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Abstract. Non-Chronological Backtracking (NCB) has been imple-
mented in every modern CDCL SAT solver since the original CDCL
solver GRASP. NCB’s importance has never been questioned. This paper
argues that NCB is not always helpful. We show how one can implement
the alternative to NCB–Chronological Backtracking (CB)–in a modern
SAT solver. We demonstrate that CB improves the performance of the
winner of the latest SAT Competition, Maple LCM Dist, and the winner
of the latest MaxSAT Evaluation Open-WBO.

1 Introduction

Conflict-Driven Clause Learning (CDCL) SAT solving has been extremely useful
ever since its the original implementation in the GRASP solver over 20 years
ago [13], as it enabled solving real-world instances of intractable problems [2].
The algorithmic components of the original GRASP algorithms have been metic-
ulously studied and modified over the years with the one notable exception of
Non-Chronological Backtracking (NCB). NCB has always been perceived as an
unquestionably beneficial technique whose impact is difficult to isolate, since it
is entangled with other CDCL algorithms. NCB’s contribution went unstudied
even in [6]–a paper which aimed at isolating and studying the performance of
fundamental CDCL algorithms. In this paper, we show how to implement the
alternative to NCB–Chronological Backtracking (CB)–in a modern SAT solver.

Recall the CDCL algorithm. Whenever Boolean Constraint Propagation
(BCP) discovers a falsified conflicting clause β, the solver learns a new con-
flict clause σ. Let the conflict decision level cl be the highest decision level in
the conflicting clause β.1 The new clause σ must contain one variable v assigned
at cl (the 1UIP variable). Let the second highest decision level s be the high-
est decision level of σ’s literals lower than cl (s = 0 for a unit clause). Let the
backtrack level bl be the level the solver backtracks to just after recording σ and
before flipping v.

Non-Chronological Backtracking (NCB) always backtracks to the second
highest decision level (that is, in NCB, bl = s). The idea behind NCB is to im-
prove the solver’s locality by removing variables irrelevant for conflict analysis
from the assignment trail. NCB’s predecessor is conflict-directed backjumping,
proposed in the context of the Constraint Satisfaction Problem (CSP) [11].

1 In the standard algorithm, cl is always equal to the current decision level, but, as
we shall see, that is not the case for CB.



Let Chronological Backtracking (CB) be a backtracking algorithm which al-
ways backtracks to the decision level immediately preceding the conflict decision
level cl (that is, in CB, bl = cl−1). In our proposed implementation, after CB is
carried out, v is flipped and propagated (exactly as in the NCB case), and then
the solver goes on to the next decision or continues the conflict analysis loop.

Implementing CB is a non-trivial task as it changes some of the indisputable
invariants of modern SAT solving algorithms. In particular, the decision level
of the variables in the assignment trail is no longer monotonously increasing.
Moreover, the solver may learn a conflict clause whose highest decision level is
higher than the current decision level. Yet, as we shall see, implementing CB
requires only few short modifications to the solver.

To understand why CB can be useful consider the following example. Let
F = S ∧ T be a propositional formula in Conjunctive Normal Form (CNF),
where S is a long satisfiable CNF formula (for example, assume that S has 107

variables), T ≡ (c ∨ ¬b) ∧ (c ∨ b), and V (S) ∩ V (T ) = ∅, where V (H) comprises
the set of H’s variables. Consider Minisat’s [3] execution, given F . The solver is
likely to start by assigning the variables in V (S) (since S’s variables are likely
to have higher scores), satisfying S, and then getting to satisfying T . Assume
that the solver has satisfied S and is about to take the next decision. Minisat
will pick the literal ¬c as the next decision, since the variable c has a higher
index than b and 0 is always preferred as the first polarity. The solver will then
learn a new unit conflict clause (c) and backtrack to decision level 0 as part
of the NCB algorithm. After backtracking, the solver will satisfy S again from
the very beginning and then discover that the formula is satisfied. Note that
the solver is not expected to encounter any conflicts while satisfying S for the
second time because of the phase saving heuristic [4,10,14] which re-assigns the
same polarity to every assigned variable. Yet, it will have to re-assign all the 107

variables in V (S) and propagate after each assignment. In contrast, a CB-based
solver will satisfy F immediately after satisfying S without needing to backtrack
and satisfy S once again.

