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Abstract. The successes of machine learning in recent years have triggered a fast
growing range of applications. In important settings, including safety critical ap-
plications and when transparency of decisions is paramount, accurate predictions
do not suffice; one expects the machine learning model to also explain the pre-
dictions made, in forms understandable by human decision makers. Recent work
proposed explainable models based on decision sets which can be viewed as un-
ordered sets of rules, respecting some sort of rule non-overlap constraint. This
paper investigates existing solutions for computing decision sets and identifies a
number of drawbacks, related with rule overlap and succinctness of explanations,
the accuracy of achieved results, but also the efficiency of proposed approaches.
To address these drawbacks, the paper develops novel SAT-based solutions for
learning decision sets. Experimental results on computing decision sets for rep-
resentative datasets demonstrate that SAT enables solutions that are not only the
most efficient, but also offer stronger guarantees in terms of rule non-overlap.

1 Introduction
Machine learning (ML) has witnessed remarkable progress and important successes

in recent years [18, 22, 28]. In some settings, predictions made by machine learning al-
gorithms should provide explanations, preferably explanations that can be interpreted
(or understood) by human decision makers. Concrete examples include safety-critical
situations, but also when transparency of decisions is paramount. The importance of
explainable AI (XAI), i.e. the problem of associating explanations with ML predic-
tions, is underscored by recent research [2, 21, 42], by ongoing research programs [9],
by EU-level legislation which is expected to enforce the automated generation of ex-
planations [11], and also by a number of meetings on computing explainable ML mod-
els [16, 17, 30].

An often used approach to provide explanations for ML predictions is to resort to
some sort of logic-related model, including rule/decision lists, rule/decision sets, and
decision trees [2, 21]. These logic-related models can in most cases associate expla-
nations with predictions, represented as conjunctions of literals, that follow from the
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actual model representation. Clearly, the smaller the model representation, the simpler
the explanations are likely to be, and so easier to understand by human decision makers.

Recent approaches include the computation of (smaller or smallest) rule lists [2,42],
the computation of decision sets [21], but also the computation of decision trees [3].
Rule lists impose an order of the rules [35], whereas decision sets do not. Clearly,
from an interpretability perspective, decision sets are the most appealing since each
prediction depends only on the literals associated with each rule. On the negative side,
decision sets can exhibit rule overlap, and so may require decisions to be made when
more than one class is predicted. Furthermore, even restricted forms of rule learning are
well-known to be hard for NP [35].

This paper analyzes recent work on computing interpretable decision sets [21]. The
paper highlights a number of drawbacks of the proposed approach, related with rule
overlap, the generation of explanations, but also with the scalability of the approach.
The paper then investigates three main topics. The first topic is the proposal of a rigorous
definition of rule overlap. The paper relates this new definition with earlier work, and
conjectures that solving the problem of overlap when learning optimal (in size) decision
sets is hard for the second level of the polynomial hierarchy. The paper then proposes a
number of variants of learning decision sets with less demanding constraints on overlap,
and shows that these variants are instead hard for NP. The second topic is the issue
of generating explanations for predictions. The paper shows that different models for
learning decision sets provide different forms of computing explanations, thus enabling
the generation of explanations in most settings. The third topic is to develop different
propositional models for learning optimal decision sets. The proposed models build on
earlier work on inductive inference [19], but introduce a number of variants, allowing
for multiple classes, and also accommodating different overlap constraints. Moreover,
the paper shows that all these models exhibit symmetries in the problem formulation,
and so predicates breaking these symmetries can be used for improving performance.

The paper is organized as follows. Section 2 introduces the definitions and notation
used in the remainder of the paper. The issue of overlap and explanation generation
is investigated in Section 3. Propositional models for learning decision sets subject to
different constraints on overlap are proposed in Section 4. Section 5 analyzes the perfor-
mance of the proposed approach on representative datasets, and compares with earlier
work [21]. Section 6 concludes the paper.

2 Preliminaries
This section briefly overviews Boolean Satisfiability (SAT), the classification prob-

lem in ML, and the learning of decision sets (DS). Throughout the paper, the notation
[R] is used to denote the set of natural numbers {1, . . . , R}, moreover, for a point f in
some K-dimensional space, the rth coordinate is given by f [r].

Boolean Satisfiability (SAT). We assume notation and definitions standard in the area
of SAT [4]. Formulas are represented in Conjunctive Normal Form (CNF) and defined
over a set of variables X = {x1, . . . , xn}. A formula F is a conjunction of clauses, a
clause is a disjunction of literals, and a literal is a variable xi or its complement ¬xi.
Where appropriate, formulas are viewed as sets of sets of literals. CNF encodings of car-
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Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

(a) A classification example

if ¬Meeting then Hike
if ¬Vacation then ¬Hike

(b) Decision set with some overlap

if Vacation then Hike
if ¬Vacation then ¬Hike

(c) Decision set with no overlap
Fig. 1: A classification example and its decision set

dinality constraints have been studied extensively, and will be assumed throughout [4].
Moreover, standard clausification techniques are assumed [39].

