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Abstract. We present a probabilistic model counter that can trade off running
time with approximation accuracy. As in several previous works, the number of
models of a formula is estimated by adding random parity constraints (equations).
One key difference with prior works is that the systems of parity equations used
correspond to the parity check matrices of Low Density Parity Check (LDPC)
error-correcting codes. As a result, the equations tend to be much shorter, often
containing fewer than 10 variables each, making the search for models that also
satisfy the parity constraints far more tractable. The price paid for computational
tractability is that the statistical properties of the basic estimator are not as good as
when longer constraints are used. We show how one can deal with this issue and
derive rigorous approximation guarantees by performing more solver invocations.

1 Introduction

Given a CNF formula F with n variables, let S = S(F) denote the set of its satisfying as-
signments (models). One way to estimate |S| is to proceed as follows. For a fixed integer
0≤ i≤ n, let Ri ⊆{0,1}n be a random set such that Pr[σ ∈ Ri] = 2−i for all σ ∈ {0,1}n.
Markov’s inequality implies that if |S| < 2i−1, then Pr[S∩Ri 6= /0] < 1/2. Therefore, if
we select independent random sets R1

i ,R
2
i , . . . ,R

t
i and find that the intersection with S

is non-empty for the majority of them, we can declare that |S| ≥ 2i−1 with confidence
1− exp(−Θ(t)).

What happens if in the majority of the trials we find the intersection to be empty?
Can we similarly draw the conclusion that |S| is unlikely to be much more than 2i?
Unfortunately, no. The informativeness of S∩ Ri = /0 depends on significantly more
refined statistical properties of the random set Ri than the property that Pr[σ ∈Ri] = 2−i,
i.e., uniformity. For example, imagine that |S| = 2i and that the distribution of Ri is
uniform but such that either S∩Ri = /0 or S∩Ri = S, always. Then, the number of trials
needed to have a reasonable chance of ever witnessing S∩Ri 6= /0 is Ω(2i). In other
words, with this distribution for Ri, we can not distinguish between an unsatisfiable
formula and one with 2i models.

? Research supported by NSF grants CCF-1514128, CCF-1733884, an Adobe research grant,
and the Greek State Scholarships Foundation (IKY).
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In the above example, the distribution of the random set Ri is such that the random
variable X = |S∩Ri| exhibits extreme variance, a so-called “lottery phenomenon": it
typically equals 0, but with very small probability it is huge. (Nearly) at the other end
of the spectrum are distributions for the set Ri that exhibit pairwise independence, i.e.,

Pr[σ ∈ Ri∧ τ ∈ Ri] = Pr[σ ∈ Ri] ·Pr[τ ∈ Ri] for every σ 6= τ ∈ {0,1}n . (1)

To get a feel for (1), fix any σ ∈ {0,1}n and sample Ri. Observe that conditional on
σ ∈ Ri, the probability that τ ∈ Ri must be the same whether τ is at Hamming distance
1 from σ , or at distance, say, n/2 (throughout, distance will mean Hamming distance).
In other words, the characteristic function of the set Ri must decorrelate in a single step!

It is possible to show that equation (1) implies that Pr[S∩Ri 6= /0]≥ (EX)/(1+EX)
and, thus, that if |S|> 2i, then Pr[S∩Ri 6= /0]> 1/2. Therefore, if, as before, we repeat
the experiment t times and find the intersection to be empty in the majority of the trials,
now we can declare that |S| ≤ 2i+1 with confidence 1−exp(−Θ(t)). Combined with the
lower bound argument for |S| outlined earlier, we see that in order to efficiently approx-
imate |S| within a factor of 4 it suffices to have a distribution of sets Ri for which (1)
holds and for which checking whether S∩Ri = /0 or not can be done efficiently. Indeed,
given such a distribution one can estimate |S| within a (1±ε) factor, for any ε > 0, and
any desired confidence 1−δ , in O(ε−2 log(1/δ )) trials.

In order to be able to check efficiently whether S∩Ri = /0 we must, at a minimum,
be able to represent the random sets Ri compactly, in spite of their exponential size. The
key to this is to represent each set Ri implicitly as the set of solutions to a system of i
random parity (XOR) constraints (linear equations modulo 2). More precisely, for any
fixed matrix A ∈ {0,1}i×n, consider the partition (hashing) of {0,1}n induced by the
value of Aσ ∈ {0,1}i. Let

Ri = {σ ∈ {0,1}n : Aσ = b} where b ∈ {0,1}i is uniformly random . (2)

Observe that even though the 2i parts may have dramatically different sizes, the unifor-
mity in the choice of b in (2) implies that Pr[σ ∈ Ri] = 2−i, for every σ ∈ {0,1}n, as
desired. At the same time, checking whether S∩Ri = /0 or not can be done by converting
the i parity constraints to clauses and using a SAT solver, or, more recently, by using a
SAT solver supporting parity constraints, e.g., CryptoMinisat [14].

