext extends AppContext {
1 val inTheory = FPTheory
2 val outTheory = FPTheory
3 type Prec = Int
4 val pOrdering = new IntPOrder (0 ,5)
5 }

Fig. 4: Approximation context for RPFP.

3 Specifying Approximations in UppSAT

In this section we show how to specify approximations in UppSAT, using the
example of the RPFP approximation from Section 2 and [20, 21]. It should be
remarked that one of the design goals of UppSAT is the ability to define ap-
proximations in a convenient, high-level way; the code we show in this section
is mostly identical to the actual implementation in UppSAT, modulo a small
number of simplifications for the purpose of presentation.

Reduced-Precision FPA Approximation in UppSAT An approximation
consist of: an approximation context, a codec, a model reconstruction strategy,
and a refinement strategy for model- and proof-guided refinement. In UppSAT
these components are implemented using several Scala mix-in traits that agree
on the signature of the approximation, represented by the shared AppContext
trait in Fig. 2. The traits are simply combined into an approximation object
which will be used by the UppSAT solver. The Fig. 3 shows the object RPFPApp

implementing the reduced-precision floating-point approximation by combining
instances of the traits shown in Fig. 2 that all extend the RPFPAppContext.
Using traits enables the modular mix-and-match approximation design. In the
following paragraphs, we present the key points of reduced precision floating-
point approximation through its component traits.

Approximation context. An approximation context specifies input and output
theory, a precision domain and a precision ordering. Fig. 4 shows the specifi-
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cation of RPFPContext , the approximation context object for the reduced pre-
cision floating-point (RPFP) approximation, which approximates floating-point
constraints by scaling them down to a smaller floating-point sort, as presented
in Section 2. Therefore, both the input and the output theories are the quantifier-
free theory of FPA (FPTheory ). The precision is associated with each node in
the formula tree and uniformly affects both the exponent and the significand,
so a scalar data type Prec = Int is sufficient to represent precision. In particular,
we choose integers in the range [0, 5] with the usual ordering as the precision
domain, thus yielding a linear sort scaling which consists of 6 sorts, starting
with FP3,3 and scaling up to (and including) the original sort (implemented by
scaleSort in Fig. 5). In general, a precision domain can range over tuples of
any size, but in order to preserve completeness and termination, for the case of
decidable theories, we assume that every precision domain contains a top ele-
ment >, and that precision domains satisfy the ascending chain condition (every
ascending chain is finite) [21].

Codec. The RPFPCodec trait implements the encoding of the formula and the
decoding of the approximate model. UppSAT provides general traits that im-
plement the encode and decode methods using a post-order visitor pattern over
formulas ( PostOrderCodec ). This allows the codec to be implemented by im-
plementing the two hook functions that work over nodes in the formula tree.

The function encodeNode , shown in Fig. 5 shows how the approximation
scales-down the sort of floating-point variables and operations, while keeping
the high-level structure of the formula. Scaling is performed based on precision
values, with the exception of predicates, which are scaled dynamically based
on the maximum sort of its arguments. Constant literals and rounding modes
remain unaffected by this encoding. There is no guarantee that the sorts of
nodes of different precisions will match, so cast operations are used to ensure
well-sortedness. To ensure consistency of the approximate models, all occurrences
of a variable share the same precision.

After the back-end solver returns a model of the approximate constraints,
the decodeNode function casts variable assignments to their sort in the original
formula. For example, the formula φ from Section 2 over single-precision floating-
point variables is encoded as the formula φ̂3,3. A checkSAT call returns a model
m̂ = {x 7→ 2.03,3; y 7→ 3.53,3}. Decoding will cast the values of the approximate
model to their original sort (the values will not change, only their sorts), resulting
in m = {x 7→ 2.08,24; y 7→ 3.58,24}.

