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Abstract. We present a framework in Isabelle for verifying asymptotic
time complexity of imperative programs. We build upon an extension
of Imperative HOL and its separation logic to include running time.
Our framework is able to handle advanced techniques for time complex-
ity analysis, such as the use of the Akra–Bazzi theorem and amortized
analysis. Various automation is built and incorporated into the auto2
prover to reason about separation logic with time credits, and to de-
rive asymptotic behaviour of functions. As case studies, we verify the
asymptotic time complexity (in addition to functional correctness) of
imperative algorithms and data structures such as median of medians
selection, Karatsuba’s algorithm, and splay trees.

Keywords: Isabelle, time complexity analysis, separation logic, pro-
gram verification

1 Introduction

In studies of formal verification of computer programs, most of the focus has been
on verifying functional correctness of a program. However, for many algorithms,
analysis of its running time can be as difficult, or even more difficult than the
proof of its functional correctness. In such cases, it is of interest to verify the
run-time analysis, that is, showing that the algorithm, or a given implementation
of it, does have the claimed asymptotic time complexity.

Interactive theorem provers are useful tools for performing such a verification,
as their soundness is based on a small trusted kernel, hence long derivations can
be made with a very high level of confidence. So far, the work of Guéneau et al.
[12, 6] appears to be the only general framework for asymptotic time complexity
analysis of imperative programs in an interactive theorem prover. The frame-
work is built in Coq, based on Charguéraud’s CFML package [5] for verifying
imperative programs using characteristic formulas.

We present a new framework1 for asymptotic time complexity analysis in
Isabelle/HOL [19]. The framework is an extension of Imperative HOL [2], which
represents imperative programs as monads. Compared to [12], we go further

1 available online at https://github.com/bzhan/Imperative_HOL_Time
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in two directions. First, we incorporate the work of Eberl [11] on the Akra–
Bazzi theorem to analyze several divide-and-conquer algorithms. Second, we
extend the auto2 prover [21] to provide substantial automation in reasoning
about separation logic with time credits, as well as deriving asymptotic behaviour
of functions.

We also make use of existing work by Nipkow [18] on analysis of amortized
complexity for functional programs. Based on this work, we verify the amortized
complexity of imperative implementations of two data structures: skew heaps
and splay trees.

Throughout our work, we place a great deal of emphasis on modular de-
velopment of proofs. As the main theorems to be proved are concerned with
asymptotic complexity rather than explicit constants, they do not depend on
implementation details. In addition, by using an ad-hoc refinement scheme sim-
ilar to that in [21], the analysis of an imperative program is divided into clearly-
separated parts: proof of functional correctness, analysis of asymptotic behaviour
of runtime functions, and reasoning about separation logic. Further separation
of concerns is used in amortized analysis.

In summary, the main contributions of this paper are as follows:

• We extend Imperative HOL and its separation logic to reason about running
time of imperative programs (Section 2.1).
• We introduce a methodology to organize the verification so that proofs can

be divided cleanly into orthogonal parts (Section 3).
• We extend the existing setup of the auto2 prover for separation logic to

also work with time credits. We also set up various automation for proving
asymptotic behaviour of functions in one or two variables (Section 4).
• We demonstrate the broad applicability of our framework with several case

studies (Section 5), including those involving advanced techniques for run-
time analysis such as the use of the Akra–Bazzi theorem (for merge sort,
median of medians selection, and Karatsuba’s algorithm) and amortized
analysis (for dynamic arrays, skew heaps, and splay trees). We also pro-
vide an example (Knapsack problem) illustrating asymptotic complexity on
two variables.

2 Background

In this section, we review some background material needed in our work. First, we
briefly describe the extension of Imperative HOL to reason about running time
of imperative programs. Then, we recapitulate the existing theory of asymptotic
complexity in Isabelle, and Eberl’s formalization of the Akra–Bazzi theorem.

2.1 Imperative HOL with time

Imperative HOL [2] is a framework for reasoning about imperative programs in
Isabelle. Lammich and Meis later constructed a separation logic for this frame-
work [17]. More details on both can be found in [16].
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Atkey [1] introduced the idea of including time credits in separation logic to
enable amortized resource analysis, in particular analysis of the running time of
a program. He also provided a formalization of the logic in Coq. In this section,
we describe how this idea is implemented by modifying Imperative HOL and its
separation logic.

