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Abstract. The vast majority of modal theorem provers implement modal
tableau, or backwards proof search in (cut-free) sequent calculi. The design of
suitable calculi is highly non-trivial, and employs nested sequents, labelled se-
quents and/or specifically designated transitional formulae. Theorem provers for
first-order logic, on the other hand, are by and large based on resolution. In this
paper, we present a resolution system for preference-based modal logics, specifi-
cally Burgess’ system S. Our main technical results are soundness and complete-
ness. Conceptually, we argue that resolution-based systems are not more difficult
to design than cut-free sequent calculi but their purely syntactic nature makes
them much better suited for implementation in automated reasoning systems.

1 Introduction

Theorem-provers for First-Order logic, such as E [20], Vampire [[17] and SPASS [22]
are typically based on resolution, often augmented with elements of the superposition
calculus [1] to deal with equality. This is in sharp contrast with Modal (or Description
Logic) reasoners which are typically based on variants of analytic tableau. Examples
are the FACT++ reasoner [21], LoTREC [7], LeanTAP [2] and Racer [11]. The situ-
ation is similar for non-normal modal logics, such as Alternating Temporal Logic [5]]
and various forms of conditional logics [14/15] as well as various logics that can be sub-
sumed under co-algebraic semantics [10]. Modal theorem provers based on resolution,
on the other hand, are thin on the ground, but compare favourably with Tableau-based
approaches in terms of efficiency [12J13].

As part of an ongoing investigation into resolution theorem-proving for modal log-
ics, this paper presents a resolution system for Burgess’ system S [3], a conditional
logic that extends classical propositional logic with a binary modal connective, written
=, and read as ‘if ...then typically ... . The binary connective = is interpreted over
models having a set W of possible worlds, and a preorder relation <, at each world
w € W. The preorder relation can be interpreted as local plausibility relation, where
w <, w" is interpreted as w' being as plausible as w” (from the perspective of w). In
finite models, the modal formula ¢ = y can then be interpreted at w by stipulating that
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every <,,-minimal world that satisfies ¢ must also satisfy y. The dual of = is denoted
by #-, that is, ¢ # v is defined as =¢ = —y. The interpretation of ¢ % v is, thus, that
there exists a minimal —¢@-world which satisfies y.

The ensuing logic is part of a family of conditional logics [4] for which sequent,
or tableau calculi are notoriously hard to construct, and often require additional syntac-
tic structure. Various conditional logics require nested sequents [[14]], labelled sequents
[948] or special transition formulae [15], together with non-trivial proofs of either se-
mantic completeness or cut elimination. Again, this is in sharp contrast to modal calculi
based on resolution, where the only extra machinery needed is a global modality.

Our main technical contribution is the design of a resolution calculus for Burgess’
system S, together with proofs of soundness and completeness. As with other
resolution-based systems found in the literature (including First-Order resolution cal-
culi), our procedure consists of two phases. In the first phase, an input formula is trans-
lated into an equisatisfiable set of clauses. Then a set of inference rules is applied to the
clause set. There are two types of rules: one corresponding to the usual modal propa-
gation, as seen in modal tableaux calculi; and a set of resolution-based rules. Although
the method presented here is essentially clausal, the formula ¢ in a modal formula of
the form ¢ # v partially retains the structure of the original problem on the left-hand
side of the modal operator. This allows for a simpler set of rules for modal propagation
based on the set of axioms for S. Besides the resolution-based rules for dealing with the
propositional fragment of the logic, the resolution rules operate on modal formulae and
propagate potential inconsistencies between modal formulae to the propositional level.

Conceptually, we argue that resolution-based systems are not more difficult to de-
sign than cut-free sequent calculi but their purely syntactic nature makes them much
better suited for implementation in automated reasoning systems.

The paper is organised as follows. In the next section, the language of S is given,
following the presentation in [6]. The resolution-based calculus for S, named RESg,
is detailed in Section [3} we present the transformation rules for translating a formula
into the normal form and the inference rules of RESg, together with a non-trivial exam-
ple involving nested conditional formulae. In Section 4] we show that RESg is sound,
complete, and terminating. We summarise and discuss our results in Section 5]

2 Language

In this section we introduce the language of S, following closely the presentation in
[6]. Let P = {p,q,r,...,p',q',¥,...} be a denumerable set of propositional symbols.
Formulae are built from P, the usual classical connectives for negation (—) and con-
junction (A), and the conditional implication (=). The set of well-formed formulae of
S, denoted by WFFg, is inductively defined as follows:

— forall p € P, p € WFFg;
- if ¢;,0<i<n,neN,arein WFFg, then so are =@y, (¢; A...A@,), and ¢; = ¢,.

The empty conjunction is denoted by true (verum). Let ¢;, 0 <i <n,n € N, be formulae
in WFFg. The following connectives are introduced as abbreviations: false = —true

(falsum), (@1 V ...V @,) = =(—=@| A... A=¢@,) (disjunction), (@1 — @) = (—@; V ¢2)
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(implication), and (@) <+ @) = (@1 — @2) A (@2 — ¢1) (double implication). We denote
the dual of = by -, that is, @; %A ¢, is defined as —(—¢; = —¢,). Parentheses are
omitted if the reading is not ambiguous. We set the precedence order of operators as —
<AA, V} < = < & < {=, £}, that is — binds stronger than A and V, which bind
stronger than —, as usual.

A literal is a proposition or its negation. We denote the set of all literals by L. The
set of subformulae of a formula is defined in the usual way. As we take the conjunction
as an n-ary operator, for a formula ¢ of the form ¢; A ... A @,, any conjunction formed
by the subformulae occurring in ¢ is a subformula of ¢. For instance, p, g, r, p A g,
pAr,gNAr,and p Ag A r are all the subformulae of pAgAr.