Model reconstruction strategy. A model reconstruction strategy specifies how to
obtain a model of the input constraints starting from the decoded model. Since
the RPFP approximation retains the Boolean structure of the original formula,
a simple strategy to obtain a reconstructed model is by ensuring that the same
atomic constraints are satisfied. Reconstruction chooses a subset of the atoms
occurring in the formula, called the critical atoms, which if evaluated identically
as in the approximate model guarantee that the formula is satisfied; this means,
the conjunction of the critical atoms is an implicant of the formula.
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0 trait RPFPCodec extends RPFPContext with PostOrderCodec {
1 def scaleSort ( node : AST , p : Int , children : List [ AST ] ) = {
2 node . symbol match {
3 case _ : FloatingPointPredicateSymbol => {
4 val sorts = children . filterNot (_ . isLiteral ) . map (_ . symbol . sort )
5 sorts . foldLeft ( sorts . head ) ( fpsortMaximum (_ , _ ) )
6 }
7 case _ : FloatingPointFunSymbol => {
8 val FPSort ( eBitWidth , sBitWidth ) = sort
9 val eBits = 3 + (( eBitWidth − 3) ∗ p ) /pOrder . maxPrecision

10 val sBits = 3 + (( sBitWidth − 3) ∗ p ) /pOrder . maxPrecision
11 FPSort ( eBits , sBits )
12 }
13 case _ => sort
14 }
15 }
16 def encodeNode ( node : AST , children : List [ AST ] , p : Int ) = {
17 val sort = scaleSort ( node , p , children )
18 val castChildren = children . map ( cast (_ , sort ) )
19 val symbol = encodeSymbol ( node . symbol , sort , castChildren )
20 AST ( symbol , node . label , castChildren )
21 }
22 def decodeNode ( args : ( Model , PrecMap [ Prec ] ) , decodedModel : Model ,
23 node : AST ) = {
24 val ( appModel , pmap ) = args
25 val AST ( symbol , label , _ ) = node
26 val decodedValue = decodeFPValue ( symbol , appModel ( node ) , pmap ( label ) )
27 decodedModel . set (ast , Leaf ( decodedValue ) )
28 decodedModel
29 }
30 }

Fig. 5: Reduced-precision encoding and decoding.

Due to the difference in semantics (e.g., rounding error), when evaluating
the original formula, errors accumulate. This can result in critical atoms chang-
ing values under the original semantics. Therefore, evaluation of critical atoms
under the original semantics is necessary to ensure that the model satisfies the
original formula. UppSAT provides a bottom-up reconstruction strategy, which
is specified on a node-by-node basis and applied using a post-order visitor. To
specify this reconstruction strategy only the reconstructNode hook function
needs to be implemented, shown in Fig. 6.

Equality as assignment. An important heuristic used in the RPFP model recon-
struction is equality-as-assignment. The idea is that given an equality constraint
y = f(x1, . . . , xn) in which the arguments x1, . . . , xn are fixed (see below), but
y is not, we can calculate the value of f(x1, . . . , xn) and use it as the value of
y in the reconstructed model; this is indeed the only way to satisfy the equality
constraint. To put this observation to use, variables are not fixed to a value in
the reconstructed model until they are used to evaluate an expression or atom.
When a predicate is evaluated, if some its arguments are not fixed, it means
that they have not been used yet and can be safely modified at this point. To
ensure maximal utilisation of this heuristic, the atoms are topologically sorted
to process implicating atoms, such as equalities, before the other critical atoms.
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0 def reconstructNode ( decodedM : Model , candidateM : Model , node : AST ) = {
1 val AST ( symbol , label , children ) = node
2 if ( children . length > 0)
3 if ( equalityAsAssignment (ast , decodedM , candidateM ) ) {
4 return candidateM
5 } else {
6 val args =
7 for (c <- children ) yield getCurrentValue (c , decodedM , candidateM )
8 val expr = AST ( symbol , label , args . toList )
9 val value = ModelEvaluator . evalAST ( expr , inputTheory )