Classification problems. We follow the notation used in earlier work [3, 21]. We
consider a set of features F = {f1, . . . , fK}, all of which are assumed to be binary,
taking a value in {0, 1}. When necessary, the fairly standard one-hot-encoding [32] is
assumed for handling non-binary categorical features. Numeric features can be handled
with standard techniques as well. Since all features are binary, a literal on a feature fr
will be represented as fr, denoting that the feature takes value 1, i.e. fr = 1, or as ¬fr,
denoting that the feature takes value 0, i.e. fr = 0. Hence, the space of features (or
feature space [14]) is U ,

∏K
r=1{fr,¬fr}.

To learn a classifier, one starts from given training data (also referred to as examples
or samples) E = {e1, . . . , eM}. Examples are associated with classes taken from a set
of classes C. The paper focuses mostly on binary classification, i.e. C = {c0, c1}. (We
will associate c0 with 0 and c1 with 1, for simplicity.) Thus, E is partitioned into E+
and E−, denoting the examples classified as positive (c1 = 1) and as negative (c0 = 0),
respectively. Each example eq ∈ E is represented as a 2-tuple (πq, ςq), where πq ∈ U
denotes the literals associated with the example and ςq ∈ {0, 1} is the class to which the
example belongs. We have ςq = 1 if eq ∈ E+ and ςq = 0 if eq ∈ E−. A literal lr on a
feature fr, lr ∈ {fr,¬fr}, discriminates an example eq iff πq[r] = ¬lr, i.e. the feature
takes the value opposite to the value in the set of literals of the example. Moreover,
we assume a mapping from feature values to classes, µ : U → C, i.e. we require
consistency in the examples. Alternatively, we could allow for possible inconsistencies
in the examples, by associating examples with elements of a relation ρ ⊆ U × C.

Details on how to handle the extensions to this basic formulation, including non-
binary features, the handling of non-binary classes, and allowing for inconsistent exam-
ples, are beyond the scope of this paper but are discussed in later sections. Furthermore,
in this paper we assume that all features are specified for all examples; the work can be
generalized for situations where the value of some features for some examples is left
unspecified.

In the remainder of the paper, we will also consider non-conflicting subsets of L ,
∪Kr=1{fr,¬fr}, such that a subset of L is non-conflicting if for all features fr, the
literals fr and ¬fr do not both occur in that subset. When referring to the actual data
points representing the examples in E , we use the notation f , with f ∈

∏K
r=1{fr,¬fr}.
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Example 1. Figure 1a shows a simple classification example. The set of binary features
is F = {f1, f2, f3, f4} with f1 , V, f2 , C, f3 , M, and f4 , E. Example e1 is
represented by the 2-tuple (π1, ς1), with π1 = (¬V,¬C,M,¬E) and ς1 = 0. Moreover,
the literals V, C, ¬M and E discriminate e1. For this classification example, we have
U = {V,¬V} × {C,¬C} × {M,¬M} × {E,¬E}.

The objective of classification is to learn some function φ̂ which matches the actual
function φ on the training data and generalizes suitably well on unseen test data [13,14,
27, 34]. In this paper, we seek to learn representations of φ̂ corresponding to decision
sets (DS). Many other representations have been studied, including decision trees [34],
rule lists [2], and sums of terms (i.e. DNF) [15,41], among others. These are of interest,
including for XAI, but are beyond the scope of this work.
Related work. Rule learning, as a form of covering problem, can be traced back to the
1960s [26]. Rule learning finds important applications in ML and Data Mining (DM),
and it is a standard topic in ML and DM textbooks [13, 14, 27]. Although rule learning
has been investigated at the propositional and predicate levels, in different settings, the
focus of this paper is the optimal learning of propositional rules. Rules can be organized
as lists, being referred to as rule (or decision) lists, or as sets, being also referred to
as rule (or decision) sets. The difference between the two representations is that lists
impose an order on the rules, and sets do not. It is well-known that learning optimal
rule lists is NP-hard [20]. As a result, most algorithms for learning rule lists or sets
are heuristic [7, 8, 33, 34], being in general efficient to run, but providing essentially
no guarantees in terms of the quality of the computed rules. Recent work has focused
on developing small or optimal rule (or decision) lists [2], but also rule (or decision)
sets [21]. The focus of the paper is the learning of decision sets, and so we investigate
in more detail the recently proposed IDS (interpretable decision sets) approach [21].

3 Learning Explainable Decision Sets
This section introduces, but also generalizes, the definitions proposed in earlier

work [21] for the problem of learning decision sets.

Definition 1 (Itemset). Given F , an itemset π is an element of I ,
∏K
r=1{fr,¬fr, u},

where u represents a don’t care value. Where applicable, an itemset π is also interpreted
as the conjunction of the coordinates different from u, i.e. the specified literals of π.