Our example may look artificial, yet in real-word cases applying NCB might
indeed result in useless backtracking (not necessarily to decision level 0) and
reassignment of almost the same literals. In addition, NCB is too aggressive: it
might remove good decisions from the trail only because they did not contribute
to the latest conflict resolution. Guided by these two insights, our backtracking
algorithm applies CB when the difference between the CB backtrack level and
the NCB backtrack level is higher than a user-given threshold T, but only after
a user-given number of conflicts C passed since the beginning of solving.

We have integrated CB into the SAT Competition 2017 [5] winner,
Maple LCM Dist [7], and MaxSAT Evaluation 2017 [1] winner Open-WBO [9] (code
available in [8]). As a result, Maple LCM Dist solves 3 more SAT Competition
benchmarks; the improvement on unsatisfiable instances is consistent. Open-WBO
solves 5 more MaxSAT Evaluation benchmarks and becomes much faster on 10
families.



In the text that follows, Sect. 2 provides CB’s implementation details, Sect. 3
presents the experimental results, and Sect. 4 concludes our work.

2 Chronological Backtracking

We show how CB can be integrated into a modern CDCL solver [12] starting with
an example. Consider the input formula, comprising 9 clauses c1 . . . c9, shown
on the left-hand side in Fig. 1. We will walk through a potential execution of a
CDCL solver using CB, while highlighting the differences between CB and NCB.

Fig. 1: CB Example

Assume the first decision at decision level d1 is v1, followed by the implication
v2 in clause c1 (at the same level d1). Then, a new decision v3 implying v7 in c5
is carried out at decision level d2. The next decision (at level d3) is v4. It implies
v5 in c2 and v6 in c3, followed by a conflict, as all literals of c4 are falsified under
the current partial assignment. The implication graph and the trail at the time
of conflict 1 are shown in Fig. 1. The conflict analysis will then learn a new 1UIP
clause c9 = (¬v2 ∨ ¬v4) (resolution between clauses c2, c3, c4).

At this point, a difference between NCB and CB is manifested. NCB would
backtrack to the end of level d1, skipping the irrelevant decision level d2. We ap-
ply CB, which backtracks to the end of the previous decision level d2. Backtrack-
ing to the end of d2 undoes the assignments of v6, v5, v4. Then, the algorithm
asserts the unassigned 1UIP literal ¬v4 and pushes it to the trail.

Our CB implementation marks ¬v4’s decision level as d1, since d1 is the
second highest level in the newly learned clause; however, ¬v4 is placed into the
trail after literals assigned at a higher decision level d2. Hence, unlike in the NCB
case, the decision levels of literals in the trail are not necessary monotonically
increasing. It still holds, though, that each literal l implied at clause α is placed
in the trail after all the other literals of α.



Let us proceed with our example. The assignment of ¬v4 implies v9 in c7. Our
algorithm marks the decision level of v9 as d1, since it is the highest level in the
clause c7 where v9 is implied. Then, BCP finds a falsified clause c8. Our algorithm
identifies the decision level of the conflict as d1, since all the literals in the
conflicting clause c8 were assigned at that level. At that point, CB will backtrack
to the end of d1 before proceeding with conflict analysis. Our backtrack algorithm
will unassign the variables assigned at d2, that is, v3 and v7, while keeping the
variables assigned at d1 (v4 and v9) in the same order. After the backtracking,
conflict analysis is invoked. Conflict analysis will learn a new clause c10 = (¬v1)
(resolution between clauses c1, c9, c7, c8). The algorithm will then backtrack to
the decision level d0 = d1 − 1 (to emphasize: in CB the backtrack level is the
previous decision level, determined independently of the newly learned conflict
clause).