A complete axiomatisation for S is given in [3]] and comprises the following axiom
schemata (where @, y, x € WFFg):

A0 all propositional tautologies;
Al ¢ = @ (reflexivity);
2 ((p=y)A(e= 1)) = (9= (WAX));
3 (¢p=(yAyx)) — (¢ = ) (monotonicity on the right-hand side of =);
4 (p=y)AN(p=x))— ((p Ay) = x) (cautious monotonicity);
5 ((p=2x)N(w=2)— ((¢Vy)= 1) (on);

together with uniform substitution and the following inference rules: modus ponens
IMP] if - ¢ and - (¢ — ), then F y; and replacement of provable equivalents [RPE]
if - (@) <> @) and F y, then - ', where ¥’ only differs from y by replacing some
subformulae of y of the form ¢; by ¢,.

The semantics of S is given in terms of Kripke structures with a ternary relation
over worlds. Let (W, wg, w,R) be a Kripke structure where W # 0 is a set (of worlds)
with a distinguished world wg; & : W — (P — {true, false}) is an evaluation function
which maps every world to a truth assignment over P; and R is a ternary relation over
W, where <,,= {(w',w") | (w,w',w") € R}, for which <,, is a preorder (i.e. a reflexive
and transitive relation). We say that <,, is a preferential order over the worlds in W from
the point of view of w. We define W,,, for w € W, to be the set {w’ | (w',w") € <,,,, for
some w'” }, that is, W,, is the set of worlds considered at least as plausible as some world
in W according to the preferential order given by <,,.

Let M = (W, wy,t,R) be a Kripke structure. Truth of a formula at a world w € W in
M, denoted by =, is defined as follows (where ¢; € WFFg, forall 0 <i <n,n € N):

(M,w) |= p if, and only if, 7(w)(p) = true, for all p € P;

(M,w) |= =y if, and only if, (M, w) F~ @1;

(M,w) = (@1 A...A @) if, and only if, (M,w) |= ¢;, forall 1 <i<n;

(M,w) = @ = @, if, and only if, for all w' € W,,, if (M,w’) |= @, then there is
w” € W such that w” <,, w" and (M,w") = @ A @; and there is no world w"" € W,,
such that w"” <, w" and (M,w"") = @1 A—@,.

Satisfiability of a formula is given with respect to the distinguished world wyq in a struc-
ture (W,wo,,R). A formula @ is satisfied in a structure M if (M,wq) = ¢. In this
case, we say that (M,wp) is a model for ¢@. A formula ¢ is satisfiable if there is a
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model for ¢. A formula @ is valid if it is satisfiable in all structures. A set of formulae
I'={n,....,%} n €N, is satisfiable if, and only if, Ai_, % is satisfiable.

Some further conditions can be imposed on the class of Kripke structures that char-
acterise the semantics of S without affecting the set of valid formulae. For instance,
only finite structures need to be considered, as the finite model property for preferential
logics holds [3l6]]. For finite structures, the interpretation of = is much simpler: ¢ = y
is satisfiable at a world w if, and only if, all minimal ¢-worlds in W,, satisfy ¢ A y. Let
S, be the sublanguage of S with bounded nesting of at most n preferential operators.
We recall the following lemma:

Lemma 1. [6] Lemma 3.1] Let ¢ be a formula of the form (wo % W) AN (wi = v))
where ;, l,lll»’ € Sy, for all i, 0 <i <k, k € N. If ¢ is satisfiable, then @ is satisfiable in
a Kripke structure with at most k+ 1 worlds which are totally ordered by <.

The proof of Lemma [I} as given in [6], shows that only total orderings over the set
of worlds need to be considered when checking the satisfiability of a formula with
only one occurrence of the dual of the conditional implication. For formulae with more
occurrences of the dual operator, a disjoint set of total orderings over the set of worlds
need to be considered, one for each negated conditional. Still, a structure satisfying
such a formula is polynomially bounded in the size of the formula [|6, Proposition 3.2].
For the language of S,,, with bounded nesting of at most n preferential operators, n > 1,
testing the satisfiability of a formula can be restricted to structures which are polynomial
in the size of the formula, where the degree of the polynomial is bounded by 2 x n [6,
Proposition 3.6]. As given in [6], the satisfiability problem for S is PSPACE-complete.

3 Calculus

In this section, we present the clausal resolution-based calculus RESg for checking the
satisfiability of formulae in the language of S. A clause is a disjunction of literals or
modal formulae of the form (¢ = ¢’) or (¢ # ¢’), where ¢ and ¢’ have no subformu-
lae whose main operator is = or #-. A literal clause is a clause with no occurrences
of modal operators, that is, it is a disjunction of literals. A formula is in Conjunctive
Normal Form (CNF) if, and only if, it is a conjunction of initial and global clauses,
defined as follows:

initial clause: \/7_, 1,
global clause: 1(\V/yL, ) V V2, (@ = wo) VI (@) 2 W)))

where n,my,my,m3 € N, Iy, I} € L, @, ¥,y are literal clauses, ¢/, is in Negation Nor-
mal Form (NNF), no formulae contains nested modal operators, and [+] is the universal
operator. We introduce the universal operator because the translation into the normal
form requires that the definition of formulae being renamed is available throughout
the whole model. The universal operator is interpreted as usual: if M = (W,wy, 7,R)
is a Kripke structure and w € W, then (M,w) = [ @ if, and only if, for all w € W,
(M,w') = @. The empty clause is denoted by false. The transformation into the nor-
mal form uses rewriting and renaming, where the renaming technique is used to replace
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nnf(l) =Iforl el nnf(=—¢) = nnf(e)

nnf(A@;) = Annf(g;) nnf(=(A @) = Vnnf(-¢;)

nnf(V ¢;) = Vnnf(g;) nnf(=(V ¢1)) = Annf(=¢;)
nnf(¢ — y) = nnf(=¢@) Vnnf(y) nnf(- ((P —¥))=nn ( )Annf(w)
nnf(¢ = y) = nnf(@) = nnf(y) nnf(=(¢ = y)) = nnf(-¢ # —v)
nnf(@ 7 w) = nnf(@) % nnf(y) nnf(=(@ % v)) = nnf(-@ = -y)

nnf(@ < ) =nnf(¢ — ) /\nnf(l[/—> )
nnf(=(@ < ¥)) = nnf(@ A—y) Vnnf(y A -g)

Table 1. NFF transformation rules

complex formulae in the scope of the disjunctions (except for the left-hand side of the
dual operator) and the nesting of conditional operators by new propositional symbols.
Clauses and formulae within the scope of modal operators are required to be in simpli-
fied form, thatis, @ V @, @ A @, @ V false, and ¢ A true simplify to ¢; ¢V -, ¢V true,
and [+] true simplify to true; and ¢ A —@, ¢ Afalse, and [x] false simplify to false.