Basic definitions In ordinary Imperative HOL, a procedure takes a heap (of
type heap) as input, and can either fail, or return a pair consisting of a return
value and a new heap. In Imperative HOL with time, a procedure returns in
addition a natural number when it succeeds, specifying the number of compu-
tation steps used. Hence, the type ’a Heap for a procedure with return type ’a

is given by heap ⇒ (’a × heap × nat) option.
In the separation logic for ordinary Imperative HOL, a partial heap is defined

to be a heap together with a subset of used addresses (type heap × nat set).
In our case, a partial heap can also contain a number of time credits. Hence, the
new type for partial heaps is given by pheap = (heap × nat set) × nat.

An assertion (type assn) is, as before, a mapping from pheap to bool that
does not depend on values of the heap outside the address set. The notation
((h, as), n) � P means the partial heap ((h, as), n) satisfies the assertion P . The
basic assertions have the same meaning as before, except they also require the
partial heap to contain zero time credits. In addition we define the assertion $n,
to specify a partial heap with n time credits and nothing else.

The separating conjunction of two assertions is defined as follows (differences
from original definition are marked in bold):

P ∗Q = λ((h, as),n).∃u v n1 n2.

{
u ∪ v = as ∧ u ∩ v = ∅ ∧ n1 + n2 = n ∧
((h, u),n1) � P ∧ ((h, v),n2) � Q.

That is, time credits can be split in a separation conjunction in the same way
as sets of addresses on the heap. In particular $(n+m) = $n ∗ $m.

Hoare triples A Hoare triple <P> c <Q> is a predicate of type

assn ⇒ ’a Heap ⇒ (’a ⇒ assn) ⇒ bool,

defined as follows: <P> c <Q> holds if for any partial heap ((h, as), n) satisfying
P , the execution of c on h is successful with new heap h′, return value r, and
time consumption t, such that n ≥ t, and the new partial heap ((h′, as′), n− t)
satisfies Q(r), where as′ is as together with the newly allocated addresses. With
this definition of a Hoare triple with time, the frame rule continues to hold.

Most basic commands (e.g. accessing or updating a reference, getting the
length of an array) are defined to take one unit of computation time. Commands
that operate on an entire array, for example initializing an array, or extracting
an array into a functional list, are defined to take n + 1 units of computation
time, where n is the length of the array. From this, we can prove Hoare triples
for the basic commands. We give two examples (here p 7→a xs asserts that p

points to the array xs and ↑ b asserts that b is true):
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<p 7→a xs * $1> Array.len xs <λr. p 7→a xs * ↑(r = length xs)>

<$(n + 1)> Array.new n x <λr. r 7→a replicate n x>

We define the notation <P> c <Q>t as a shorthand for <P> c <Q * true>.
The assertion true holds for any partial heap, and in particular can include any
number of time credits. Hence, a Hoare triple of the form <P*$n> c <Q>t implies
that the procedure c costs at most n time credits. We very often state Hoare
triples in this form, and so only prove upper bounds on the computation time
of the program.

2.2 Asymptotic analysis

Working with asymptotic complexity informally can be particularly error-prone,
especially when several variables are involved. Some examples of fallacious rea-
soning are given in [12, Section 2]. In an interactive theorem proving environ-
ment, such problems can be avoided, since all notions are defined precisely, and
all steps of reasoning must be formally justified.

For the definition of the big-O notation, or more generally Landau symbols,
we use the formalization by Eberl [9], where they are defined in a general form
in terms of filters, and therefore work also in the case of multiple variables.