2.1 Algorithm

Now we show the implementation of the high-level algorithms CDCL (Alg. 1), BCP
(Alg. 2) and Backtrack (Alg. 3) with CB. In fact, we show both the NCB and
the CB versions of each function. For CDCL and BCP most of the code is identical,
except for the lines marked with either ncb or cb.

Consider the high-level CDCL algorithm in Alg. 1. It operates in a loop that
finishes after either all the variables are assigned (SAT) or when an empty clause
is derived (UNSAT). Inside the loop, BCP is invoked. BCP returns a falsified
conflicting clause if there is a conflict. If there is no conflict, a new decision is
taken and pushed to the trail.

The first difference between CB and NCB shows up right after a conflict de-
tection. The code between lines 4– 8 is applied only in the case of CB. If the con-
flicting clause contains one literal l from the maximal decision level, we let BCP
propagating that literal at the second highest decision level in conflicting cls.
Otherwise, the solver backtracks to the maximal decision level in the conflict-
ing clause before applying conflict analysis. This is because, as we saw in the
example, the conflicting clause may be implied at a decision level earlier than
the current level. The conflict analysis function returns the 1UIP variable to be
assigned and the conflict clause σ. If σ is empty, the solver returns UNSAT.
Assume σ is not empty. The backtrack level bl is calculated differently for NCB
and CB. As one might expect, bl comprises the second highest decision level in
σ in the case of NCB case and the previous decision level in the case of CB (note
that for CB the solver has already backtracked to the maximal decision level in
the conflicting clause). Subsequently, the solver backtracks to bl and pushes the
1UIP variable to the trail before continuing to the next iteration of the loop.

Consider now the implementation of BCP in Alg. 2. BCP operates in a loop
as long as there exists at least one unvisited literal in the trail ν. For the first
unvisited literal l, BCP goes over all the clauses watched by l. Assume a clause
β is visited. If β is a unit clause, that is, all β’s literals are falsified except for
one unassigned literal k, BCP pushes k to the trail. After storing k’s implication
reason in reason(k), BCP calculates and stores k’s implication level level(k). The



Algorithm 1 CDCL

ν: the trail, stack of decisions and implications

ncb: marks the NCB code

cb: marks the CB code

Input: CNF formula
Output: SAT or UNSAT
1: while not all variables assigned do
2: conflicting cls := BCP();
3: if conflicting cls 6= null then
4: if conflicting cls contains one literal from the maximal level then
5: cb Backtrack(second highest decision level in conflicting cls)
6: cb continue
7: else
8: cb Backtrack(maximal level in conflicting cls)

9: (1uip, σ) := ConflictAnalysis(conflicting cls)
10: if σ is empty then
11: return UNSAT
12: ncb bl := second highest decision level in σ (0 for a unit clause)
13: cb bl := current decision level - 1
14: Backtrack(bl)
15: Push 1uip to ν
16: else
17: Decide and push the decision to ν

18: return SAT

implication level calculation comprises the only difference between CB and NCB
versions of BCP. The current decision level always serves as the implication level
for NCB, while the maximal level in β is the implication level for CB. Note that
in CB a literal may be implied not at the current decision level. As usual, BCP
returns the falsified conflicting clause, if such is discovered.

Finally, consider the implementation of Backtrack in Alg. 3. For the NCB
case, given the target decision level bl , Backtrack simply unassigns and pops
all the literals from the trail ν, whose decision level is greater than bl . The CB
case is different, since literals assigned at different decision levels are interleaved
on the trail. When backtracking to decision level bl , Backtrack removes all the
literals assigned after bl , but it puts aside all the literals assigned before bl in
a queue µ maintaining their relative order. Afterwards, µ’s literals are returned
to the trail in the same order.

2.2 Combining CB and NCB

Our algorithm can easily be modified to heuristically choose whether to use CB
or NCB for any given conflict. The decision can be made, for each conflict, in
the main function in Alg. 1 by setting the backtrack level to either the second
highest decision level in σ for NCB (line 12) or the previous decision level for
CB (line 13).