Clearly, an itemset represents a cube in theK-dimensional feature space. Moreover,
a K-dimensional point in feature space is also a (completely specified) itemset.
Definition 2 (Clashing itemsets). Given two itemsets π1, π2 ∈ I, the two itemsets
clash, written π1∩π2 = ∅, if and only if there exists a coordinate r such that π1[r] = fr
and π2[r] = ¬fr, or π1[r] = ¬fr and π2[r] = fr.
Definition 3 (Rule). A rule is a 2-tuple (π, ς), where π ∈ I is an itemset, and ς ∈ C is
a class. Moreover, a rule (π, ς) is to be interpreted as follows:

IF the specified literals in π are true, THEN pick class ς

Rules can and have been used in different settings [13,14,27]. This paper considers
the use of rules as the building block of decision sets.
Definition 4 (Decision Sets). Given a set of (binary) features F , defining a feature
space U , and a set of classes C, a decision set S is a finite set of rules.
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Given a decision set S, there may exist points in feature space not covered by S. An
often used (optional) solution is to consider a default rule, which applies whenever the
disjunction of the conjunctions of literals associated with each rule of S takes value 0.
Definition 5 (Default rule D). A rule of the form D , (∅, ς) denotes the default rule
of a decision set S, applicable when all the other rules take value 0 on a given point of
feature space. The class selected is ς .
Example 2. Referring back to Example 1, Figure 1b shows an example of a decision
set for the dataset of Figure 1a, whereas Figure 1c shows a different decision set. (The
difference between the two relates with the notion of overlap to be introduced below.)
Moreover, for the first decision set (see Figure 1b), a (necessary) default rule could be
(∅, 0). For example, for the feature space point (V,C,M,E) we can now say that the
class, due to the default rule, is 0.

In contrast with earlier work [21], we consider generalized forms of cover, subject
to subsets of the feature space.
Definition 6 (X -Cover). Given X ⊆ U and an itemset, the X -cover of the itemset is
the set of feature space points in X with a non-empty intersection with the itemset. The
cover of the default rule D is the set of points in feature space not covered by any of the
other rules of a decision set.

Earlier work [21] considers a less general definition of cover, where X corresponds
to the training data E . Overlap between two rules assesses whether the set of points
covered by two rules intersect. Overlap has been investigated recently in the context of
learning decision sets [21]. This earlier work focused on overlap solely with respect to
the training data, i.e. the starting set of examples, providing no guarantees on any other
point of feature space. As a result, and in contrast with earlier work [21], we consider
generalized forms of overlap, subject to subsets of the feature space.
Definition 7 (X -overlap). Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap in X ⊆ U
iff, ∃ f ∈ X . f ∩ π1 6= ∅ and f ∩ π2 6= ∅ (1)

Observe that the simpler definition, requiring π1∩π2 6= ∅, would not enable restrict-
ing overlap to specific subsets of U . Furthermore, the definition of overlap considered
in earlier work [21] corresponds to E-overlap.

The above definition can be qualified with ⊕ or 	, depending if we are concerned
with overlap where the classification agrees (⊕), i.e. all rules whose bodies are not false
predict the same class, or disagrees (	), i.e. there exist rules whose bodies are not false
that do not predict the same class.

More importantly, the proposed formulation of overlap enables investigating the
quality of decision sets in points of feature space not covered by the initial set of ex-
amples. We will be mostly concerned with U	-overlap between pairs of rules with
different classifications, aiming to eliminate such overlap. We will be less concerned
with U⊕-overlap, but this can also be deemed of interest [21].
Example 3. With respect to Example 1 and the decision set shown in Figure 1b there is
no E-overlap, but there is overlap in feature space. For the point (¬V,¬C,¬M,¬E) ∈ U
we have 	 overlap. Moreover, the decision set in Figure 1c exhibits no overlap.

Generating succint explanations. For a rule (π, ς), its explanation is the conjunction
of literals in π. Thus, for any point in feature space for which there exists no 	 overlap,
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we can simply pick one of the rules consistent with that point as the explanation for the
prediction. In this situation, we refer to the explanation as offline (or explicit). Moreover,
assuming there is no 	 overlap and that all points in feature space are covered by some
rule, then the set of rules provides a succint representation of the explanations of the
predictions made. If there exists 	 overlap, then one can simply pick one of the rules
for which the itemset takes value 1, and list the itemset as an explanation. One additional
case, is when some point in feature space is not covered by any rule in a decision set. In
this case, one resorts to a default rule D = (∅, ς), which has no immediate explanation.
Nevertheless, it is still possible to provide explanations, albeit the set of justifications
can no longer be represented succintly. We consider a point f in feature space such
that no rule is applicable, and so the default rule is used. For each rule ri = (πi, ςi),
there must exist one literal li,k that falsifies the itemset πi. As a result, an explanation
for selecting the default rule can be constructed by picking one falsified literal from
each itemset of each rule with a class that is not consistent with the class associated
with the default rule. We refer to these explanations as online (or implicit). Clearly, the
explanation will depend on each point on feature space not covered by the other rules,
but we are still able to produce explanations.
Example 4. We consider again Example 1 and the decision set in Figure 1b, assuming
a default rule (∅, 0). For the point in feature space (V,C,M,E) the prediction will be
0 (i.e. ¬H), due to the default rule. Moreover, since the prediction will be 0, then we
pick a 0-valued literal from the rules that would predict a different class, M in this case
for the first rule. Thus, we can provide the explanation {M}; i.e. any time there is a
meeting, then we will not take the hike.