In our work, we are primarily interested in functions of type nat⇒real (for
the single variable case) and nat×nat⇒real (for the two-variable case). Given
a function g of one of these types, the Landau symbols O(g), Ω(g) and Θ(g) are
sets of functions of the same type. In the single variable case, using the standard
filter (at top for limit at positive infinity), the definitions are as follows:

f ∈ O(g)←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≤ c · |g(n)|
f ∈ Ω(g)←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≥ c · |g(n)|
f ∈ Θ(g)←→ f ∈ O(g) ∧ f ∈ Ω(g)

In the two-variable case, we will use the product filter at top ×F at top through-
out. Expanding the definitions, the meaning of the Landau symbols are as ex-
pected:

f ∈ O2(g)←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≤ c · |g(n,m)|
f ∈ Ω2(g)←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≥ c · |g(n,m)|
f ∈ Θ2(g)←→ f ∈ O2(g) ∧ f ∈ Ω2(g)

2.3 Akra–Bazzi theorem

A well-known technique for analyzing the asymptotic time complexity of divide
and conquer algorithms is the Master Theorem (see for example [7, Chapter 4]).
The Akra–Bazzi theorem is a generalization of the Master Theorem to a wider
range of recurrences. Eberl [11] formalized the Akra–Bazzi theorem in Isabelle,
and also wrote tactics for applying this theorem in a semi-automatic manner.
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Notably, the automation is able to deal with taking ceiling and floor in recursive
calls, an essential ingredient for actual applications but often ignored in informal
presentations of the Master theorem.

In this section, we state a slightly simpler version of the result that is sufficient
for our applications. Let f : N→ R be a non-negative function defined recursively
as follows:

f(x) = g(x) +

k∑
i=1

ai · f(hi(x)) for all x ≥ x0 (1)

where x0 ∈ N, g(x) ≥ 0 for all x ≥ x0, ai ≥ 0 and each hi(x) ∈ N is either dbi ·xe
or bbi · xc with 0 < bi < 1, and x0 is large enough that hi(x) < x for all x ≥ x0.

The parameters ai and bi determine a single characteristic value p, defined
as the solution to the equation

k∑
i=1

ai · bpi = 1 (2)

Depending on the relation between the asymptotic behaviour of g and Θ(xp),
there are three main cases of the Akra–Bazzi theorem:

Bottom-heavy: if g ∈ O(xq) for q < p and f(x) > 0 for sufficiently large x, then
f ∈ Θ(xp).

Balanced: if g ∈ Θ(xp lna x) with a ≥ 0, then f ∈ Θ(xp lna+1 x).
Top-heavy: if g ∈ Θ(xq) for q > p, then f ∈ Θ(xq).

All three cases are demonstrated in our examples (in Karatsuba’s algorithm,
merge sort, and median of medians selection, respectively).

3 Organization of proofs

In this section, we describe our strategy for organizing the verification of an
imperative program together with its time complexity analysis. The strategy is
designed to achieve the following goals:

– Proof of functional correctness of the algorithm should be separate from the
analysis of memory layout and time credits using separation logic.

– Analysis of time complexity should be separate from proof of correctness.
– Time complexity analysis should work with asymptotic bounds Θ most of

the time, rather than with explicit constants.
– Compositionality: verification of an algorithm should result in a small num-

ber of theorems, which can be used in the verification of a larger algorithm.
The statement of these theorems should not depend on implementation de-
tails.

We first consider the general case and then describe the additional layer of
organization for proofs involving amortized analysis.
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3.1 General case

For a procedure with name f, we define three Isabelle functions:

f fun : The functional version of the procedure.
f impl : The imperative version of the procedure.
f time : The runtime function of the procedure.

The definition of f time should be stated in terms of runtime functions of
procedures called by f impl, in a way parallel to the definition of f impl. If
f impl is defined by recursion, f time should also be defined by recursion in the
corresponding manner.

The theorems to be proved are:

1. The functional program f fun satisfies the desired correctness property.
2. A Hoare triple stating that f impl implements f fun and runs within f time.
3. The running time f time satisfies the desired asymptotic behaviour.
4. Combining 1 and 2, a Hoare triple stating that f impl satisfies the desired

correctness property, and runs within f time.

Here the proof of Theorem 2 is expected to be routine, since the three def-
initions follow the same structure. Theorem 3 should involve only analysis of
asymptotic behaviour of functions, while Theorem 1 should involve only rea-
soning with functional data structures. In the end, Theorems 3 and 4 present
an interface for external use, whose statements do not depend on details of the
implementation or of the proofs.