The transformation of a formula ¢ in the language of S into CNF is given as fol-
lows. We denote the NNF of ¢ by nnf(¢), which is obtained by applying the function
nnf : WFFg — WFF4 to ¢, whose definition is given in Table , where [ is a literal,
0, 0;, v € WFFg and i € N. Let ¢ be a well-formed formula in NNF. The translation of
¢ into Conjunctive Normal Form is defined as

enf(@) =100 AT([(to — @)
where 1 is a new propositional symbol and the transformation function 7 : WFFg —
WFFg is defined as follows (where @, ¢;, v, x € WFFg, i € N, 7 is a literal, and t'is a
new propositional symbol). For the base case, the right-hand side of the implication is a
disjunction where each disjunct is a literal, or it is of the form (¢’ = ¢") or (¥ % y"),
where v’ is a propositional formula (i.e. with no occurrences of subformulae whose
main operator is either = or #-), and the formulae ¢’, ¢” and y” are literal clauses:

(W= 9)) =H(rve)
If the right-hand side of the implication or the right-hand side of a conditional is a
conjunction, then rewriting is applied:

(B = Ap) = At = @)
(= (9= A@))) = At(H( = (9 = @)))

If any of the disjuncts on the right-hand side of the implication is not a literal, then
renaming is applied:

(= Ve vy)) =2(l = Ve ve)) At (nnf (i < v)))
Conjunctions on the left-hand side of conditionals and on the right-hand side of the dual
operator are renamed as follows:

(B = (A= %)) = ©(Ld(t — (" = x))) At(E(nnf (' < A@i)))
(= (97 Ap))) =t — (¢ % 1)) A(L(nnf (1" < A )
If any of the disjuncts on the left-hand side of the conditional or on the right-hand side
of a (negated) conditional is not a literal clause, that is, if y in the following is not a
literal, then renaming is also applied.
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(B = (Ve vy) = 1)) = «(H0 = (Ve Vi) = 2))) Ae(E(nnf (1 < y)))
(B = (= (yv V) = (B = (9= ('VV @) At(L(nnf (' & y)))
(= (7 (WVV @) = t(E = (@ 7 (' VV @) At(E(nnf(t’ < y)))
If the left hand-side of the negated conditional is not a propositional formula, that is, if
v is of the form (¥’ = y") or (Y % y”'), then renaming is also applied. Let @[y — ']
denote the result of replacing some occurrences of the subformula y in ¢ by ¢':

(= (97 2)) = 1@ = (ply = 1] % 1)) At(H(nnf (1" & v)))

Although the resolution-based method for S is essentially clausal, note that formulae
on the left-hand side of the modal operator #- are not required to be literal clauses. This
helps preserving more of the structure of the original formula and, as so, to identifying
the cases where the axioms A4 and AS should be propagated. We also note that, for a
formula ¢ being renamed by a propositional symbol ¢, if ¢ occurs only with positive
(resp. negative) polarity, then only the implication t — ¢ (resp. (¢ — t)) is needed [16].
As formulae on the left-hand side of conditionals occur with both polarities, in order to
simplify our presentation, we have chosen to introduce both sides of the definition of
@, ie. (t — @) and (¢ — 1), into the clause set.

As checking the satisfiability of a conjunction A%, ¢;, n € N, is equivalent to check-
ing the satisfiability of the set { @y, ..., ®,}, we refer to a formula into CNF as a set of
clauses. Given a set of clauses in CNF, the resolution procedure is applied until a con-
tradiction, in the form of false, is found or no new clauses can be derived. The inference
rules can be divided into two sets: a set of rules for propagation of formulae whose main
operator are either the conditional or its dual; and a set of resolution-based rules.

The inference rules used for propagation given in Table ] are closely related to the
axioms of S. The inference rule [L-OR-2] is related to cautious monotonicity (axiom
A4). The inference rule [L-AND-2] is related to the disjunction property on the left-hand
side of conditional (axiom AS). The inference rules [REF-1] and [REF-2] correspond to
reflexivity, that is, the axiom A1. Finally, the [SIMP-1] corresponds to simplification, as
¢ # false is unsatisfiable.

The resolution-based inference rules are also given in Table E], where [I-RES-1] and
[I-RES-2], the resolution rules related to initial clauses, and [RES] are syntactical vari-
ations of the classical binary resolution rule given in [18]]. The remaining resolution-
based inference rules are justified by the axioms A2 and A3. The resolution-based rule
[R-RES-=--1] says that when the left-hand side of the conditionals in the premises are
equivalent, then the standard binary resolution rule can be applied to the right-hand
side of those conditionals. Note that in the case of [R-RES-#-1], which is similar, the
negated conditional in the premises is of the form (¢’ % x’) and, from the definition
of the dual, we have that this conditional is equivalent to =(—¢’ = —x’). The disjunct
—(=¢@ <> @) in the conclusion then states that either ¢’ is not equivalent to the nega-
tion of @ (from the other premise) or resolution can be applied to the right-hand side of
those conditionals. The inference rule [L-RES-7] says that if a formula ¢ cannot be sat-
isfied in any ordering, as given by the premise ¢ =- false, then any negated conditional
whose left-hand side is equivalent to —¢ cannot be satisfied either. The inference rules
[R-RES-=--2] and [R-RES-#-2] apply resolution to a literal occurring in a global literal
clause with its complement occurring on the right-hand side of conditionals.
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[L-AND-2] [L-OR-2]
HDOV((ery) £ x)) HDOV((evy)#x)
EHDOV(e# ) V(v x)) EHDV(e#v)V(p# X))
[REF-1] [REF-2] [SIMP-1]
H(DV(e=v)) H(DV(e# V) H(DV (¢ # false))
(p=9) (—¢ = —0) (D)
[I-RES-1] DV! [I-RES-2] DVI [RES] [H(DVI)
D'v~l (D' Vv =l) (D' V=)
DVD DVD (DVD)
where D is a literal clause
[R-RES-=-1] [H(DV(p=(yVI))) [R-RES-=-2] I (DV (¢ = (yVI)))
H(D' V(e = (x VL)) E(D'V )
HDVD' V(9 ¢)V(p= (wVy)) H(DV(¢= (yVvD)))