4 Learning Decision Sets with SAT
This section develops different SAT models for learning decision sets. We can as-

sociate a Boolean function E0 with E−, which takes value 1 for each point in feature
space associated with E−, i.e. each combination of binary features that represents an
example in E− is a minterm of E0. Similarly, we associate a Boolean function E1 with
E+, which takes value 1 for each point in the feature space associated with E+. More-
over, each combination of binary features that represents an example in E+ is a minterm
of E1. Clearly, our working hypothesis is that E0 ∧ E1 �⊥, i.e. the examples repre-
sent a mapping. As shown below, the minimum decision set problem can be formalized
in different ways. This paper considers a general formalization of the minimum deci-
sion set problem, in terms of computing two sets of terms F 0 and F 1, i.e. two DNF
representations, and is defined as follows:
Definition 8. [MINDSET, MINDS0] Let 〈E−, E+〉 be a 2-tuple of examples associated
with two distinct classes, c0 and c1, and each represented by Boolean functions E0

and E1, respectively. MINDS0 is the problem of finding the smallest DNF representa-
tions of Boolean functions F 0 and F 1, measured in the number of terms, such that: (i)
E0 �F 0; (ii) E1 �F 1; and (iii) F 1↔F 0 �⊥.

Observe that condition (iii) above ensures that a decision set is computed (1) ex-
hibiting no U	-overlap and (2) covering the complete feature space U . This should be
compared with the substantially less demanding constraint of E-overlap investigated
in earlier work [21]. Moreover, the cost of the DNF representation could be measured
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in terms of the number of literals. The paper considers the cost in terms of the num-
ber of terms (or rules), but it is straightforward to extend to considering also literals.
Alternatives to take the number of literals into account are investigated in Section 5.
Lemma 1. For any decision set respecting Definition 8, it holds that (i) F 0 ∧ E1 �⊥;
and (ii) F 1 ∧ E0 �⊥.
Proposition 1. The decision version of MINDS0 is in Σp

2.
Proof. (Sketch) Given some size threshold T , simply guess the terms of the two DNFs,
F 0 and F 1, using no more than T terms, and then check that, for every assignment, the
values of F 0 and F 1 differ. Clearly, this can be encoded as a 2QBF formula.

Furthermore, the decision version of the MINDS0 problem is apparently hard for
Σp

2. For example, if we minimize E0 to a DNF F 0, then computing the smallest DNF
F 1 subject to F 0 is a well-known Σp

2-hard problem [40].
Conjecture 1. MINDS0 is hard for Σp

2.
The proof (or disproof) of this conjecture is left as future work. Given the above, we

can envision the following optimization problems, studied in the remainder of the paper,
which result from relaxing the constraint F 1↔F 0 �⊥ of MINDS0, thus achieving
hardness for NP:
1. MINDS4: Minimize F 0, given F 1 ≡ E1 constant, and such that (i) E0 �F 0; and

(ii) F 0 ∧ E1 �⊥.
2. MINDS3: Same as above, but for F 1 given F 0 ≡ E0 constant.
3. MINDS2: Minimize both F 0 and F 1, such that (i)E0 �F 0; (ii)E1 �F 1; (iii) F 0∧
E1 �⊥; and (iv) F 1 ∧ E0 �⊥.

4. MINDS1: Minimize F 0 and F 1, such that (i) E0 �F 0; (ii) E1 �F 1; and (iii) F 1 ∧
F 0 �⊥.
Observe that all of the above problems are weakened versions of MINDS0, the main

difference being the constraints on the functions associated with E0 and E1. Among
MINDSi, i 6= 0, MINDS1 imposes the most severe constraint, ensuring no U	-overlap
takes place, although there may be points for which both F 0 and F 1 take value 0.
Proposition 2. The decision versions of the optimization problems MINDS1, MINDS2,
MINDS3 and MINDS4 above are complete for NP.
Proof. (Sketch) The simplest solution is to use earlier results [36, 40] to argue that the
decision versions of MINDS3 and MINDS4 are complete for NP. (Earlier work [19]
claims NP-hardness, but citing references that do not actually prove the result.)
It is easy to reduce MINDS3 or MINDS4 to MINDS1 or MINDS2; i.e. simply ignore
the other computed function. Moreover, we show below that the decision versions of
MINDS1 and MINDS2 are in NP, by reducing these problems to SAT. Thus, complete-
ness of MINDS1 and MINDS2 follows.
Example 5. With respect to Example 1, the decision set shown in Figure 1b respects
MINDS2, MINDS3 and MINDS4, whereas the decision set of Figure 1b also respects
MINDS1 and MINDS0.