We illustrate this strategy on the final step of merge sort. The definitions of
the functional and imperative programs are shown side by side below. Note that
the former is working with a functional list, while the latter is working with an
imperative array on the heap.

merge sort fun xs =

(let n = length xs in

(if n ≤ 1 then xs

else

let as = take (n div 2) xs;

bs = drop (n div 2) xs;

as’ = merge sort fun as;

bs’ = merge sort fun bs;

r = merge list as’ bs’

in r

)

)

merge sort impl X = do {
n ← Array.len X;

if n ≤ 1 then return ()

else do {
A ← atake (n div 2) X;

B ← adrop (n div 2) X;

merge sort impl A;

merge sort impl B;

mergeinto (n div 2)

(n - n div 2) A B X

}
}

The runtime function of the procedure is defined as follows:

n ≤ 1 =⇒ merge sort time n = 2

n > 1 =⇒ merge sort time n = 2 + atake time n + adrop time n +

merge sort time (n div 2) + merge sort time (n - n div 2) +

mergeinto time n
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The theorems to be proved are as follows. First, correctness of the functional
algorithm merge sort fun :

merge sort fun xs = sort xs

Second, a Hoare triple asserting the agreement of the three definitions:

<p 7→a xs * $(merge sort time (length xs))>

merge sort impl p

<λ . p 7→a merge sort fun xs>t

Third, the asymptotic time complexity of merge sort time :

merge sort time ∈ Θ(λn. n * ln n)

Finally, Theorems 1 and 2 are combined to prove the final Hoare triple for
external use, with merge sort fun xs replaced by sort xs.

3.2 Amortized analysis

In an amortized analysis, we fix some type of data structure and consider a
set of primitive operations on it. For simplicity, we assume each operation has
exactly one input and output data structure (extension to the general case is
straightforward). A potential function P is defined on instances of the data
structure and represents time credits that can be used for future operations.
Each procedure f is associated an actual runtime ft and an amortized runtime
fat. They are required to satisfy the following inequality: let a be the input data
structure of f and let b be its output data structure, then2

fat + P (a) ≥ ft + P (b). (3)

The proof of inequality (3) usually involves arithmetic, and sometimes the
correctness of the functional algorithm. For skew heaps and splay trees, the
analogous results are already proved in [18], and only slight modifications are
necessary to bring them into the right form for our use.

The organization of an amortized analysis in our framework is as follows. We
define two assertions: the raw assertion raw assn t a stating that the address a
points to an imperative data structure refining t, and the amortized assertion,
defined as

amor assn t a = raw assn t a * $(P(t)),

where P is the potential function.
For each primitive operation implemented by f, we define f fun, f impl, and

f time as before, where f time is the actual runtime. We further define a function
f atime to be the proposed amortized runtime. The theorems to be proved are
as follows (compare to the list in Section 3):

2 In many presentations, the amortized runtime fat is simply defined to be ft +P (b)−
P (a). Our approach is more flexible in allowing fat to be defined by a simple formula
and isolating the complexity to the proof of (3).



8 Bohua Zhan, Maximilian P. L. Haslbeck

1. The functional program f fun satisfies the desired correctness property.
2. A Hoare triple using the amortized assertion stating that f impl implements

f fun and runs within f atime, which is a consequence of the following:
2a. A Hoare triple using the raw assertion stating that f impl implements

f fun and runs within f time.
2b. The inequality between amortized and actual runtime.

3. The amortized runtime f atime satisfies the desired asymptotic behaviour.
4. Combining 1 and 2, a Hoare triple stating that f impl satisfies the desired

correctness property and runs within f atime.

In the case of data structures (and unlike merge sort), it is useful to state
Theorem 4 in terms of yet another, abstract assertion which hides the concrete
reference to the data structure. This follows the technique described in [21,
Section 5.3]. Theorems 3 and 4 are the final results for external use.