where D' is a literal clause
[L-RES-#A1] (DV (@ = false))

(D V(9" # W)
EI(DVD' V(=0 < @)
[R-RES-#-1]  [H(DV (9= (yVI))) [R-RES-#-2] (D V (¢ # (y V1))
(D' V(¢ # (x VD)) GI(D'V )
EI(DVD'VA(=p < ¢") V(¢ % (vVx))) EI(DV(e# (yVvD)))

where D' is a literal clause

Table 2. Inference Rules

The inference rules in Tableare presented in simplified form, as some of their con-
clusions are not transformed into the normal form. For the inference rules [R-RES-=-1],
[R-RES-#-1], and [L-RES-#] the resolvent should be rewritten into the normal form. In
these cases, distribution can be used to avoid further renaming: a formula as DV (¢ V
(y A x)) can be rewritten as the clauses (DV @ V ) and (DV ¢V ), for a disjunction
D, and formulae @, y, and ). However, for the resolvents of [REF-1] and [REF-2], fur-
ther renaming may need to be applied. For instance, if (¢ VV W) % x is a subformula in
the clause set, then an application of [REF-2] would generate (—@ A —y) = (—@ A —y).
However, as from the definition of the normal form, conjunctions are not allowed on the
left-hand side of conditional clauses. Instead of (=@ A —y) = (- A ), the clauses
corresponding to t = ¢ and t ++ (- A —y), where 7 is a new propositional symbol, are
introduced in the clause set. This is not problematic from the point of view of termi-
nation, as [REF-1] and [REF-2] are only applied to formulae which can possibly occur
in the clause set. As we show later, because the number of such formulae is finite, so
it is the number of new propositional symbols that can be introduced as a result of the
application of either inference rule.

The soundness of all inference rules follows almost immediately from the axiomati-
sation of S, as shown in Section@ The following is the formal definition of a derivation.

Definition 1. Let @ be a set of clauses. A derivation in RESq for @ is a sequence of
clause sets @y, Dy, ... where Oy = P and, for eachi >0, Oy = O;U{D}, where D is
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the conclusion obtained from ®; by an application of one of the inference rules given in
Table2|to premises in ®;. We require that D is in simplified form, D ¢ ®;, and that D is
not a propositional tautology.

Note that the inference rules [REF-1] and [REF-2] introduce tautologies of the form
¢ = ¢, where @ or =@ occurs on the left-hand side of (negated) conditionals. Those
tautologies are needed for completeness. Thus, the constraint for including the resolvent
D into the clause set is restricted to classical tautologies, that is, of the form ¢V —¢, for
a formula ¢.

Definition 2. Let @ be a set of clauses. A refutation in RESg for @ is a finite derivation
Dy, Dy, ..., Py, k €N, where false in Dy We write P t-resg false, if there is a refutation
from @ in RESg.

Definition 3. Let P be a set of clauses. We say that @ is saturated if any further appli-
cation of the inference rules given in Table 2| to clauses in ® only generates a clause
already in ®.

As derivations require progress, a saturated set is a point where a derivation cannot
progress any further.

Definition 4. Let @ be a set of clauses. A derivation @y, Py, ... in RESg for @ termi-
nates if there is k € N such that @y, is saturated or false € ;.

Before showing the correctness results concerning our calculus, we present an example
of a refutation involving a validity with nested conditionals.

Example 1. We show that ¢ = ((a = b)A(a=c)A(d=c)) = (((anb)Vd) = c)
is a valid formula in S. The negation normal form of the —¢ is ((—a 7% —b) V (—a #
—¢)V (—d # —¢)) # (((maV—b) A—d) # —c). Clauses 1 to 6 correspond to the normal
form of —¢, noting that Clauses 4 to 6 only show the side of the definitions of the
propositional symbols introduced by renaming that are needed in the proof.

1. 19 4. [H(nV(a=c))
2. (=g V(11 VEa Vi13) & 14)) 5. BV (d=0)
3. M@ V(a=D)) 6. (14 V (((maV —b) A=d) & —c))

The following refutation follows from the above set of clauses:

7. EH(=taV ((maV —b) A —c) V (=d % —c)) [L-AND-2,6]

8. [E(t3V—tsV ((—aV—b) % —c)) [R-RES--1,7,5]

9. (13 V-tV (ma# —b)V(-a# —c)) [L-OR-2,8]

10. (Vi3 V -ty V (—a 7 —b)) [R-RES-#--1,9,4]

1. (Vi Vi3V —ty) [SIMP-1,R-RES-#-1,10,3]
12. (t5 = t5) [REF-2,2, where t5 <> —\(ll Vi \/l‘3)]
13. [ (5 Vi Vi Vi3) [REF-2,2]

14. [ (~ts V —ty) [REF-2,2]

15. [ (—ts VvV —itp) [REF-2,2]

16. [ (~ts V —t3) [REF-2,2]

17. W(~tsVia Vi3V —ty) [RES,11,14]

18. & (~ts Vi3V 1) [RES,17,15]
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19. [ (—ts V —ty) [RES,18,16]

20. [ (o V (1 V2 V13) & —t5)) [R-RES-%4-2,19,2]

21. [H(~tg vV (=t5 <> (1 VI V1)) [SIMP-1,R-RES-#-1,20,12]
22. -ty [RES,21,13,14,15,16]

23. false [I-RES-2,22,1]

We note that Clause 8 (resp. Clauses 10 and 11) is in simplified form, as nnf(—(—d <
—d)) (resp. nnf(—(—a <> —a))) simplifies to false. The justification of Clause 22 abbre-
viates several applications of the inference rule [RES] between Clause 21 and the clauses
corresponding to the definition of 75, i.e. Clauses 13 to 16.