In the sections below we investigate SAT-based models for computing decision
sets, under one of the relaxed optimization models MINDS1, MINDS2, MINDS3 or
MINDS4. Moreover, we investigate symmetry breaking properties of the problem for-
mulation, which can be used for constraining any of these models.
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4.1 SAT Models for MINDS3 & MINDS4

This section details SAT models for solving MINDS3. With minor modifications,
similar models can be devised for MINDS4. The purpose of MINDS3 is to find a
minimum-size representation of F 1, subject to a non-U	-overlap constraint with re-
spect toE0. To solve this problem, a number of propositional models can be envisioned.
We first investigate a model proposed in the literature [19,37,38]. Afterwards, we detail
a new model, aiming at better performance when using SAT solvers. Both propositional
models encode the decision problem of MINDS3: can F 1 be represented withN terms?
The model considers a grid of N by K entries, each row of K entries denoting the rep-
resentation of the condition of a rule or, alternatively, a term in the DNF representation
of F 1, for a total of N terms. Throughout this section, it holds that 1 ≤ j ≤ N and
1 ≤ r ≤ K, with q associated with some example eq from E , E− or E+.
An existing SAT model. One model, proposed by Kamath et al. [19], assumes the
representation of a Boolean function in terms of K-dimensional points describing the
functions ON-set and the OFF-set, respectively E1 and E0 in our case.

The variables used in the propositional representation are:
– pjr = 1 iff xi not included in term j.
– p′jr = 1 iff ¬xi not included in term j.
– slqjr: replace either with p′jr if feature fr occurs positively in eq ∈ E+, or with pjr

if feature fr occurs negatively in eq ∈ E+.
– crjq = 1 iff rule j covers eq ∈ E+.

Furthermore, the constraints proposed in [19] can be translated as follows:
1. One of pjr and p′jr must be true:

(pjr ∨ p′jr) j ∈ [N ] ∧ r ∈ [K] (2)
2. Each negative example eq ∈ E−, with a set of positive features Pq and a set of

negative features Nq , must be discriminated by every term:(∨
r∈Pq

¬p′jr ∨
∨
r∈Nq

¬pjr
)

j ∈ [N ] ∧ eq ∈ E− (3)

3. Each positive example must be covered:
– Constraint for a term not covering a positive example:

(slqjr ∨ ¬crjq) j ∈ [N ] ∧ r ∈ [K] ∧ eq ∈ E+ (4)
– Each positive example must be covered by some term:(

N∨
j=1

crjq

)
eq ∈ E+ (5)

Analysis of the constraints yields the following:
Proposition 3. The model uses O(N ×M ×K) clauses and literals.
An alternative model. In contrast with the model of Kamath et al. [19], we propose a
model with a different semantics for some of the variables, and a few additional clauses,
to elicit propagation. As shown by the experimental results, the motivation has been to
devise a model for which the computed solutions are (heuristically) easier to interpret,
by specifying fewer literals.

The sets of variables to use are the following:
– sjr: whether for rule j, a literal in feature r is to be skipped.
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– ljr: literal on feature r for rule j, in the case the feature is not skipped.
– d0jr: whether feature r of rule j discriminates value 0.
– d1jr: whether feature r of rule j discriminates value 1.
– crjq: whether (used) rule j covers eq ∈ E+.

(Observe that this variable is also used in the existing model [19].)
The constraints encoding MINDS3 are:

1. Each term must have some literals:(
K∨
r=1
¬sjr

)
j ∈ [N ] (6)

2. One must be able to account for which literals are discriminated by which rules:
d0jr↔¬sjr ∧ ljr j ∈ [N ] ∧ r ∈ [K]

d1jr↔¬sjr ∧ ¬ljr j ∈ [N ] ∧ r ∈ [K]
(7)

3. In addition, one must be able to discriminate all the negative examples in each term.
Let eq ∈ E− be a negative example, and σ(r, q) denote the sign of feature fr for
eq . Then, (

K∨
r=1

d
σ(r,q)
j,r

)
j ∈ [N ] ∧ eq ∈ E− (8)

4. We must also ensure that each positive example is covered by some rule, associated
with its class.

– First, define whether a rule covers some specific positive example:

crjq↔
(

K∧
r=1
¬dσ(r,q)j,r

)
j ∈ [N ] ∧ eq ∈ E+ (9)

– Second, each eq ∈ E+ must be covered by some rule. This corresponds to (5).
Proposition 4. The propositional encoding uses O(N ×M ×K) clauses and literals.