We now illustrate this strategy using splay trees as an example. The raw
assertion is called btree. The basic operation in a splay tree is the “splay” oper-
ation, from which insertion and lookup can be easily defined. For this operation,
the functions splay, splay impl, and splay time are defined by recursion in a
structurally similar manner. Theorem 2a takes the form:

<btree t a * $(splay time x t)>

splay impl x a

<btree (splay x t)>t

Let splay tree P be the potential function on splay trees. Then the amortized
assertion is defined as:

splay tree t a = btree t a * $(splay tree P t)

The amortized runtime for splay has a relatively simple expression:

splay atime n = 15 * (d3 * log 2 ne + 2)

The difficult part is showing the inequality relating actual and amortized runtime
(Theorem 2b):

bst t =⇒ splay atime (size1 t) + splay tree P t ≥
splay time x t + splay tree P (splay x t),

which follows from the corresponding lemma in [18]. Note the requirement that
t is a binary search tree. Combining 2a and 2b, we get Theorem 2:

bst t =⇒
<splay tree t a * $(splay atime (size1 t))>

splay impl x a

<splay tree (splay x t)>t

The asymptotic bound on the amortized runtime (Theorem 3) is:

splay atime ∈ Θ(λx. ln x)
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The functional correctness of splay (Theorem 1) states that it maintains sort-
edness of the binary search tree and its set of elements:

bst t =⇒ bst (splay a t), set tree (splay a t) = set tree t

The abstract assertion hides the concrete tree behind an existential quantifier:

splay tree set S a = (∃At. splay tree t a * ↑(bst t) * ↑(set tree t = S))

The final Hoare triple takes the form (card S denotes the cardinality of S):

<splay tree set S a * $(splay atime (card S + 1))>

splay impl x a

<splay tree set S>t

4 Setup for automation

In this section, we describe automation to handle two of the steps mentioned in
the previous section: one working with separation logic (for Theorem 2), and the
other proving asymptotic behaviour of functions (for Theorem 3).

4.1 Separation logic with time credits

First, we discuss automation for reasoning about separation logic with time
credits. This is an extension of the setup discussed in [21] for reasoning about
ordinary separation logic. Here, we focus on the additional setup concerning time
credits.

The basic step in the proof is as follows: suppose the current heap satisfies
the assertion P * $T and the next command has the Hoare triple

<P ′ * $T ′ * ↑ b> c <Q>

where b is the pure part of the precondition, apply the Hoare triple to derive
the successful execution of c, and some assertion on the next heap. In ordinary
separation logic (without $T and $T ′), this involves matching P ′ with parts
of P , proving the pure assertions b, and then applying the frame rule. In the
current case, we additionally need to show that T ′ ≤ T , so $T can be rewritten
as $T = $(T ′ + T ′′) = $T ′ ∗ $T ′′.

In general, proving this inequality can involve arbitrarily complex arguments.
However, due to the close correspondence in the definitions of f time and f impl,
the actual tasks usually lie in a simple case, and we tailor the automation to
focus on this case. First, we normalize both T and T ′ into polynomial form:

T = c1p1 + · · ·+ cmpm, T ′ = d1q1 + · · ·+ dnqn, (4)

where each ci and dj are constants, and each pi and qj are non-constant terms
or 1. Next, for each term djqj in T ′, we try to find some term cipi in T such that
pi equals qj according to the known equalities, and dj ≤ ci. If such a term is
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found, we subtract djpi from T . This procedure is performed on T in sequence
(so d2q2 is searched on the remainder of T after subtracting d1q1, etc). If the
procedure succeeds with T ′′ remaining, then we have T = T ′ + T ′′.

The above procedure suffices in most cases. For example, given the parallel
definitions of merge sort impl and merge sort time in Section 3.1, it is able to
show that merge sort impl runs in time merge sort time. However, in some spe-
cial cases, more is needed. The extra reasoning often takes the following form: if
s is a term in the normalized form of T , and s ≥ t holds for some t (an inequality
that must be derived during the proof), then the term s can be replaced by t in
T .

In general, we permit the user to provide hints of the form

@have "s ≥t t",

where the operator · ≥t · is equivalent to · ≥ ·, used only to remind auto2 that the
fact is for modification of time credit only. Given this instruction, auto2 attempts
to prove s ≥ t, and when it succeeds, it replaces the assertion hi � P ∗ $T on
the current heap with hi � P ∗ $T ′ ∗ true, where the new time credit T ′ is the
normalized form of T − s + t. This technique is needed in case studies such as
binary search and median of medians selection (see the explanation for the latter
in Section 5).