From the above discussion we see that the only issue left is how the choice of the
matrix A affects the variance of the sizes of the different parts and, thus, the variance of
|S∩Ri|. To that end, it is not hard to prove that if A is a uniformly random element of
{0,1}i×n (equivalently, if each element Ai j is set to 0/1 independently with equal prob-
ability), then membership in Ri enjoys pairwise independence, i.e., (1) holds. As men-
tioned above, this is essentially perfect from a statistical point of view. Unfortunately,
though, under this distribution for A each parity constraint contains n/2 variables, on
average, and changing any variable in a parity constraint immediately changes its truth
value (whereas in clauses that’s not the case, typically, motivating the two watched
literals heuristic [11]). As a result, the branching factor of the search for satisfying as-
signments (models) that also satisfy the parity equations gets rapidly out of hand as the
number of variables in the formula increases.
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All ideas presented so far, including in particular the choice of a uniformly random
matrix A ∈ {0,1}i×n, first appeared in the pioneering theoretical works by Sipser [13],
Stockmeyer [15], and Valiant and Vazirani [17]. As we discuss in Section 2, there has
since been a long line of works aiming to make the approach practical. Specifically,
the limitations posed by long parity constraints, i.e., those of (average) length n/2, was
already recognized in the very first works in the area [7, 8]. Later works [6, 18] tried
to remedy the problem by considering parity equations where each constraint includes
each variable independently with probability p < 1/2. While such sparsity helps the
solver in finding elements of S∩R, the statistical properties of the resulting random sets
deteriorate rapidly as p decreases. Crucially, in all these works, different constraints
(parity equations) select their set of variables independently of one another.

In [1] we introduced the idea of using random matrices A ∈ {0,1}i×n with depen-
dent entries, by selecting A uniformly from an ensemble of Low Density Parity Check
(LDPC) matrices. A simplest such ensemble comprises all matrices where every row
(equation) contains the same number l of ones and every column contains the same
number r≥ 3 of ones. We gave a first mathematical analysis of the statistical properties
of the resulting sets Ri and some experimental evidence that their actual statistical prop-
erties are probably much better than what is suggested by the mathematical analysis.

A key idea motivating our work here and in [1] is the realization that to prove
mathematically rigorous lower bounds, the random sets Ri do not need to come with
any statistical guarantees (besides the trivial requirement of uniformity). The obligation
to use distributions Di with statistical guarantees exists only for upper bounds and,
crucially, only concerns their behavior over sets of size 2i or greater. When i/n is not
tiny we will see that short parity constraints have provably good statistical behavior.

In this paper we present3 an approximate model counter, called F2, with rigorous
guarantees based on these ideas. F2 has three modes of operation, trading accuracy for
computation time. To discuss these modes, let us foreshadow that the statistical demerit
of a distribution on matrices A ∈ {0,1}i×n in our context will be captured by a scalar
quantity B = B(i,n)≥ 1 that increases as the average constraint length decreases, with
B = 1 corresponding to pairwise independence (and average constraint length n/2).

Given any δ > 0, let q = ln(1/δ ). Given any ε ∈ (0,1/3], with probability at least
1−δ , all of the following will occur, in sequence:

1. After O(q+ log2 n) solver invocations, F2 will return a number `≤ log2 |S| and B.

2. After O(qB) solver invocations, F2 will return a number u≥ log2 |S|.

3. After O(qB2/ε4) solver invocations, F2 will return a number Z ∈ (1± ε)|S|.

Observe that while the bounds `≤ log2 |S| ≤ u are guaranteed (with probability 1−δ ),
no a priori bound is given for u−`. In other words, in principle the algorithm may offer
very little information on log2 |S| at the end of Step 2. As we will see, in practice, this
is not the case and, in fact, we expect that in most practical applications Step 3 will
be unnecessary. We give a detailed experimental performance of F2 in Section 10. The
main takeaway is that F2 dramatically extends the range of formulas for which one can
get a rigorous model count approximation.

3 F2 source code available at https://github.com/ptheod/F2.git

https://github.com/ptheod/F2.git
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2 Previous Work

The first work on practical approximate model counting using systems of random parity
equations was by Gomes, Sabharwal, and Selman [8]. Exactly along the lines outlined
in the introduction, they proved that when A∈ {0,1}i×n is uniformly random, i.e., when
each entry of A is set to 1 independently with probability p = 1/2, one can rigorously
approximate log2 |S| within an additive constant by repeatedly checking if S∩Ri = /0,
for various values of i. They further proved that if each entry of A is set to 1 with
probability p < 1/2 one get a rigorous lower bound, but one which may be arbitrarily
far from the truth. In [7], Gomes et al. showed experimentally that it can be possible to
achieve good accuracy (without guarantees) using parity constraints of length k� n/2.