4.2 SAT Models for MINDS1 & MINDS2

The models analyzed in the previous section, MINDS3 and MINDS4, learn one
function for one class, e.g. F 1 for c1. For the other class, e.g. c0, only the original
minterms are available, and a default rule that may opt to pick this other class for points
of feature space not covered by F 1. It is in general possible to have more accurate
representations of the two classes, by considering some of the models described earlier
in this paper, concretely MINDS2 and MINDS1. This section develops propositional
models for MINDS2 and MINDS1.
The case of MINDS2. It is immediate to generalize MINDS3 (or MINDS4) to the
case of MINDS2. Essentially, the constraints for discriminating classes and for covering
classes must be replicated for the target classes 1.
The case of MINDS1. We consider a grid of N by K entries, each row of K entries
denoting the organization of a rule. The (basic) sets of variables to use are the same
as for MINDS3, with the addition of cj , representing a class variable, which is 0 if the
class of rule j is false (or negative), and 1 otherwise. Moreover, the constraints encoding
MINDS1 are:
1. Every term must be used. This constraint corresponds to (6).

1 The generalization from MINDS3 to MINDS2 is straightforward, and omitted due to space
constraints. Moreover, the model for MINDS1 follows a similar approach.
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2. We must also be able to account for which literals are discriminated by which rules.
This constraint corresponds to (7).

3. In addition, we must be able to discriminate positive examples in rules of the nega-
tive class and vice-versa. Let eq ∈ E+ be a positive example, and σ(r, q) be defined
as above. Then,

¬cj→
(

K∨
r=1

d
σ(r,q)
j,r

)
j ∈ [N ] ∧ eq ∈ E+

cj→
(

K∨
r=1

d
σ(r,q)
j,r

)
j ∈ [N ] ∧ eq ∈ E−

(10)

4. We must also ensure that each example is covered by some rule, associated with its
class.

– First, the constraint for a rule to cover some example:

crjq↔
(
¬cj ∧

K∧
r=1
¬dσr,q

j,r

)
j ∈ [N ] ∧ eq ∈ E−

crjq↔
(
cj ∧

K∧
r=1
¬dσr,q

j,r

)
j ∈ [N ] ∧ eq ∈ E+

(11)

– Second, all examples no matter the class must be covered, and so we general-
ize (5) to get: (

N∨
j=1

crjq

)
eq ∈ E (12)

Thus, every element is covered.
5. Finally, two terms associated with different classes must not exhibit U	-overlap:

¬(ci↔ cj)→
(

K∨
r=1
¬sir ∧ ¬sjr ∧ ¬(lir↔ ljr)

)
i, j ∈ [N ] ∧ i < j (13)

4.3 Breaking Symmetries
The propositional models proposed in earlier sections essentialy capture (unordered)

sets of terms. The lack of order reveals a symmetry. If the number of terms is large, this
can impact performance significantly. A standard technique to eliminate such symme-
tries in the problem formulation is to impose an order in the representation. The ap-
proach we take is to sort the terms, such that the number of each feature is inverse to
the weight of the feature in the binary representation of the number associated with the
term. Unspecified features have the largest weight. Clearly, imposing an order on the
terms does not affect correctness of the propositional model.

We describe next the constraints for the alternative model proposed in Section 4.1.
For the other models, a similar solution is used. The additional variables used are the
following:

– eqj,r = 1 iff term j equals term j − 1 until feature r.
– gtj,r = 1 iff term j is greater than term j − 1 by feature r.

For the constraints below j ∈ [N ] and r ∈ [K]. The constraints for eqj,r are the
following, with eqj,0 = 1:

eqj,r↔ eqj,r−1 ∧
(
sj−1,r ∧ sj,r ∨ d1j−1,r ∧ d1j,r ∨ d0j−1,r ∧ d0j,r

)
(14)

The constraints for gtjr, with gtj0 = 0, are the following:
gtj,r↔ gtj,r−1 ∨ eqj,r−1 ∧ ¬sj−1,r ∧ sj,r ∨ eqj,r−1 ∧ d1j−1,r ∧ d0j,r (15)
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Observe that distinguishing a positive literal corresponds to accepting a negative literal.
Clearly, additional variables can be introduced to enable clausification [39]. Finally, for
the last feature, each term must be greater than the preceeding one:

N∧
j=2

(gtj,K) (16)

5 Experimental Results
This section evaluates the ideas studied in the paper given a variety of datasets.

5.1 Experimental Setup

The proposed models were implemented in a prototype as a Python script instru-
menting calls to the MiniSat 2.2 SAT solver [10]. More precisely, the weakened models
MINDSi, i ∈ [4], were implemented. Although all these models target binary clas-
sification, most of the practical benchmark datasets require non-binary classification.
Therefore, the implemented prototype supports non-binary classification as well. As
a result, we deem interesting for the evaluation to check the performance of models
MINDS2 and MINDS1 generalized to an arbitrary number of classes, and so we do
not test models MINDS3 and MINDS4, as they are expected to be easier to deal with.
Also note that the implementation supports both encodings of MINDS3 (and, thus, of
generalized MINDS2) studied in the paper: (1) the existing encoding [19] and (2) the
alternative encoding proposed above. In the following, the novel encoding of MINDS2

is simply called MinDS2 while the encoding from [19] is referred to as MP92. Addi-
tionally and for testing how helpful the proposed symmetry breaking predicates (SBPs)
are, the basic models were augmented with SBPs resulting in the following configura-
tions: MinDS2+SBP, MinDS1+SBP, and MP92+SBP. Finally, IDS2, a recent approach
[21] based on smooth local search [12], was also tested in the evaluation. IDS uses the
Apriori algorithm [1] for generating candidate itemsets, with the default support thresh-
old3 equal to 0.2. For simplifying the problem solved by IDS, we increased this value to
0.5, which resulted in two configurations of IDS to run: IDS-supp0.2 and IDS-supp0.5.