10 candidateM . set ( node , value )
11 }
12 }
13 candidateM
14 }

Fig. 6: Post-order reconstruction using equality-as-assignment

Example 1. Consider the reconstruction outlined in Section 2. It reconstructed
the model m̂ = {x 7→ 2.03,3, y 7→ 3.53,3} by just up-casting the values, yielding
m = {x 7→ 2.08,24, y 7→ 3.58,24}, which did not satisfy the original formula.
Here equalityAsAssignment can be applied to the critical atoms x = 2.0,
y = x + 1.75 and y ≥ 0. Processing them from left to right, the first atom
(x = 2.0) is satisfied by m, but not the second one (y = x + 1.75). This is
an equality constraint with an unfixed variable on the left-hand side and the
right-hand side is fixed (x + 1.75 = 3.75). Therefore, the model is updated m
with y 7→ 3.758,24 (ignoring the value of y in the candidate model), yielding
me = {x 7→ 2.08,24, y 7→ 3.758,24} which is a model for the original formula.

Model-guided refinement strategy. A model-guided refinement strategy increases
the precision of the formula, based on the decoded model and a failed model.
When an approximate model can not be reconstructed to a solution, the refine-
ment strategy increases the precision of certain operations, to refine parts of the
approximate formula that were too coarse.

Comparing the evaluation of the formula under the decoded and the failed
models identifies the critical atoms to be refined. These atoms evaluate as true
in the approximate model and as false in the candidate model. Since FPA is
a numerical domain, it is possible to apply some notion of error to determine
which nodes contribute the most to the discrepancies in evaluation and use them
to rank the sub-expressions. After ranking, only a portion of them is refined, in
our case 30%. Refinement is achieved by increasing the precision by one (in the
range [0, 5], as described above). In general, one could use the error to determine
by how much to increase the precision. Since error-based refinement can be
applied to any numerical domain, UppSAT implements an abstract error-based
refinement strategy, which allows us to specify refinement by only instantiating
the nodeError hook function, shown in Fig. 7.

Proof-guided refinement strategy. If we fail to find an approximate model, the
proof-guided refinement strategy can use unsatisfiable cores to refine the for-
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0 trait RPFPMGRefinementStrategy extends RPFPContext
1 with ErrorBasedRefinementStrategy {
2 def nodeError ( decodedM : Model , failedM : Model
3 acc : Map [ AST , Double ] , node : AST ) = {
4 node . symbol match {
5 case literal : FloatingPointLiteral => acc
6 case fpfs : FloatingPointFunSymbol => {
7 val Some ( outErr ) = relativeError ( node , decodedM , failedM )
8 val argErrors =
9 node . children . map{relativeError (_ , decodedM , failedM )}

10 val inErrors = argErrors . collect{case Some (x ) => x}
11 val sumInErrors = inErrors . fold ( 0 . 0 ) {(x , y ) => x + y}
12 val avgInErr = sumInErrors / inErrors . length
13 acc + ( ast −> outErr / (1 + avgInErr ) )
14 }
15 case _ => acc
16 }
17 }
18 }

Fig. 7: Model-guided refinement strategy based on relative errors

mula [21]. At the moment UppSAT has no support for obtaining proofs from the
back-end solvers. Instead, a näıve refinement strategy is used, which increases
all the precisions by a constant.

4 Other Approximations of FPA

We have shown in detail the RPFP approximation of FPA, and discussed dif-
ferent components that can be used in general. In this section we outline two
further approximations of FPA that have been implemented in UppSAT: the
fixed-point approximation BV, encoded as bit-vectors, and the real-arithmetic
approximation RA. Both approximations are currently implemented as a proof-
of-concept for cross-theory approximations. Despite their lack of maturity these
approximations show promising results (see Section 5).

BV — The Fixed-Point Approximation of FPA The idea behind the BV
approximation is to avoid the overhead of the rounding semantics and special
values of FPA, by encoding all the FPA values and operations as values and
operations in fixed-point arithmetic.