4.2 Asymptotic analysis

The second part of the automation is for analysis of asymptotic behaviour of
runtime functions. Eberl [9] already provides automation for Landau symbols in
the single variable case. In addition to incorporating it into our framework, we
add facilities for dealing with function composition and the two-variable case.

Because side conditions for the Akra–Bazzi theorem are in the Θ form, we
mainly deal with Θ and Θ2, stating the exact asymptotic behaviours of running
time functions. However, since running time functions themselves are very often
only upper bounds of the actual running times, we are essentially still proving
big-O bounds on running times of programs.

In our case, the general problem is as follows: given the definition of f time(n)

in terms of some g time(s(n)) (runtime of procedures called by f impl), simple
terms like 4n or 1, or recursive calls to f time, determine the asymptotic be-
haviour of f time.

To begin with, we maintain a table of the asymptotic behaviour of previously
defined runtime functions. The attribute asym bound adds a new theorem to this
table. This table can be looked-up by the name of the procedure.

We restrict ourselves to asymptotic bounds of the form

polylog(a, b) = (λn. na(lnn)b),

where a and b are natural numbers. In the two-variable case, we work with
asymptotic bounds of the form

polylog2(a, b, c, d) = (λ(m,n). polylog(a, b)(m) · polylog(c, d)(n)).
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This suffices for our present purposes and can be extended in the future.
Note that this restriction does not mean our framework cannot handle other
complexity classes, only that they will require more manual proofs (or further
setup of automation).

Non-recursive case When the runtime function is non-recursive, the analysis
proceeds by determining the asymptotic behaviour in a bottom-up manner.

To handle terms of the form g time(s(n)) where s is linear, we use the
following composition rule: if u ∈ Θ(polylog(a, b)), and v ∈ Θ(λn. n), then
u ◦ v ∈ Θ(polylog(a, b)). Composition in general is quite subtle: the analogous
rule does not hold if u is the exponential function3.

The asymptotic behaviour of a sum is determined by the absorption rule: if
g1 ∈ O(g2), then Θ(g1 + g2) = Θ(g2). Here, we make use of existing automation
in [9] for deciding inclusion of big-O classes of polylog functions. The rule for
products is straightforward.

The combination of these three rules can solve many examples automatically.
E.g. this (artificial) example: if f1 ∈ Θ(λn. n) and f2 ∈ Θ(λn. lnn), then

(λn. f1(n+ 1) + n · f2(2n) + 3n · f2(n div 3)) ∈ Θ(λn. n lnn).

Analogous results are proved in the two-variable case (note that unlike in
the single variable case, not all pairs of polylog2 functions are comparable. e.g.
O(m2n+mn2)). For example, the following can be automatically solved: if ad-
ditionally f3 ∈ Θ(λ(m,n). mn) and f4 ∈ Θ(λ(m,n). m+ n), then

(λ(m,n). f1(n) + f2(m) +mn+ f3(m div 3, n+ 1)) ∈ Θ(λ(m,n). mn).

(λ(m,n). 1 + f1(n) + f2(m) + f4(m+ 1, n+ 1)) ∈ Θ(λ(m,n). m+ n).

Recursive case There are two main classes of results for analysis of recursively-
defined runtime functions: the Akra–Bazzi theorem and results about linear
recurrences. For both classes of results, applying the theorem reduces the analysis
of a recursive runtime function to the analysis of a non-recursive function, which
can be solved using automation described in the previous part.

The Akra–Bazzi theorem is discussed in Section 2.3. Theorems about linear
recurrences allow us to reason about for-loops written as recursions. They include
the following: in the single variable case, if f is defined by induction as

f(0) = c, f(n+ 1) = f(n) + g(n),

where g ∈ Θ(λn. n), then f ∈ Θ(λn. n2).
In the two-variable case, if f satisfies

f(0,m) ≤ C, f(n+ 1,m) = f(n,m) + g(m)

where g ∈ Θ(λn. n), then f ∈ Θ2(λ(n,m). nm).

3 https://math.stackexchange.com/questions/761006/big-o-and-function-composition
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As an example, consider the problem of showing Θ(λn. n * ln n) complexity
of merge sort time, defined in Section 3.1. This applies the balanced case of the
Akra–Bazzi theorem. Using this theorem, the goal is reduced to:

(λn. 2 + atake time n + adrop time n + mergeinto time n) ∈ Θ(λn. n)

(the non-recursive calls run in linear time). This can be shown automatically us-
ing the method described in the previous section, given that atake time, adrop time,
and mergeinto time have already been shown to be linear.