Interest in the subject was rekindled by works of Chakraborty, Meel, and Vardi [3]
and of Ermon, Gomes, Sabharwal, and Selman et al. [5]. Specifically, a complete, rig-
orous, approximate model counter, called ApproxMC, was given in [3] which takes as
input any δ ,ε > 0, and with probability at least 1− δ returns a number in the range
(1± ε)|S|. In [5] an algorithm, called WISH, is given with a similar (δ ,ε)-guarantee
for the more general problem of approximating sums of the form ∑σ∈{0,1}n w(σ), where
w is a non-negative real-valued function over Ω n, where Ω is a finite domain. Both Ap-
proxMC and WISH also use uniformly random A∈ {0,1}i×n, so that the resulting parity
equations have average length n/2, limiting the range of problems they can handle.

ApproxMC uses the satisfiability solver CryptoMiniSAT (CMS) [14] which has na-
tive support and sophisticated reasoning for parity constraints. CMS can, moreover, take
as input a cutoff value z ≥ 1, so that it will run until it either finds z solutions or deter-
mines the number of solutions to be less than z. ApproxMC makes use of this capability
in order to target i such that |S∩Ri| =Θ(δ−2), instead of i such that |S∩Ri| ≈ 1. Our
algorithms make similar use of this capability, using several different cutoffs.

The first effort to develop rigorous performance guarantees when p< 1/2 was made
by Ermon et al. in [6], where an explicit expression was given for the smallest allowed
p as a function of |S|,n,δ ,ε . The analysis in [6] was recently improved by Zhao et al.
in [18] who, among other results, showed that when log2 |S| = Ω(n), one can get rig-
orous approximation guarantees with p = O((logn)/n), i.e., average constraint length
O(logn). While, prima facie, this seems a very promising result, we will see that the
dependence on the constants involved in the asymptotics is very important in practice.
For example, in our experiments we observe that already setting p = 1/8 yields results
whose accuracy is much worse than those achieved by LDPC constraints.

Finally, in [4] Chakraborty, Meel, and Vardi introduced a very nice idea for reducing
the number of solver invocations without any compromise in approximation quality. It
amounts to using nested sequences of random sets R1⊇R2⊇R3⊇ ·· · ⊇Rn in the search
for i≈ log2 |S|. The key insight is that using nested (instead of independent) random sets
Ri means that |S∩Ri| is deterministically non-increasing in i, so that linear search for
i can be replaced with binary search, reducing the number of solver invocations from
linear to logarithmic in n. We use the same idea in our work.
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2.1 Independent Support Sets

A powerful idea for mitigating the severe limitations arising from long parity constraints
was proposed by Chakraborty et al. in [2]. It is motivated by the observation that for-
mulas arising in practice often have a small set of variables I ⊆V such that every value-
assignment to the variables in I has at most one extension to a satisfying assignment.
Such a set I is called an independent support set. Clearly, if S′ ⊆ {0,1}I comprises the
value assignments to the variables in I that can be extended to satisfying assignments,
then |S|= |S′|. Thus, given I, we can rethink of model counting as the task of estimating
the size of a subset of {0,1}I , completely oblivious to the variables in V − I. In partic-
ular, we can add random parity constraints only over the variables in I, so that even if
we use long constraints each constraint has |I|/2 instead of |V |/2 variables on average.
Since independent support sets of small size can often be found in practice [9], this has
allowed ApproxMC to scale to certain formulas with thousands of variables.

In our work, independent support sets are also very helpful, but per a rather “dual”
reasoning: for any fixed integers i,k, the statistical quality of random sets defined by
systems of i parity constraints with k variables each, decreases with the number of
variables over which the constraints are taken. Thus, by adding our short constraints
over only the variables in an independent support set, we get meaningful results on
formulas for which |I|/2 is too large (causing CMS and thus ApproxMC to timeout),
but for which |I|/|V | is sufficiently large for our short parity constraints to have good
statistical properties.

Variable Convention. In the rest of the paper we will think of the set of variables
V of the formula F being considered as being some independent support set of F (po-
tentially the trivial one, corresponding to the set of all variables). Correspondingly, n
will refer to the number of variables in that set V .

3 Our Results

In [1], the first and last authors showed that systems of parity equations based on LDPC
codes can be used both to derive a rigorous lower bound for |S| quickly, and to derive
a (δ ,ε)-approximation of |S| with O(qB2/ε4) solver invocations, as per Step 3 of F2.
The new contributions in this work are the following.