4 Correctness

In this section we provide the proofs that RESg is a sound, complete, and terminating
calculus for S. First, we show that given a formula @, the transformation into CNF is
satisfiability preserving.

Theorem 1. Let ¢ be a formula in WFFg. Then, @ is satisfiable if, and only if, to A
T(E(to — @)) is satisfiable.

Proof (sketch). The proof is very standard. We first show that ¢ is satisfiable if, and
only if, 7o A [xl(fo — @) is satisfiable, as the evaluation of ¢ does not depend on the
evaluation of 7o and that the operator [x] does not occur in ¢. Then, we show that each of
the transformation rules is satisfiability preserving, that is, a formula of the form [x](r —
@') is satisfiable if, and only if, 7([x](r — ¢')) is satisfiable. Rewriting is justified by
equivalences. For transformation steps which require renaming, let y be the subformula
of @’ which is being renamed by the transformation function and #' a new propositional
symbol. Given the satisfiability of [x](r — @), then there is a model M = (W, wy, T, R)
such that (M, w) = (r — ¢’), for all w € W. We then build a model M’ = (W, wy, 7', R),
which is exactly as M except by the evaluation function. We define 7' (w)(p) = m(w)(p)
for all worlds w € W and propositional symbols p, such that p #¢'; and @' (w)(t') = true
if, and only if, (M,w) |= y. We then show that, for all worlds w € W, we have that
M w)y E (t = @[y — 1) A" < v), where ¢'[y — ('] is the result of replacing
some occurrences of the subformula v in @’ by ¢'. The if part follows easily by taking
into account that, by construction, ¢’ and  are satisfied at the same worlds in a model;
hence (r — @'[¢' — ) is satisfiable in all worlds w € W. It follows that ([ (t — ¢"))
is satisfiable. Finally, by induction on the number of steps of a transformation, we obtain
that @ and 7o A T([#](fo — @)) are equisatisfiable. O

We note that the transformation into the normal form results in a formula which is poly-
nomial in the size of the original formula, as the number of subformulae of a formula
is linear in the size of the original formula and also because the renaming procedure
introduces at most two copies of every subformula (plus a constant number of connec-
tives). The procedure is also terminating, as only complex subformulae of a formulae
are either rewritten or renamed.

Lemma 2. Let @ be a set of clauses. Then, any derivation in RESg from ® terminates.
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Proof. Let P$ be the set of propositional symbols occurring in @. We define P, =
{-p|pePs}tandLey =P5UPZ. Let Sub}) be the set of all propositional subformulae
occurring in @, Subg, = {nnf(=¢) | ¢ € Subl}, and Subg = Sub} U Subg. As only
propositional formulae can occur on the left-hand side of the conditional implications
and its dual, then the number of additional literals that might be introduced during the
application of [REF-1] and [REF-2] is bounded by |Subg|. As Pg and Subj, are finite, so
itis Z(Lo USubj U¢€Sub$ {tp = ty,t <+ @}), where 1, is a new propositional symbol.
Let Ce be the largest set of clauses that can be constructed from L, Subéj, and the
conditionals introduced by [REF-1] and [REF-2] together with the double-implications
introduced for renaming of formulae in Subé. From Definition |1} for all derivations
&by, Py, ... from D, we have that ; C Cyp and also that &; C D, 1, for all i > 0. Thus,
every derivation must terminate. a

For soundness of RESg, we need to show that, for each of the inference rules given in
Table @], if the premises of the inference rules are satisfiable, so it is their conclusion.
We omit most of the easy cases, but note that soundness of [L-AND-2] and [L-OR-2] fol-
low almost immediately from the contrapositive forms of the axioms A5 and A4, that
is, (@A) % x) = (@A X) V(¥ # x)) and (V) 7% x) = (@ 7 W)V (9 # X)),
respectively. The inference rules [REF-1] and [REF-2] are obviously sound, as they in-
troduce instances of the axiom Al into the clause set. It is also very easy to see that
[I-RES-1], [I-RES-2], and [RES] are only variations of the classical binary resolution: the
fact they are sound follows also almost immediately from the results in [18]]. The next
lemmas show the soundness of [R-RES-#-1] and [L-RES-#4-].

Lemma 3. Let @ be a set of clauses with {1(DV (¢ = (y V1)), (D' V(¢' A (x V
=)} C D. If D is satisfiable, then @ U{[E(DVD'V (=@ < @)V (¢' A yVy)}is
satisfiable.