The BV context. The input theory is the theory of FPA, and the intended out-
put theory is the theory of fixed-point arithmetic. However, since fixed-point
arithmetic is not commonly supported by SMT solvers, we encode fixed-point
constraints in the theory of fixed-width bit-vectors. The precision determines the
number of integer and fractional binary digits in the fixed-point representation
of a number. For simplicity, at this point we do not mix multiple fixed-point
formats in one formula, but instead apply uniform precision in the BV approx-
imation; as a result, all operations in a constraint are encoded using the same
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fixed-point sort. As a proof of concept, the precision domain is two-dimensional,
with the first component pi in a pair (pi, pf ) denoting the number of integral, and
the second component pf the number of fractional bits in the encoding, respec-
tively. The precision domain ranges from (5, 5) to (25, 25), with the maximum
element (25, 25) = > being interpreted as sending the original, unapproximated
FPA constraint to Z3 as a fall-back solver. As an example, given a variable of
precision (5, 5), we will have a domain of numbers between 10000.000002 and
01111.111112, which when interpreted in two’s-complement notation are num-
bers between −16 and 15.96875. Returning to the formula φ in Section 2, it
would be encoded with a precision of (5, 5) into the formula φ̂F5,5:

y10 = x10 ⊕10 00001 110002 ∧ y10 ≥s 00000 000002 ∧
(x10 = 00010 000002 ∨ x10 = 11100 000002)

We can note that fixed-point (5, 5)-addition is exactly implemented by bit-
vector addition ⊕10 over 10 bits, and fixed-point comparison ≥ by signed bit-
vector comparison ≥s over 10 bits, so that the translation becomes relatively
straightforward.

Constants are interpreted as 2’s complement numbers with 5 fractional and
5 integral bits, e.g., 11100 000002 represents the binary number −00100.000002,
which is −4.0 in decimal notation. It can be seen that the constraint φ̂F5,5 is
satisfied by the model m̂ = {x10 7→ 00010 000002, y10 7→ 00011 110002}, which
corresponds to the fixed-point solution x = 2.0 and y = 3.75, which is equal to
the floating point model found earlier.

BV reconstruction and refinement. The model reconstruction strategy in the
BV approximation is the same as in the RPFP approximation. The refinement
strategy is very simple: it increases precision along both dimensions by 4, adding
4 more bits to both the integral and fractional bits in the encoding.

RA — The Real Arithmetic Approximation of FPA The third approx-
imation of FPA we consider, is by encoding it into real arithmetic constraints.
We briefly present a simple implementation of this approximation.

Ramachandran and Wahl [19] describe a topological notion of refinement,
that requires a back-end solver that handles the combined theory of real arith-
metic and FPA. However, solving constraints over this combination of theories
is challenging in itself, and efficient SMT solvers are not publicly available, to
the best of our knowledge. Therefore, in this paper we only us a binary preci-
sion domain of {⊥,>}, where either the entire formula is translated into real
arithmetic, or the original formula is solved.

The encoding is fairly straightforward: the FPA operations are translated
as their real counter-parts, omitting the rounding modes in the process. While
the special values can be encoded, currently they are not supported by the RA
approximation. Decoding will translate a real number to the closest FPA numeral
under the given rounding mode. As discussed above, the refinement is trivial and
the reconstruction is the same as in the the RPFP approximation.
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5 Experimental evaluation

In this section we evaluate the effectiveness of the discussed approximations. We
instantiate the framework for the three presented approximations. The RPFP
approximation is instantiated with three back-ends: Z3, MathSAT5 and Math-
SAT5 using ACDCL. The BV approximation is instantiated with the bit-vector
solver of Z3 as a back-end, and the RA approximation uses Z3’s nlsat tactic [16].