5 Case studies

In this section, we present the main case studies verified using our framework.
The examples can be divided into three classes: divide-and-conquer algorithms
(using the Akra–Bazzi theorem), algorithms that are essentially for-loops (using
linear recurrences), and amortized analysis.

We measure the complexity of a proof by counting the number of steps in
the proof: each lemma statement counts as one step and each hint provided by
the user as an additional step. In the table below, #Hoare counts the number
of steps for proving the Hoare triples (Theorems 2 and 4). #Time counts the
number of steps for reasoning about runtime functions (Theorem 3). We also
list the ratio (Ratio) between the sum of #Hoare and #Time to the number of
lines of the imperative program (#Imp). This ratio measures the overhead for
verifying the imperative program with runtime analysis. In particular this does
not include verifying the correctness of the functional program (Theorem 1). In
addition we list the total lines of code for each case study.

#Imp #Time #Hoare Ratio LOC

Binary search 11 10 14 2.18 82
Merge sort 38 11 12 0.61 121
Karatsuba 58 18 28 0.79 250
Select 51 41 31 1.41 447
Insertion sort 15 3 4 0.47 42
Knapsack 27 9 8 0.63 113
Dynamic array 55 19 37 1.02 424
Skew heap 25 38 21 2.36 257
Splay tree 120 51 37 0.73 447

Using our automation the average overhead ratio is slightly over 1. On a dual-core
laptop with 2GHz each, processing all the examples takes around ten minutes.
The development of the case studies, together with the framework itself, took
about 4 person months.

Next we give details for some of the case studies.

Karatsuba’s algorithm The functional version of Karatsuba’s algorithm for
multiplying two polynomials is verified in [8]. To simplify matters, we further
restrict us to the case where the two polynomials are of the same degree.
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The recursive equation is given by:

T (n) = 2 · T (dn/2e) + T (bn/2c) + g(n). (5)

Here g(n) is the sum of the running times corresponding to non-recursive calls,
which can be automatically shown to be linear in n. Then the Akra–Bazzi method
gives the solution T (n) ∈ Θ(nlog23) (bottom-heavy case).

Median of medians selection Median of medians for quickselect is a worst-
case linear-time algorithm for selecting the i-th largest element of an unsorted
array [7, Section 9.3]. In the first step of the algorithm, it chooses an approximate
median p by dividing the array into groups of 5 elements, finding the median
of each group, and finding the median of the medians by a recursive call. In
the second step, p is used as a pivot to partition the array, and depending on i
and the size of the partitions, a recursive call may be made to either the section
x < p or the section x > p. This algorithm is particularly interesting because its
runtime satisfies a special recursive formula:

T (n) ≤ T (dn/5e) + T (d7n/10e) + g(n), (6)

where g(n) is linear in n. The Akra–Bazzi theorem shows that T is linear (top-
heavy case).

Eberl verified the correctness of the functional algorithm [10]. There is one
special difficulty in verifying the imperative algorithm: the length of the array
in the second recursive call is not known in advance, only that it is bounded
by d7n/10e. Hence, we need to prove monotonicity of T , as well as provide the
hint T (d7n/10e) ≥t T (l) (where l is the length of the array in the recursive call)
during the proof.

Knapsack The dynamic programming algorithm solving the Knapsack problem
is used to test our ability to handle asymptotic complexity with two variables.
The time complexity of the algorithm is Θ2(nW ), where n is the number of items,
and W is the capacity of the sack. Correctness of the functional algorithm was
proved by Simon Wimmer.

Dynamic array Dynamic Arrays [7, Section 17.4] are one of the simpler amor-
tized data structures. We verify the version that doubles the size of the array
whenever it is full (without automatically shrinking the array).