Proof. If @ is satisfiable, as {[<](DV (¢ = (yV1))),H(D' V(¢ & (x V-i)))} C D,
from the definition of satisfiability of sets, there is a model M = (W, wq, 7, R) such that
(1) (M,wo) = EDV (9 = (wV 1)) and Q) (M,wo) = BV (@' % (x VD)),
From (1) and the semantics of the universal operator, for all w € W, we have that (3)
(M,w) = (DV (¢ = (yV1I))). Analogously, from (2), for all w € W, we have that (4)
(M,w) = (D'V (@' # (xV~l))). Let w be any world in W. From (3) and (4), by distri-
bution, there are four cases: (i) (M,w) = (DAD'); (i) (M,w) = (DA (@’ # (x vV -l));
(iii) (M, w) = (D' A (@ = (wVI)); or (iv) (M, w) = (¢ = (W V) A(¢' # (2 Vi) It
is easy to see that if Cases (i), (ii), or (iii) hold, then we have that (5) (M,w) = (DVD').
For the fourth case, there are two possibilities: either (6) (M,w) | —(=¢ <> ¢); or
(7) (M,w) E (=@ <> ¢'). From (7) and from the fact that (M,w) = (@' % (x VvV —I)),
by soundness of [RPE], we obtain that (8) (M,w) = (—¢ # (x V —l)). From (8), the
fact that (M,w) |= (¢ = (y V1)), the semantics of conjunctions, and the soundness
of A2, by the soundness of [MP], we obtain that (M,w) |= (—@ # (yVI)A(xV-l)).
By the soundness of resolution, applied on the right-hand side of the preferential con-
ditional, we obtain that (9) (M,w) = (=@ % (¥ V x)). From (9) and (7), we obtain
that (10) (M,w) = (¢’ & (wV x)). From (5), (6), (10), and from the semantics of
disjunction, we finally have that (M,w) = (DV D'V =(=¢ + @)V (¢’ & wV x)).
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As this holds for any world w, from the semantics of the universal operator, it fol-
lows that (M,wo) = (DV D'V —(=¢ + @)V (¢ % wV x)). We conclude that
PU{E(DVD' V—(—0 + @)V (¢ % wVy))}is satisfiable. O

Lemma 4. Let ® be a set of clauses with {[-](DV (@ = false)), (D' V (¢’ A v))} C
D. If P is satisfiable, then @ U{[(DV D'V (=@ > ¢'))} is satisfiable.

Proof (Sketch). The proof follows from the fact that [x](D V (¢ = false)) is semanti-
cally equivalent to [](DV (¢ = y A —y)) and, from A3, this implies that ](DV (¢ =
—V)) is satisfiable. By Lemma [3| taking @ with {1(DV (¢ = —)), (D' V (¢’ #
)} C @, together with the soundness of [SIMP-1], we obtain that @ U {[(DV D'V
—(=¢ < ¢'))} is satisfiable. O

The proof that [R-RES-=>-1] is sound is pretty similar to that of Lemma[3] Soundness of
[R-RES-=--2] and [R-RES-#-2] follow easily from the fact that the right-hand side of the
operators = and 7 are monotonic. Thus resolution can be applied on the the right-hand
side of modal formulae, taking into account that the other premise is also in the scope of
the universal operator. The next theorem shows that RESq is sound, the proof of which
follows from our argumentation, as above, and Lemmas E] and@

Theorem 2. Let @ be a set of clauses and Py, P, ... be a derivation in RESg for . If
@ is satisfiable, then every ®;, i > 0, is satisfiable.

The soundness proof, given above, shows that if @ is satisfiable, then there is no refu-
tation from @, that is: if there is a structure M such that M |= @, then & VRESS false.
In the following, we prove the completeness of RESg: if @ I/resg false, then there is a
structure M such that M |= &. The proof follows the standard construction of canonical
models for modal logics and is heavily based on that given in [6].

Given a set of clauses &, we construct a structure (W,S), where W is a set (of
worlds) and S is a binary relation over W, as follows. Let I and G denote the set of
initial and global clauses in @, respectively. Let G' = {@ | [] ¢ € G}. Let ¢y, ¢g, and
@¢ denote the conjunction of formulae in I, G and G', respectively. Let CI(®) be the
closure of @ under subformulae and simple negation. That is, CI(®) is the least set
such that:

- QINQG N\ Qg € Cl(D);
- If ¢ € CI(®) and ¢’ € Subf(@), then ¢’ € CI(D);
- If ¢ € CI(P) and then nnf(—¢) € CI(P);

where Subf(¢) denotes the set of subformulae of ¢. (Recall that we consider sub-
conjunctions of subformulae as subformulae.) Let o7, % € Z(CI(P)) be sets of for-
mulae in the powerset of the closure of @. A set of formulae .’ is RESg-consistent if,
and only if, (i) for all ¢ € o/, =[] @ & o7; and (ii) < I/resg false. A consistent set of
formulae 7 is maximal with respect to CI(®) if, and only if, (i) G C < (in order to en-
sure that all global clauses are in all sets); and (ii) there is no consistent # € & (CI(®P))
such that o7 C . Although there is no specific inference rules for dealing with formu-
lae of the form — [+] ¢, as they do not occur in the normal form, a set containing such a
formula cannot be maximal consistent, as G is a subset of all maximal sets.
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An atom is a maximal consistent set in &?(Cl(P)), the powerset of Cl(®P). Let
Atomsg be the set of all atoms constructed from @. In the following, we denote atoms
by a,b,c,d, and set of atoms by A, B,C,D. For an atom a, we write Aa (resp. \/ a) as
an abbreviation for the conjunction (resp. disjunction) of the formulae in a. A world is
defined as a pair (a,A), where a is an atom and A a set of atoms. Given two atoms a and
b, and a set of atoms B, we define that Prefer(a, b, B) holds if, and only if, AaA=((AbV
V Apest’) =V Ayep?') is RESg-consistent. We define the structure M = (W, wy, 7T, R)
as follows:

W ={(a,A) | a € Atomsp,A C (Atomse \ {a})};

wo = (a,0) € W, with & C q;

For all propositional symbols p € P, let ©((a,A))(p) = true if, and only if, p € a;
For all worlds (a,A) € W, let W 4) = {(b,B) € W | Prefer(a,b,B)} and set
(b,B) <(a4) (¢,C), if CU{c} C B. For all worlds w',w" € W,, set <,, such that,
w <, w';and, if w <,, w”, then w' <,, w".