The experiments were performed on a subset of datasets of the PMLB reposi-
tory4 [31]. The number of samples in the selected datasets varies from 87 to 496215

(≈ 1651.1 on average) while the number of original (i.e. non-binary) features varies
from 4 to 59 (≈ 15.1 on average). Applying the one-hot encoding results in 6 to 2232
binary features (≈ 353.1 on average). The total number of selected datasets is 49.

All the conducted experiments were performed in Ubuntu Linux on an Intel Xeon E5-
2630 2.60GHz processor with 64GByte of memory. The time limit was set to 600s and

2 https://github.com/lvhimabindu/interpretable_decision_sets/
3 A support threshold parameter ε in the Apriori algorithm ensures that the candidate itemsets

are present in at least ε data points.
4 https://github.com/EpistasisLab/penn-ml-benchmarks/
5 Some of the PMLB datasets are inconsistent, i.e. they have multiple occurrences of the same

samples marked by different labels. Since the proposed models assume consistent data, the
datasets were replaced by their largest consistent subsets. The number of samples shown above
corresponds to the size of the resulting consistent datasets.

https://github.com/lvhimabindu/interpretable_decision_sets/
https://github.com/EpistasisLab/penn-ml-benchmarks/
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Table 1: Number of solved instances per model (out of 49 in total).

MP92 MP92+SBP MinDS2 MinDS2+SBP MinDS1 MinDS1+SBP IDS-supp0.2 IDS-supp0.5

42 45 42 45 6 6 0 2

the memory limit to 10GByte for each individual process to run. The experimental eval-
uation was divided into two parts detailed below.

5.2 Testing Scalability

The number of benchmarks solved by each competitor is shown in Table 1. Given
the large number of binary features in the datasets, the performance of both MP92
and MinDS2 can be regarded as quite positive. As expected, symmetry breaking im-
proves it further: MP92+SBP and MinDS2+SBP solve all but 4 instances. Observe that
MinDS1 and MinDS1+SBP perform significantly worse: these models can solve only 6
instances. However, this is not surprising given that MinDS1 targets computing decision
sets exhibiting no U	-overlap, which is in general significantly harder to solve.

Assessing the performance of IDS [21]. As shown in Table 1, and in contrast to the
SAT-based models studied, IDS [21] performs quite poorly in practice. With the default
support threshold 0.2, IDS is unable to solve (within 600s) any instance, and it can solve
only 2 instances if the support threshold is increased to 0.5. Moreover, and although IDS
aims at maximizing the number of covered training samples and minimizing the rule
overlap, the rules produced by IDS exhibit significant overlap, even on examples taken
from the training data6. Given the poor performance of IDS and the weak guarantees in
terms of rule overlap, the rest of this section focuses solely on the SAT-based models.

Performance on subsampled datasets. To investigate the performance of the models
further, we (1) discarded the 6 instances solved by all models and (2) subsampled the
remaining 43 (49−6) benchmarks in the following way. For each dataset, we randomly
selected 5%, 10%, 20%, and 50% of training samples and repeated this procedure 20
times for each percentage value. This resulted in 80 randomly subsampled datasets for
each of the 43 benchmarks. The total number of subsampled benchmarks is 3440.

Figure 2 depicts the performance of the proposed models on the subsampled bench-
marks. As shown in Figure 2a, MP92 and MinDS2 demonstrate almost the same perfor-
mance and solve successfully 3404 benchmarks. Enabling symmetry breaking proves
itself helpful allowing them to solve 33 more instances, i.e. 3437 overall. This is, how-
ever, not the case for MinDS1, which solves 2374 instances (2346 instances, resp.) if
SBPs are disabled (enabled, resp.). This can be explained by the benchmarks’ nature
as they have a large number of classes and training samples while the solutions are not
large enough for SBPs to pay off. Note that although MinDS1 performs significantly
worse than MP92 and MinDS2, it can still solve ≈ 70% of the subsampled bench-
marks. These results should be regarded as significant given the size and the properties
of the tested datasets, as well as the fact that MINDS1 targets no 	 overlap on the com-

6 These surprising results motivated in part our detailed analysis of overlap. It should be noted
that the authors of IDS [21] have been informed of IDS’s poor performance and poor ability
to avoid rule overlap, but have been unable to justify the results of IDS.
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Fig. 2: Performance of the considered models on subsampled datasets.

plete feature space. To our best knowledge, these results are far beyond the state of the
art [21], and enable solving to optimality a whole new range of challenging datasets.