Algorithm 2 BCP

dl : current decision level
ν: the trail, stack of decisions and implications

ncb: marks the NCB code

cb: marks the CB code
BCP()

1: while ν contains at least one unvisited literal do
2: l := first literal in ν, unvisited by BCP

3: wcls := clauses watched by l
4: for β ∈ wcls do
5: if β is unit then
6: k := the unassigned literal of β
7: Push k to the end of ν
8: reason(k) := β
9: ncb level(k) := dl

10: cb level(k) := max level in β
11: else
12: if β is falsified then
13: return β

return null

Algorithm 3 Backtrack

dl : current decision level
ν: the trail, stack of decisions and implications
level index (bl + 1): the index in ν of bl + 1’s decision literal
Backtrack(bl) : NCB version
Assume: bl < dl

1: while ν.size() ≥ level index (bl + 1) do
2: Unassign ν.back()
3: Pop from ν

Backtrack(bl) : CB Version
Assume: bl < dl

1: Create an empty queue µ
2: while ν.size() ≥ level index (bl + 1) do
3: if level(ν.back()) ≤ bl then
4: Enqueue ν.back() to µ
5: else
6: Unassign ν.back()

7: Pop from ν

8: while µ is not empty do
9: Push µ.first() to the end of ν

10: Dequeue from µ



In our implementation, NCB is always applied before C conflicts are recorded
since the beginning of the solving process, where C is a user-given threshold. After
C conflicts, we apply CB whenever the difference between the CB backtrack level
(that is, the previous decision level) and the NCB backtrack level (that is, the
second highest decision level in σ) is higher than a user-given threshold T.

We introduced the option of delaying CB for C first conflicts, since backtrack-
ing chronologically makes sense only after the solver had some time to aggregate
variable scores, which are quite random in the beginning. When the scores are
random or close to random, the solver is less likely to proceed with the same
decisions after NCB.

3 Experimental Results

We have implemented CB in Maple LCM Dist [7], which won the main track
of the SAT Competition 2017 [5], and in Open-WBO, which won the complete
unweighted track of the MaxSAT Evaluation 2017 [1]. The updated code of both
solvers is available in [8]. We study the impact of CB with different values of the
two parameters, T and C, in Maple LCM Dist and Open-WBO on SAT Competition
2017 and MaxSAT Evaluation 2017 instances, respectively. For all the tests we
used machines with 32Gb of memory running Intelr Xeonr processors with
3Ghz CPU frequency. The time-out was set to 1800 seconds. All the results refer
only to benchmarks solved by at least one of the participating solvers.

3.1 SAT Competition

In preliminary experiments, we found that {T = 100, C = 4000} is the best
configuration for Maple LCM Dist. Table 1 shows the summary of run time
and unsolved instances of the default Maple LCM Dist vs. the best con-
figuration in CB mode, {T = 100, C = 4000}, as well as ”neighbor“ con-
figurations {T = 100, C = 3000}, {T = 100, C = 5000}, {T = 90, C = 4000} and
{T = 110, C = 4000}. Fig. 2 and Fig. 3 compare the default Maple LCM Dist vs.
the overall winner {T = 100, C = 4000} on satisfiable and unsatisfiable instances
respectively. Several observations are in place.

First, Table 1 shows that {T = 100, C = 4000} outperforms the default
Maple LCM Dist in terms of for both the number of solved instances and the
run-time. It solves 3 more benchmarks and is faster by 4536 seconds.

Second, CB is consistently more effective on unsatisfiable instances. Ta-
ble 1 demonstrates that the best configuration for unsatisfiable instances
{T = 100, C = 5000} solves 4 more instances than the default configuration and
is faster by 5783 seconds. The overall winner {T = 100, C = 4000} solves 3 more
unsatisfiable benchmarks than the default and is faster by 5113 seconds. Fig. 3
shows that CB is beneficial on the vast majority of unsatisfiable instances. In-
terestingly, we found that there is one family on which CB consistently yields
significantly better results: the 27 instances of the g2-T family. On that family,
the run-time in CB mode is never worse than that in NCB mode. In addition,



CB helps to solve 4 more benchmarks than the default version and causes the
solver to be faster by 1.5 times on average.