Intuitively, a in (a,A) is a world satisfying /A a which is strictly preferred to all worlds
in A. The evaluation function assigns truth values to propositional symbols according to
their value in a. The set W(, 4 contains all worlds (b, B) such that it is consistent with
a that b is strictly preferred to worlds satisfying atoms in B. Note that the construction
of W(,4) depends on the set of conditionals in a, as defined by the predicate Prefer(-).
Thus, if two atoms a and b share the same set of conditional formulae, then W(a’ A) and
W(p.ary are exactly the same. It is easy to check that the relation <, is indeed a preorder.
Given those definitions, we establish the completeness of RESg. First, we note that the
construction of a model from a saturated set of clauses is closed under the inference
rules of RESq and also that the following two properties hold.

Lemma 5. Let @ be a saturated set of clauses, G be the set of global clauses in P,
CIl(®) be the closure of ®, and a be an atom in Atomsg, the set of all atoms constructed
from ®. For any formula ¢ € Cl(D®)UG, ¢ € aif, and only if, nnf(—¢) € a.

Lemma 6. Let @ be a saturated set of clauses, G be the set of global clauses in P,
and a be an atom in Atomsg, the set of all atoms constructed from ®. For any formula
e <G, [l eaif, and only if, ¢ € a.

The proof of the truth lemma depends on the following two results. For ¢ = y € (a,A),
as an additional (induction) hypotheses, we assume that for all subformulae ¢’ of ¢ =
v and all worlds (a',A"), we have that ¢’ € &’ if, and only if, (M, (a’,A")) = ¢@’. For the
purpose of a contradiction, assume that (M, (a,A)) = ¢ = y.

Lemma 7. Let @ be a saturated set of clauses, M = (W,wo,TT,R) be the structure
constructed as above for ®, (a,A) € W be a world in M, and ¢,y be formulae in
Cl(®). If o=y cain(a,A) then (M,(a,A)) = ¢ = y.

Proof. For the purpose of contradiction, assume @ = y € (a,A), but that (M, (a,A)) &
o= y.If (M, (a,A)) = @ = v, then, from the semantics of =, there is a world (b, B) €
W{a,4) such that (b, B) is a minimal ¢-world and (M, (b, B)) = ¢ A~y It follows that (i)
(M, (b,B)) = ¢ and (ii) (M, (b,B)) |= —y. By induction hypotheses, from (i), we have
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that ¢ € b and, from (ii), that ¥ & b (or, equivalently, that nnf(—y) € b). If (b,B) €
W(a.4)- then, from the definition of W, 4), we have that Prefer(a,b,B) holds, that is,
aN—((bVv\ B) = \/B) is RESg-consistent. However, we can show that for ¢, =y € b,
we have that Prefer(a, b, B) and ¢ = y € (a,A) is not RESg-consistent (see Appendix[A]
for the detailed proof), which contradicts with having (b, B) € W(a.4)- Thus, it cannot be
the case that (M, (a,A)) = ¢ = y. Hence, (M, (a,A)) = ¢ = y. O

Lemma 8. Let @ be a saturated set of clauses, M = (W,wo,TT,R) be the structure
constructed as above for @, (a,A) € W be a world in M, and @,y be formulae in
Cl(P). If (M,(a,A)) E @ =V, then 9 = y €ain (a,A).

Proof. We show the contrapositive, i.e. if ¢ = ¥ € ain (a,A), then (M, (a,A)) = ¢ =
v.If ¢ = y € a, then a A (¢ = ) is not RESg-consistent. By Lemmal[5} nnf((—¢ #
—y)) € (a,A). For the purpose of contradiction, assume that (M, (a,A)) = ¢ = .
Thus, for all (b, B) in W, 4) such that (b, B) is a minimal ¢-world, (M, (b,B)) = ¢ A y.
It follows that (M, (b,B)) = ¢ and (M, (b,B)) |= y. By inductive hypothesis, ¢ € (b, B)
and y € (b,B). As (b, B) € W, 4), from the definition of W, 4), Prefer(a, b, B) holds, i.e.
aN—=((bV\ B) =\ B) is RESg-consistent. We can show however that, for ¢, y € b, we
have that =((bV \/ B) = \/ B) and —(¢ = ) is not RESg-consistent (see Appendix [A]
for the detailed proof). Thus, it cannot be the case that (M, (a,A)) = ¢ = . Hence,

(M, (a,A)) o= v. O

Lemma 9. Let @ be a saturated set of clauses, M = (W,wo,TT,R) be the structure
constructed as above for @, (a,A) € W be a world in M, and ¢ a formula in Cl(P).
Then, ¢ € ain (a,A) if, and only if, (M, (a,A)) = ¢.

The proofs for the classical connectives make use of Lemmas[5|and [6]and is routine. For
formulae of the form (¢ = ), the proof follows from Lemmas and Completeness
of RESg follows immediately from the truth lemma (Lemma E]) as stated above.

5 Discussion and Further Work

We have presented a sound and complete resolution calculus for Burgess’ system S.
Our main motivation is to present a purely syntactic calculus that is both easy and
efficient to implement. The only other calculus for S we are aware of is that of [19]
which heavily relies on semantic arguments for the definition of proof rules, and is
therefore non-trivial to both implement and optimise. In contrast, the resolution system
here is purely given in syntactic terms. The design of the resolution rules, while not
generated from the axioms by means of an algorithmic procedure, closely follows the
axiomatisation. A different axiomatisation would lead to a different set of inference
rules, in particular those related to propagation ([L-AND-2], [L-OR-2], [REF-1] and [REF-2]).
The main technical challenge was the completeness proof, for which we have adapted a
canonical model construction to the resolution setting, obtaining a direct proof (without
translating to other calculi) where the main obstacle in the proof was to integrate the
construction with pre-processing of formulae into normal form.

To fully substantiate our claim regarding ease of implementation and efficiency, we
plan to implement and compare both our calculus and that of [19].
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A Proofs

The next two proofs were automatically generated by a prototype prover which imple-
ments the calculus given in this paper. Only clauses needed in the refutation are shown.
Also the inference rule [SIMP-1] is always applied together with [R-RES-#--1], so clauses
are already in simplified form. First, as part of the proof of Lemma[7] we show that for
@,y € b, we have that Prefer(a,b,B) and ¢ = y € (a,A) is contradictory.