5.3 Assessing Quality

Observe that the proposed models target minimizing the number of rules in the tar-
get decision sets, rather than their total size, i.e. the total number of literals used. Hence,
it is of interest to compare the “quality” of solutions reported by MP92 and the novel
model MinDS2. One option is to simply compare the number of literals in the decision
sets reported by the two models. Alternatively, one can try to minimize the number of
literals in the resulting decision sets, by applying Boolean lexicographic optimization
(BLO) [23], as soon as a decision set with the smallest number of rules is computed. For
this, as soon as the number of rules in the decision set is minimized (i.e. the correspond-
ing CNF formula is satisfiable), a simple MaxSAT problem can be devised by augment-
ing the formula with unit soft clauses, which force all literals of the decision set to be
unused. This can be applied to any model MINDSi, i ∈ [4]. Afterwards, the minimum
number of literals can be computed by a standalone MaxSAT solver or approximated
with the use of an MCS (minimal correction subset) enumerator [24]. While the former
approach is exact, it is often outperformed by the latter one. For the purpose of the eval-
uation, we tried both options with every model considered. The MaxSAT solver used
for computing exact solutions was MSCG [29] while the approximation of MaxSAT
solutions was done by computing first 10 MCSes with the LBX algorithm [25].

Evaluation of the quality of solutions was done in the following way. Additionally
to the tested configurations of MinDS2 and MP92, all of them were ran in the BLO
mode with literal minimization done by (1) a MaxSAT solver and (2) an MCS enumer-
ator. Among all configurations, a virtual best solver (VBS) was constructed w.r.t. the
total number of literals in the solution. Afterwards, we measured how much larger the
decision sets for each tested configuration are w.r.t. the VBS, i.e. given the number of
literals L in the solution produced by the configuration and the number of literals L∗ in
the VBS solution, we considered value L/L∗. A similar study was done for MinDS1.
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Fig. 3: Quality of solutions computed with the considered models.

Figure 3 shows the quality of solutions for all tested models. (Y-axis here is scaled
logarithmically.) Here, the configurations marked by *+A10 compute 10 MCSes to ap-
proximate the solution. All configurations that use a MaxSAT solver represent a con-
stant f(x) = 1 and, thus, are omitted in Figure 3. However, note that they participate
in the VBS. In general, our experiments suggest that the MaxSAT-based literal mini-
mization is expensive and results in only≈ 85% of the instances solved. One surprising
observation is how much worse the quality of MP92’s solutions is when compared to
MinDS2 (see Figure 3a). In some cases, decision sets learned by MP92 have 3 orders
of magnitude more literals than the VBS decision sets and 1-2 orders of magnitude
more literals than solutions computed by MinDS2. On the other hand, these results in-
dicate that approximate literal number minimization after learning a target decision set
is feasible and does not degrade the performance of the overall procedure if done by
enumerating a fixed number of MCSes. This is confirmed for the case of MinDS1 (see
Figure 3b). Note that efficient minimization of the total number of literals in the target
decision sets is crucial given the requirement that they must be interpretable.

6 Conclusions & Research Directions
Decision (or rule) sets represent a promising approach for providing explanations

in different ML settings. This paper shows that learning optimal decision sets raises
a number of difficulties, related with overlap of rules, especially when the rules are
associated with different classes. The paper conjectures that the exact solution for the
learning problem of decision sets, while ensuring no overlap, is hard for the second
level of the polynomial hierarchy. Moreover, the paper proposes a number of alternative
problem formulations, all of which are shown to be hard for NP, and develops SAT-
based solutions, relating with earlier work [19]. The experimental results, obtained on
representative datasets, confirm the relevance of the approach, and yield a number of
conclusions. Compared with earlier work [21], that exploits a variant of local search, the
proposed SAT-based approach is not only far more accurate, but also remarkably more
efficient. The results provide evidence that SAT-based learning of optimal decision sets
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can handle practical datasets of interest, when the goal is to devise ML models that
associate explanations with predictions.

The promising results in the paper motivate a number of lines of work, including
proving (or disproving) the paper’s main conjecture, developing more efficient propo-
sitional encodings, but also to consider other approaches that enable finding an optimal
solution to the learning problem for decision sets. Also and as mentioned on the paper,
the proposed approach can be adapted to study the problem from another perspective,
i.e. by minimizing the total number of literals in a decision set instead the number of
rules, or alternatively refer to multi-objective optimization. This approach may result
in smaller and, thus, better interpretable solutions, in which case it would be appeal-
ing to compare it again heuristic rule-based classifiers targeting this same problem, e.g.
CN2 [6, 7] and PRISM [5] among others. One additional natural line of work will be
to extend the work to rule lists [2], but also to more expressive function representation
languages, while preserving the ability to provide explanations for predictions.
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