– In Section 5 we show how to compute a rigorous upper bound for |S| with a num-
ber of solver invocations that is linear in B. While the bound does not come with
any guarantee of being close to |S|, in practice it is remarkably accurate. Key to our
approach is a large deviations inequality bounding the lower tail of a random vari-
able as a function of the ratio between its second moment and the square of its first
moment. Notably, the analogue of this inequality does not hold for the upper tail.
Recognizing and leveraging this asymmetry is our main intellectual contribution.

– In Section 6 we simplify and streamline the analysis of the (δ ,ε)-approximation
algorithm of [1], showing also how to incorporate the idea of nested sampling sets.

– In Sections 7–9 we refine the analysis of [1] for B, resulting in significantly better
bounds for it. Getting such improved bounds is crucial for making our aforemen-
tioned upper-bounding algorithm fast in practice (as it is linear in B).

– Finally, we give a publicly available implementation, called F2.
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4 First a Lower Bound

To simplify exposition we only discuss lower bounds of the form |S| ≥ 2i for i ∈ N,
deferring the discussion of more precise estimates to Section 6. For any distribution D ,
let R∼D denote that random variable R has distribution D .

Definition 1. Let D be a distribution on subsets of a set U and let R∼D . We say that
D is i-uniform if Pr[σ ∈ R] = 2−i for every σ ∈U.

Algorithm 1 below follows the scheme presented in the introduction for proving
lower bounds, except that instead of asking whether typically S∩R 6= /0, it asks whether
typically |S∩R| ≥ 2. To do this, |S∩R| is trimmed to 4 in line 5 (by running Crypto-
MiniSAT with a cutoff of 4), so that the event Z ≥ 2t in line 8 can only occur if the
intersection had size at least 2 in at least t/2 trials.

Algorithm 1 Given i, t decides if |S| ≥ 2i with error probability e−t/8

1: Z← 0
2: j← 0
3: while j < t and Z < 2t do . The condition Z < 2t is an optimization
4: Sample R j ∼Di . Di can be any i-uniform distribution
5: Y j←min{4, |S∩R j|} . Run CryptoMiniSat with cutoff 4
6: Z← Z +Y j
7: j← j+1
8: if Z ≥ 2t then
9: return “Yes"

10: else
11: return “Don’t know"

Theorem 1 ( [1]). Pr[The output of Algorithm 1 is incorrect]≤ e−t/8.

To get a lower bound for |S| we can invoke Algorithm 1 with i = 1,2, . . . ,n sequen-
tially and keep the best lower bound returned (if any). To accelerate this linear search
we can invoke Algorithm 1 with i = 1,2,4,8, . . . until the first “Don’t know" occurs,
say at i = 2u. At that point we can perform binary search in {2u−1, . . . ,2u−1}, treating
every “Don’t know" answer as a (conservative) imperative to reduce the interval’s upper
bound to the midpoint and every “Yes" answer as an allowance to increase the interval’s
lower bound to the midpoint. We call this scheme “doubling binary search." In Step 1
of F2 this is further accelerated by invoking Algorithm 1 with a very small number of
trials, t, in the course of the doubling-binary search. The result of the search is treated
as a “ballpark" estimate and a proper binary search is done in its vicinity, by using for
each candidate i the number of iterations suggested by Theorem 1.
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5 Then an Upper Bound

As discussed in the introduction, lottery phenomena may cause Algorithm 1 and, thus,
Step 1 of F2 to underestimate log2 |S| arbitrarily. To account for the possibility of such
phenomena we bound the “lumpiness" of the sets Ri ∼Di by the quantity defined in (3)
below, measuring lumpiness at a scale of M.

Definition 2. Let D be any distribution on subsets of {0,1}n and let R ∼ D . For any
fixed M ≥ 1, let

Boost(D ,M) = max
S⊆{0,1}n
|S|≥M

1
|S|(|S|−1) ∑

σ ,τ∈S
σ 6=τ

Pr[σ ,τ ∈ R]
Pr[σ ∈ R]Pr[τ ∈ R]

. (3)

To develop intuition for (3) observe that the ratio inside the sum is the factor by
which the a priori probability that a truth assignment belongs in R is modified by con-
ditioning on some other truth assignment belonging in R. So, if membership in R is
pairwise independent, then Boost(D , ·) = 1. Note also that since |S| ≥ M instead of
|S| = M in (3), the function Boost(D , ·) is non-increasing in M. As we will see, the
critical quantity for an i-uniform distribution Di is Boost(Di,2i), i.e., an i-uniform dis-
tribution can be useful even if Boost(Di) is huge for sets of size less than 2i.