Skew heap and splay tree For these two examples, the bulk of the analysis
(functional correctness and justification of amortized runtime) is done in [18].
Our work is primarily to define the imperative version of the algorithm and
verifying its agreement with the functional version. Some work is also needed to
transform the results in [18] into the appropriate form, in particular rounding
the real-valued potentials and runtime functions into natural numbers required
in our framework.
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6 Related work

We compare our work with recent advances in verification of runtime analysis of
programs, starting from those based on interactive theorem provers to the more
automatic methods.

The most closely-related is the impressive work by Guéneau et al. [12] for
asymptotic time complexity analysis in Coq. We now take a closer look at the
similarities and differences:

– Guéneau et al. give a structured overview of different problems that arise
when working informally with asymptotic complexity in several variables,
then solve this problem by rigorously defining asymptotic domination (which
is essentially f ∈ O(g)) with filters and develop automation for reasoning
about it. We follow the same idea by building on existing formalization of
Landau symbols with filters in Isabelle [9], then extend automation to also
handle the two-variable case.

– While they package up the functional correctness together with the complex-
ity claims into one predicate specO, we choose to have two separate theorems
(the Hoare triple and the asymptotic bound).

– While their automation assists in synthesizing recurrence equations from
programs, they leave their solution to the human. In contrast, we write the
recurrence relation by hand, which can be highly non-obvious (e.g. in the
case of median of medians selection), but focus on solving the recurrences for
the asymptotic bounds automatically (e.g. using the Akra–Bazzi theorem).

– Their main examples include binary search, the Bellman–Ford algorithm and
union-find, but not those requiring applications of the Master theorem or the
Akra–Bazzi method. We present several other advanced examples, includ-
ing applications of the Akra–Bazzi method, and those involving amortized
analysis.

Wang et al. [20] present TiML, a functional programming language which
can be annotated by invariants and specifically also with time complexity an-
notations in types. The type checker extracts verification conditions from these
programs, which are handled by an SMT solver. They also make the observa-
tion that annotational burden can be lowered by not providing a closed form
for a time bound, but only specifying its asymptotic behaviour. For recursive
functions, the generated VCs include a recurrence (e.g. T (n − 1) + 4n ≤ T (n))
and one is left to show that there exists a solution for T which is additionally
in some asymptotic bound, e.g. O(n2). By employing a recurrence solver based
on heuristic pattern matching they make use of the Master Theorem in order
to discharge such VCs. In that manner they are able to verify the asymptotic
complexity of merge sort. Additionally they can handle amortized complexity,
giving Dynamic Arrays and Functional Queues as examples. Several parts of
their work rely on non-verified components, including the use of SMT solvers
and the pattern matching for recurrence relations. In contrast, our work is veri-
fied throughout by Isabelle’s kernel.
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On the other end of the scale we want to mention Automatic Amortized
Resource Analysis (AARA). Possibly the first example of a resource analysis
logic based on potentials is due to Hofmann and Jost [15]. They pioneer the
use of potentials coded into the type system in order to automatically extract
bounds in the runtime of functional programs. Hoffmann et al. successfully de-
veloped this idea further [13, 14]. Carbonneaux et al. [4, 3] extend this work to
imperative programs and automatically solve extracted inequalities by efficient
off-the-shelf LP-solvers. While the potentials involved are restricted to a specific
shape, the analysis performs well and at the same time generates Coq proof
objects certifying their resulting bounds.

7 Conclusion

In this paper, we presented a framework for verifying asymptotic time complexity
of imperative programs. This is done by extending Imperative HOL and its sep-
aration logic with time credits. Through the case studies, we demonstrated the
ability of our framework to handle complex examples, including those involv-
ing advanced techniques of time complexity analysis, such as the Akra–Bazzi
theorem and amortized analysis. We also showed that verification of amortized
analysis of functional programs [18] can be converted to verification of imperative
programs with little additional effort.

One major goal for the future is to extend Imperative HOL with while and for
loops, and add facilities for reasoning about them (both functional correctness
and time complexity). Ultimately, we would like to build a single framework in
which all deterministic algorithms typically taught in undergraduate study (for
example, those contained in [7]) can be verified in a straightforward manner.

The Refinement Framework by Lammich [16] is a framework for stepwise re-
finement from specifications via deterministic algorithms to programs written in
Imperative HOL. It would certainly be interesting to investigate how to combine
this stepwise refinement scheme with runtime analysis.
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