Experimental setup. We evaluate UppSAT on the satisfiable benchmarks of the
QF_FP category of the SMT-LIB4 . Currently, none of the approximations have a
meaningful proof-based refinement strategy, so the performance on unsatisfiable
problems is left for future work. All experiments were performed on an AMD
Opteron 2220 SE machine, running 64-bit Linux, with memory limited to 1.0
GB, and with a timeout of one hour.

ACDCL MathSAT Z3 BV RPFP RPFP RPFP RA
(Z3) (ACDCL) (MathSAT) (Z3) (nlsat)

Solved 86 99 97 91 78 101 101 90
Timeouts 44 31 33 39 52 29 29 40
Best 65 4 6 9 3 9 9 4
Avg. Iterations - - - 2.69 3.59 3.16 3.02 1.85
Max Precision - - - 23 2 1 2 110
Avg. Time (s) 117.10 169.17 355.94 131.64 108.30 81.97 148.43 301.87
Only solver 1 0 2 0 0 1 0 0

Table 1: Comparison of the three back-ends and five instantiations of UppSAT,
showing # of benchmarks solved within 1 hour, # of timeouts, # of instances
for which the solver was fastest, average # of refinement iterations on solved
problems, # of benchmarks where refinement reached maximum precision, av-
erage time to process all benchmarks (excluding timeouts), and # of instances
only solved by the respective solver.

We compare the performance of the back-ends and the UppSAT instances on
130 non-trivial satisfiable benchmarks. The results are summarized in Table 1,
and a more detailed view of this data is provided by the cactus plot in Fig. 8.

Table and Cactus plot. Looking at Table 1, we observe that the RPFP approxi-
mation combined with bit-blasting, either in Z3 or MathSAT, solves the largest
number of instances. When comparing average runtime, MathSAT comes out as
the marginally better choice of back-end. This is expected, based on the perfor-
mance on the back-ends themselves. All the configurations shine on at least a
few benchmarks, indicating that the approximations do offer an improvement.

4 The regression tests in the wintersteiger family were ignored for the evaluation.
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Furthermore, the ACDCL algorithm outperforms all the other solvers on 65
benchmarks, but it solves fewer benchmarks that the bit-blasting approaches in
total. This is corroborated in the cactus plot, where in the left part of the graph
ACDCL is solving many benchmarks, however, eventually it gets overtaken by
the other solvers. Looking more closely at the RPFP approximation, we can
conclude that it improves performance of bit-blasting considerably, regardless
of the implementation (MathSAT or Z3). On the other hand, RPFP seems to
hinder, rather than help, the already very efficient ACDCL algorithm.5

Looking only at the approximations, we can see that on average the bench-
marks are solved using around three iterations (the RA always performs at most
two iterations, the RA approximation and the FPA semantics). This indicates
that for many of the benchmarks, full-precision encoding is not really necessary,
since the RPFP approximation rarely reaches maximum precision.

Virtual portfolios. In Table 2, we com-
pare the virtual best portfolio over
all approximating solvers against the
baseline of the virtual best portfolio
over back-end solvers. Inclusion of Up-
pSAT instances in the portfolio cuts
the average solving time in half.

VP (Back-ends) VP (All)
Solved 110 112
T/O 20 18
Total time (s) 25135 12516
Avg. time (s) 228.50 111.75

Table 2: Virtual portfolio performance.

Scatter Plots. Fig. 9 shows the runtime comparison of the RPFP and BV approx-
imations against the bit-blasting back-end Z3. The x-axis denotes the runtime of
UppSAT instances, while the y-axis denotes the runtime of Z3. Maximum value
along either axes denotes a timeout. Data points above the diagonal indicate
that UppSAT takes less time and below the diagonal that Z3 takes less time on
an instance. The left plot shows a comparison of the RPFP(Z3) instance against
the bit-blasting approach in Z3. The majority of benchmarks are solved faster by
the UppSAT instance, and the plot is in line with previously published results,
but the trend suggests a super-linear speedup in performance which was not as
pronounced before. The right plot comparing the runtime of BV(Z3) to that of
Z3 is similar to that of RPFP(Z3), with the difference that gains and losses in
runtime are even greater with the RPFP approximation. The greater speed-ups
are due to even simpler propositional encodings, since the exponent is implicit
and fixed upfront. The losses in solving time are due to the fact the BV approxi-
mation is not yet mature, since it lacks a fine-tuned precision order, tailor-made
refinement and simply re-uses the strategies used by the RPFP approximation.
With this in mind, we believe that these results are very promising.