Algorithm 2 Given δ > 0 and L≤ |S| returns Z ≥ |S| with probability 1−δ

1: `← blog2 Lc
2: D`← any `-uniform distribution
3: B← any upper bound for Boost(D`,2`)
4: t← d8(B+1) ln(1/δ )e
5: Z← 0
6: for j from 1 to t do
7: Sample R j ∼D`

8: X j← |S∩R j| . Run CryptoMiniSat without cutoff
9: Z← Z +X j

10: return “|S| ≤ 2`+1(Z/t)"

To analyze Algorithm 2 we will use the following inequality of Maurer [10].

Lemma 1. Let X1, . . . ,Xt be non-negative i.i.d. random variables. Let Z = ∑
t
i=1 Xi. If

EX2
1 /(EX1)

2 ≤ B, then for any α ≥ 0,

Pr[Z ≤ (1−α)EZ]≤ exp
(
−α2t

2B

)
.

Theorem 2. Pr[The output of Algorithm 2 is correct]≥ 1−δ .

Proof. Let Z be the random variable equal to the value of variable Z in line 9, right
before line 10 is executed. If Z = z, in order for the output to be wrong it must be that
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|S| > 2`+1(z/t), implying EZ = t|S|2−` > 2z and, therefore, that the event Z ≤ EZ/2
occurred. Since Z is the sum of i.i.d. non-negative random variables X1, . . . ,Xt , we can
bound Pr[Z ≤ EZ/2] via Lemma 1.

To bound EX2
1 /(EX1)

2, we write X1 = ∑σ∈S 1σ∈R1 and observe that

EX2
1 = ∑

σ ,τ∈S
Pr[σ ,τ ∈ R1]

= ∑
σ∈S

Pr[σ ∈ R1]+ ∑
σ ,τ∈S
σ 6=τ

Pr[σ ,τ ∈ R1]

≤ ∑
σ∈S

Pr[σ ∈ R1]+2−2i|S|(|S|−1)Boost(D , |S|)

≤ EX1 +Boost(D , |S|)(EX1)
2 .

Since |S| ≥ L≥ 2` and Boost(D`,M) is non-increasing in M, we see that

EX2
1

(EX1)2 ≤
1
EX

+Boost(D , |S|)≤ 1+Boost(D`,2`) . (4)

Therefore, applying Lemma 1 with α = 1/2 and recalling the definitions of B and t in
lines 3 and 4 of Algorithm 2, we see that Pr[Z ≤ EZ/2]≤ δ , as desired.

6 Finally a (1±δ )|S| Approximation

Given any bounds L ≤ |S| ≤ U , for example derived by using Algorithms 1 and 2,
algorithm F2 below yields a rigorous approximation of |S| within 1±δ with a number
of solver invocations proportional to B2/δ 4, where

B = max
`≤i≤u−2

Boost(Di,2i) ,

where `≈ log2(δL) and u≈ log2 u. (If B = 1, the iterations drop to O(δ−2).)

Theorem 3. Pr[F2 returns Z ∈ (1±δ )|S|]≥ 1−θ .

To prove Theorem 3 we will need the following tools.

Lemma 2 (Hoeffding’s Inequality). If Z = Y1 + · · ·+Yt , where 0 ≤ Yi ≤ b are inde-
pendent random variables, then for any w≥ 0,

Pr[Z/t ≥ EZ/t +w]≤ e−2t(w/b)2
and Pr[Z/t ≤ EZ/t−w]≤ e−2t(w/b)2

. (5)

Lemma 3 ( [1]). Let X ≥ 0 be an arbitrary integer-valued random variable. Write
EX = µ and Var(X) = σ2. For some integer b ≥ 0, define the random variable Y =
min{X ,b}. For any λ > 0, if b≥ µ +λσ2, then EY ≥ EX−1/λ .

Lemma 4 ( [1]). Let D be any i-uniform distribution on subsets of {0,1}n. For any
fixed set S ⊆ {0,1}n, if R ∼ D and X = |S∩R|, then Var(X) ≤ EX +(Boost(D , |S|)−
1)(EX)2.
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F2 Given L≤ |S| ≤U , δ ,θ > 0 returns Z ∈ (1±δ )|S| with probability 1−θ

1: if L < 4/δ then
2: E← number of solutions found by CryptoMiniSat ran with cutoff 4/δ

3: if E < 4/δ then return E . In this case |S|= E
4:
5: `← blog2(δL/4)c
6: u← dlog2 Ue
7: B← Any upper bound for max

`≤i≤u−2
Boost(Di,2i)

8:
9: δ ←min{δ ,1/3}

10: ξ ← 8/δ

11: b← dξ +2(ξ +ξ 2(B−1))e . If B = 1, then b = d24/δe
12: t← d(2b2/9) ln(5/θ)e
13:
14: Z`,Z`+1, . . . ,Zu← 0
15:
16: for j from 1 to t do
17: M← a uniformly random element of an LDPC ensemble over {0,1}u×n