1.4 [Assumption]
2. (-1 V(9= v)) [Assumption, ¢ = Y € a]
3. (=1 V(((m@V y)A—-B) % —B)) [Assumption, @, ~y € b, (b,B) € W, 4)]
4. (~t; V(=B % —B)V (=@ V y) % —B) [L-AND-2,3]
8. (BV-13V1) [REF-2,3]
9. (-t V13) [REF-2,3]
11. (pV 1) [REF-2,3]
12. (y V) [REF-2,3]
14. (B= B)) [REF-2,4]
15. (= 1)) [REF-2,4]
25. (BV -y V —t3) [RES,8,12,17]
26. (BV @V —t3) [RES,8,11,52]
38. (B —ty) [R-RES--1,3,14]
39. (BV -ty V1) [R-RES-#-1,3,14]
40. (BV 14 V1) [R-RES--1,3,14]
41. (yV =V —ts) [R-RES--1,3,14]
42. (~BV —ts) [R-RES-#-1,3,14]
44. (—t; V1g) [R-RES-#-1,3,14,B]
49. (o V —t3 V —its) [RES,42,26,B]
50. (g V =tz V —ts) [RES,42,25,B]
254. (W —t3 V —its) [RES.41,49,0]
276. (—t3 V —ts) [RES,254,50,y]
292. (—tp V —ts) [RES,276,9,—t3]
493. (BV —ty V' 14) [RES,40,292,t5 ]
540. (BV —~yV —ty) [RES,39,12,1]
547. (-4 V) [RES,39,38,B]
557. (@ V —ts) [RES,547,11,1]
558. (-4 V13) [RES,547,9,17]
559. (—t1 V1) [RES,547,44,—14]
560. (—ts V ts) [RES,547,292,1]
814. (=1, V (@ V W) A—=B) % —yV —ty)) [R-RES-%-2,540,3,B]
834. (- V —tg V1) [R-RES-#-1,814,2]
837. (BV -7V 1) [R-RES-#--1,814,2]
838. (¢ Vv —t7) [R-RES-#-1,814,2]
839. (~@V 13 V1) [R-RES-#-1,814,2]
1333. (@ V 4 V) [RES,839,558, 3]
1361. (—t4 V17) [RES,1333,557,¢]
1372. (—t; V1) [RES,1361,44,~14]
1374. (BV 1, V17) [RES,1361,493, 4]
1885. (BV -tV ty) [RES,837,493,1,]
1911. (=t V —t7 Vs) [RES,1885,42,B]
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1981. (=5 V —t7) [RES,1911,560,4]

2915. (—@ V —itg V —it7) [RES,834,1981,15]

2042, (—tg V —t7) [RES,2915,838,¢]

2984. (it V —ig) [RES,2942,1372,~#7]

2985. (BV —ip V i) [RES,2942,1374,—#7]

3123. (-1 V(((m@ V W) A=B) % -,V 1)) [R-RES-%4-2,2985,3,B]

3901. (—tp V —ig V 15) [R-RES-#-1,3123,15]

3904. (BV —tjp Vi) [R-RES-#-1,3123,15]

3906. (—t2 V119) [R-RES-#-1,3123,15]

6854. (=11 V (((m@V y)A=B) A —tijg V1)) [R-RES-#%-2,3904,3,B]
10225. (—tp V —ig) [RES,3901,292,15]
10314. (=1 V —19) [RES,10225,559,—1,]
22010. (=11 V (((m@ V W) A=B) £ =19V —y)) [R-RES-%4-2,6854,12,17]
23844. (-t V (((~@ V W) A—B) & =y V 1)) [R-RES-#-2,22010,3906,—(0]
23923, (-t; VgV (((m@V W) A—B) & —1y))  [R-RES-#£4-1,23844,2,~y]
24001. (—y VigVig) [R-RES-#--1,23923,15,-1;]
24126. (-t Vig) [RES,24001,10314,19]
24194. (—ty) [RES,24126,2984.16]
24242, false [I-RES-2,1,24194]

The following refutation is part of the proof of Lemma 8| where we show that, for
@,y € b, we have that =((b Vv \/B) = \/B) and —(¢ = y) € a is not RESg-consistent

1.4y
2. (=1 V(((—@ V—y)A—B) & —B)) [Assumption, b € W, 4)]
3. (-t V(me A y)) [Assumption, ~(¢ = V) € a]
4. (-t; V(=B # —B)V ((—@V-y) # —B)) [L-AND-2,2]
11. (pV —ity) [REF-2,2]
12. (WV ) [REF-2,2]
13. (m@V -y V) [REF-2,2]
15. (B=> B) [REF-2,4]
16. (tr = 1) [REF-2,4]
4. (=t V (—@ # 1)) [R-RES-#-2,3,12,~y]
55. (~Q V =ty \V —itg) [R-RES--1,44,16]
56. (V—tg V1) [R-RES-#-1,44,16]
64. (-t Vig) [R-RES-#4-1,44,16,—1,]
318. (~y Vg Vi) [RES,56,13,0]
578. (=t V —tg) [RES,55,11,~¢]
627. (-yV —ig) [RES,578,318,1;]
630. (—yV ) [RES,627,64, ]
2580. (—BV —to V 10) [R-RES-#-1,2,15]
2582. (=B V —tyg) [R-RES-#-1,2,15]
2584. (BV —tg V1) [R-RES-#-1,2,15]
2592. () Vo) [R-RES-#-1,2,15,-B]
3769. (BV wV o) [RES,2584,12.1,]
11984. (~BV —t9) [RES,2580,2582,t19]
12128. (yV —to) [RES,11984,3769,-B]
12165. (y v —t) [RES,12128,2592, o]
12205. -t [RES,12165,630,y]

12230. false [I-RES-2,1,12205,t ]
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