5 Earlier experiments using the stable version 5.4.1 of MathSAT have shown similar
effects of the RPFP approximation to those on the bit-blasting methods. However,
overall the performance results were not consistent with performance of MathSAT in
previous publications, and indicated a bug. We thank Alberto Griggio for promptly
providing us with a corrected version of MathSAT, which we use in the evaluation.
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Fig. 8: The X axis shows how many instances can be solved in the amount of
time shown on the Y axis, by each of the solvers and the portfolios. The Up-
pSAT instances are shown using full lines, while the back-ends are presented
using dashed lines. The colors denote the same back-end, e.g., MathSAT and
RPFP(MathSAT) are both colored green.
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Fig. 9: Runtime comparison of RPFP(Z3) with Z3 (left) and BV(Z3) with Z3.
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We omit scatter plots for other UppSAT instances6, but offer a brief summary
of the results. The comparison of RPFP(MathSAT) instance against MathSAT
is very similar to that of RPFP(Z3) against Z3. The RPFP(ACDCL) did not
improve on the runtime of the ACDCL solver. This appears to be due to the
fact that RPFP approximation does not make formulas significantly easier to
solve for ACDCL, in contrast to the situation with bit-blasting. The RA(nlsat)
instance does currently not show satisfactory results; the approximation is a
proof of concept, and is an on-off approximation, since there is no space for
refinement in the absence of a back-end that would support the combination of
non-linear real arithmetic and floating-point arithmetic.

Overall, these results show that the RPFP and BV approximations can in-
deed speed up the performance of the bit-blasting back-ends, and in case of the
BV approximation with not much effort.

6 Conclusion and Future Work

We have presented a methodology and new framework, UppSAT, for implement-
ing approximating SMT solvers. UppSAT enables simple and high-level definition
of approximations, can be combined with different back-ends (at the moment Z3
and MathSAT, but further back-ends can be added with little effort), and is use-
ful both for rapid prototyping and for tailoring solvers to particular use-cases.

The experimental evaluation demonstrates the efficacy of approximations.
The approximation instances presented here (RPFP(z3), RPFP(MathSAT)) are
shown to be state-of-the art in handling formulas in FPA, where they improve
their performance of the respective back-end to a even greater extent than pre-
vious work. For ACDCL this is not the case, indicating that perhaps a different
method of approximation should be utilized.

The fixed point and real arithmetic approximations are presented here as a
proof of concept. They are simple and not much effort went into instantiating
the framework for these approximations. However, the results shows that even
uncomplicated approaches can be competitive; this opens up the line of future
work to design tailored refinement and reconstruction strategies.

The clear direction for improving UppSAT is to extend the general framework
with more abstract strategies, e.g., retrieve multiple models from an approximate
formula and/or apply multiple different reconstruction strategies on approximate
models. Currently, much time is spent on looking for models which means there is
plenty of room to make more sophisticated strategies in the framework. UppSAT
could also be extended to allow approximations to be written in a high-level
domain specific language, and allow them to be loaded as dynamic libraries.

Another big challenge is to extend UppSAT to be able to handle unsatisfiable
formulas efficiently. Currently, the proof refinement is naive uniform refinement,
but there is a potential to do much more intelligent refinement.

6 Detailed plots of all approximations and back-ends can be found at
https://github.com/uuverifiers/uppsat/wiki/Scatter-Plots---IJCAR-2018
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