18: y← a uniformly random element of {0,1}u

19: for i from ` to u do
20: Let Mi,yi comprise the first i rows of M and y, respectively
21: Ri, j←{σ ∈ {0,1}n : Miσ = yi} . Enforce the first i parity constraints
22: Yi, j←min{b, |S∩Ri, j|} . Run CryptoMiniSat with cutoff b
23: Zi← Zi +Yi, j

24:
25: j←max{−1,max{`≤ i≤ u : Zi ≥ t(1−δ )(4/δ )}}
26:
27: if j 6=−1 then return 2 j(Z j/t)
28: else return “Fail”

Proof. If |S| < 4/δ , the algorithm returns exactly |S| and exits. Otherwise, the value `
defined in line 5 is non-negative and q := blog2(δ |S|/4)c ≥ ` since L≤ |S|.

Let Ai = Zi/t. We will establish the following propositions:

(a) Pr[Aq2q 6∈ (1±δ )|S|]≤ 2e−9t/(2b2).
(b) Pr[Aq+12q+1 6∈ (1±δ )|S|]≤ 2e−9t/(2b2).
(c) If Aq2q ∈ (1±δ )|S|, then j ≥ q in line 25 (deterministically).
(d) Pr[ j ≥ q+2]≤ e−8t/b2

.

Given propositions (a)–(d) the theorem follows readily. If Aq+k2q+k is in the range
(1±δ )|S| for k∈ {0,1} but for k≥ 2 it is less than (1−δ )(4/δ ), then the algorithm will
report either Aq2q or Aq+12q+1, both of which are in (1± δ )|S|. Thus, the probability
that the algorithm does not report a number in (1± δ )|S| is at most 2 · 2e−9t/(2b2) +

e−8t/b2
which, by our choice of t, is less than θ .

To establish propositions (a)–(d) we start by noting the following facts:

(i) Ri, j is sampled from an i-uniform distribution for every i, j.
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(ii) The sets Ri,1, . . . ,Ri,t are independent for every i.
(iii) R`, j ⊇ R`+1, j ⊇ ·· · ⊇ Ru−1, j ⊇ Ru, j for every j.

Now, fix any i = q + k, where k ≥ 0. Let Xi, j = |S∩ Ri, j| and write EXi, j = µi,
Var(Xi, j) = σ2

i . By fact (ii), Zi is the sum of t independent random variables 0≤Yi, j ≤ b.
Since EZi/t ≤ µi, Hoeffding’s inequality implies that for all i≥ q,

Pr[Zi/t ≥ (1+δ )µi] ≤ exp

(
−2t

(
δ µi

b

)2
)

. (6)

To bound Pr[Zi/t ≥ (1−δ )µi] for k ∈ {0,1} we first observe that |S| ≥ 2q+1, since
δ ≤ 2. Since Boost(D ,M) is non-increasing in M and q≤ u−2 we see that

max
k∈{0,1}

Boost(Dq+k, |S|) ≤ max{Boost(Dq,2q+1),Boost(Dq+1,2q+1)}

≤ max{Boost(Dq,2q),Boost(Dq+1,2q+1)}
≤ max

`≤i≤u−2
Boost(Di,2i)

≤ B . (7)

Fact (i) implies that Xi j satisfies the conditions of Lemma 4. Therefore, for i ∈
{q,q+1}, Lemma 4 combined with (7) implies σ2

i ≤ µi +(B−1)µ2
i . Since µi < 8/δ

for all i≥ q while ξ = 8/δ , we see that b = dξ +2(ξ +ξ 2(B−1))e ≥ µi +2σ2
i . Thus,

for i ∈ {q,q+1} the random variables Xi, j,Yi, j satisfy the conditions of Lemma 3 with
λ = 2, implying EYi, j ≥ EXi, j−1/2. Therefore, EZi/t ≥ µi−1/2 for i ∈ {q,q+1} so
that Hoeffding’s inequality implies

Pr[Zi/t ≤ (1−δ )µi] ≤ exp

(
−2t

(
δ µi−1/2

b

)2
)

. (8)

To establish propositions (a) and (b) observe that µq+k ≥ 22−k/δ by Fact (i). There-
fore, (6) and (8) imply that for k ∈ {0,1}, the probability that Aq+k2q+k is outside
(1±δ )|S| is at most

2exp

(
−2t

(
22−k−1/2

b

)2
)

< 2exp(−9t/(2b2)) .