Finally, although the overall winner is slightly outperformed by the de-
fault configuration on satisfiable instances, CB can be tuned for satisfiable in-
stances too. {T = 100, C = 3000} solves 2 additional satisfiable instances, while
{T = 110, C = 4000} solves 1 additional instance faster than the default. We could
not pinpoint a family, where CB shows a significant advantage on satisfiable in-
stances.

Base
T = 100 C = 4000

C = 3000 C = 4000 C = 5000 T = 90 T = 110

SAT
Unsolved 13 11 13 16 20 12
Time 50003 53362 50580 59167 59482 47748

UNSAT
Unsolved 6 5 3 2 4 6
Time 58414 54034 53301 52631 52481 53991

ALL
Unsolved 19 16 16 18 24 18
Time 108417 107396 103881 111798 111963 101739

Table 1: Results of Maple LCM Dist on SAT Competition 2017 Instances

Fig. 2: Maple LCM Dist on SAT

3.2 MaxSAT Evaluation

In preliminary experiments, we found that {T = 75, C = 250} is the best config-
uration for Open-WBO with CB. Consider the five left-most columns of Table 2.
They present the number of solved instances and the run-time of the default
Open-WBO vs. {T = 75, C = 0} (abbreviated to {75, 250}) over the MaxSAT Eval-
uation families (complete unweighted track). The second row shows the overall
results. CB helps Open-WBO to solve 5 more instances in less time. The subse-
quent rows of Table 2 show the results for families, where either Open-WBO or



Fig. 3: Maple LCM Dist on UNSAT

{T = 75, C = 250} was significantly faster than the other solver, that is, it ei-
ther solved more instances or was at least two times as fast. One can see that
CB significantly improved the performance of Open-WBO on 10 families, while the
performance was significantly deteriorated on 3 families only. The other columns
of Table 2 present the results of 4 configurations neighbor to {T = 75, C = 250}
for reference.

Family
Default {75, 250} {75, 0} {75, 500} {50, 250} {100, 250}

#S Time #S Time #S Time #S Time #S Time #S Time
Grand Total 639 53048 644 50704 642 51370 640 52406 640 53582 643 51022
kbtree 0 3600 2 2756 1 3332 2 2921 2 2771 2 2733
atcoss-sugar 11 2179 12 1812 12 1328 11 2013 11 2004 12 1889
close-solutions 32 2692 33 4235 32 2711 32 2597 33 2589 32 4382
extension-enforcement 7 1963 8 828 7 1975 7 1942 8 1093 8 1306
gen-hyper-tw 5 4348 6 3871 6 3219 5 4057 5 3901 7 3383
treewidth-computation 24 3407 25 2306 24 3661 25 2169 23 4527 24 3778
atcoss-mesat 11 1660 11 605 11 703 11 610 11 674 11 534
min-fill 4 1105 4 413 4 384 4 910 4 244 4 349
packup 35 697 35 253 35 172 35 460 35 252 35 253
scheduling 1 206 1 92 1 153 1 164 1 141 1 130
bcp-syn 21 2535 20 2643 21 2247 21 2642 20 3145 20 2733
mbd 35 1327 34 1982 34 1972 34 2006 35 1275 35 1222
hs-timetabling 1 48 1 317 1 276 1 968 1 396 1 453

Table 2: Results of Open-WBO on MaxSAT Evaluation 2017 Instances

4 Conclusion

We have shown how to implement Chronological Backtracking (CB) in a mod-
ern SAT solver as an alternative to Non-Chronological Backtracking (NCB),
which has been commonly used for over two decades. We have integrated CB
into the winner of the SAT Competition 2017, Maple LCM Dist, and the winner
of MaxSAT Evaluation 2017 Open-WBO. CB improves the overall performance of
both solvers. In addition, Maple LCM Dist becomes consistently faster on unsat-
isfiable instances, while Open-WBO solves 10 families significantly faster.
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