To establish proposition (c) note that if Aq≥ (1−δ )µq, then Aq≥ (1−δ )(4/δ ) and,
thus, j ≥ q. Finally, to establish proposition (d) observe that, by Fact (iii), the random
variables Zi are non-increasing in i, so that j≥ q+2 implies Aq+22q+2 < (1−δ )(4/δ ).
To bound the probability of this event we note that µq+2 < 2/δ . Thus, µq+2 +w≥ (1−
δ )(4/δ ), implies w > 2(1− 2δ )/δ , which, since δ ≤ 1/3, implies w > 2. Therefore,
(5) implies Pr[ j ≥ q+2]≤ e−8t/b2

.
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7 Homogeneous Distributions

Our goal in Sections 7–9 is to derive an upper bound for B when the random matrix A
corresponds to the parity check matrix of an LDPC code. To that end, in this section
we derive an expression for B valid for any random set distribution that satisfies certain
symmetry properties. In Section 8 we relate the sets Ri corresponding to codewords
of LDPC codes to these properties. Finally, in Section 9 we discuss how to deal with
miscellaneous technical issues arising from the need to be able to work with formulas
with an arbitrary number of variables and clauses, while retaining mathematical rigor
in our bounding of B.

The analysis in this section is identical to the one in [1] except for requiring that
f (n) = 0 in the definition of tractability. This has the effect of changing the lower index
of summation in the definition of B in Theorem 4 from 0 to 1 which, in turn, makes a
significant difference in practice.

Definition 3. An i-uniform distribution, Di is homogeneous if there exists a function f ,
called the density of Di, such that for all σ ,τ ∈ {0,1}n, if R∼Di, then Pr[τ ∈ R | σ ∈
R] = f (Hamming(σ ,τ)).

Definition 4. A homogenous distribution is tractable if its density f satisfies: f ( j) ≥
f ( j+1) for j < n/2, f ( j)≤ f (n− j) for j ≥ n/2, and f (n) = 0.

For any S ⊂ {0,1}n and σ ∈ S, let HS
σ (d) denote the number of elements of S at

Hamming distance d from σ . In [1] it was shown that for any homogenous distribution
Di, and any M ≥ 1,

Boost(Di,M)≤ max
S⊆{0,1}n
|S|≥M
σ∈S

2i

|S|−1

n

∑
d=1

HS
σ (d) f (d) . (9)

To bound (9), we assume that |S| ≥ 2n+1 so that there exists 2≤ z≤ n/2 such that
(|S|−1)/2 =

(n
1

)
+
(n

2

)
+ · · ·+

( n
z−1

)
+α

(n
z

)
, for some α ∈ [0,1). (If |S|< 2n+1, then

we can estimate |S by using a handful of long parity constraints.) Fact f ( j)≤ f (n− j)
for j ≥ n/2 implies (10). Facts f ( j) ≥ f ( j+ 1) for j < n/2 and f (n) = 0 imply (11).
Finally, the fact f (z−1)≥ f (z) implies (13).

∑
n
d=1 HS

σ (d) f (d)
|S|−1

≤
∑

n/2
d=1 HS

σ (d) f (d)+∑d>n/2 HS
σ (d) f (n−d)

|S|−1
(10)

≤
2
(
∑

z−1
d=1

(n
d

)
f (d)+α

(n
z

)
f (z)

)
|S|−1

(11)

=
∑

z−1
d=1

(n
d

)
f (d)+α

(n
z

)
f (z)

∑
z−1
d=1

(n
d

)
+α

(n
z

) (12)

≤ ∑
z−1
d=1

(n
d

)
f (d)

∑
z−1
d=1

(n
d

) (13)

:= B(z) . (14)
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To bound B(z) observe that since f ( j)≥ f ( j+1) for j < n/2 it follows that B( j)≥
B( j+1) for j < n/2. Thus, to bound B(z) from above it suffices to bound z from below.
Let h : x 7→−x log2 x−(1−x) log2 x be the binary entropy function and let h−1 : [0,1] 7→
[0,1] map y to the smallest number x such that h(x)= y. It is well-known that ∑

z
d=1

(n
d

)
≤

2nh(z/n), for every integer 1 ≤ z ≤ n/2. Therefore, z ≥ dnh−1(log2(|S|/2)/n)e, which
combined with (9) and (14) implies the following.

Theorem 4. If Di is a tractable distribution with density f , then

Boost(Di,M)≤ 2iB
(⌈

nh−1
(

log2 M−1
n

)⌉)
, (15)

where B(z) = ∑
z−1
d=1

(n
d

)
f (d)/∑

z−1
d=1

(n
d

)
and h−1 : [0,1] 7→ [0,1] maps y to the smallest

number x such that h(x) = y, where h is the binary entropy function.

8 Low Density Parity Check Codes

We will consider the set of all matrices {0,1}i×n where:

(i) Every column (variable) has exactly l≥ 3 non-zero elements.
(ii) Every row (equation) has brc or dre non-zero elements, where r= ln/i.

Given n, i, and l, let i0 denote the number of equations with brc variables and let
i1 = i− i0. Let A be selected uniformly at random4 among all matrices satisfying (i)–(ii).
Let R = {σ ∈ {0,1}n : Aσ = b}, where b ∈ {0,1}i is uniformly random. Lemma 3.157
of [12] implies that for every σ ∈ {0,1}n, if σ ∈ R, then the expected number of code-
words at distance d from σ , denoted by codewords(d), is independent of σ (due to the
row- and column-symmetry in the distribution of A) and equals the coefficient of xdl in
the polynomial

(
n
d

)(
∑ j
( r

2 j

)
x2 j
)i0 (

∑ j
(r+1

2 j

)
x2 j
)i1(nl

dl

) .

If Di denotes the distribution of R, the uniformity in the choice of b implies that
Di is i-uniform. The fact that for every σ ∈ {0,1}n, conditional on σ ∈ R, the expected
number of codewords at distance d from σ is independent of σ implies that for any
fixed τ 6= σ , Pr[both σ ,τ ∈ R] = 2−i f (d), where f (d) = codewords(d)/

(n
d

)
, making Di

homogeneous with density f .
Regarding tractability, we begin by noting that if any equation has an odd number

of variables, then the complement of a codeword can not be a codeword, implying
codewords(n) = 0. When r is an ever integer we achieve i1 > 0 by adding a single
dummy Boolean variable to the formula (and reducing all our estimates of |S| by 2). To
simplify exposition in the following we assume i1 > 0.

4 This can be done by selecting a uniformly random permutation of size [ln] and using it to map
each of the ln non-zeros to equations; when l,r ∈O(1), the variables in each equation will be
distinct with probability Ω(1), so that a handful of trials suffice to generate a matrix as desired.
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It is also well-known [12] that codewords( j) ≥ codewords( j + 1) for j < n/2, so
that we are left to establish f ( j)≥ f ( j+1) for all 0≤ j < n/2. Unfortunately, this is not
strictly true for a trivial reason: in the vicinity of n/2 the function f is non-monotone,
exhibiting minuscule fluctuations (due to finite-scale-effects) around its globally mini-
mum value at n/2. While this prevents us from applying Theorem 4 immediately, it is
easy to overcome. Specifically, for the proof of Theorem 4 to go through it is enough
that f ( j) ≥ f ( j + 1) for all 1 ≤ j < z (instead of all 1 ≤ j < n/2), something which
for most sets of interest holds, as z� n/2. Thus, to provide a rigorous upper bound on
Boost, it is enough to verify the monotonicity of f up to z while evaluating B(z).

9 Bounding B in Practice

In defining our systems of parity equations based on LDPC codes in the previous sec-
tions, we made sure that every variable participates in an even number of equations, we
used equations whose lengths are successive integers, and we insisted on always hav-
ing at least one equation of odd length. These seemingly minor tricks make a very big
difference in the bound of Boost in Theorem 4. Unfortunately, the number of iterations,
t, needed by our (δ ,ε)-approximation algorithm of Section 6 has a very large leading
constant factor, in order to simplify the mathematical analysis. (This is not the case for
our upper-bounding algorithm of Section 5.) For example, if the approximation factor
δ = 1/3 and the error probability θ = 1/5, even in the ideal case where B = 1, i.e., the
case of pairwise independence, t = 3,709. In reality, when B = 1, a dozen repetitions
are more than enough to get an approximation with this δ ,θ . Far worse, when B = 2,
the number of repetitions t explodes to over 1 million, making the derivation of rigor-
ous (δ ,ε)-approximations via Theorem 4 unrealistic. That said, we believe that further
sharpening of Theorem 4 is within grasp.

Luckily, our algorithms for deriving rigorous upper and lower bounds have much
better constant-factor behavior. Moreover, as we will see experimentally, the heuristic
estimate for |S| that can be surmised from their (ultra-fast) execution appears to be
excellent in practice. Below we describe a set of experiments we performed showing
that one can get rigorous results in realistic times using our tools for formulas that are
largely outside the reach of all known other model counters.

10 Experiments

We compare Algorithms 1, 2, i.e., our lower and upper bounding algorithms, with the
deterministic, exact model counter sharpSAT [16] and the probabilistic, approximate
model counter ApproxMC2 (AMC2) [4]. We consider the same 387 formulas as [4]
except for 2 unsatisfiable formulas and 10 formulas whose number of solutions (and,
thus, equations) is so small that our parity equations devolve into long XOR equations.
Of the remaining 375 formulas, sharpSAT solves 245 in under 2 seconds, in every
case significantly faster than all other methods. At the other extreme, 40 formulas are
not solved by any method within the given time limit of 8 hours. We report on the
remaining 90, most interesting, formulas. All experiments were run on a modern cluster
of 13 nodes, each with 16 cores and 128GB RAM.
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Fig. 1: The sum of the running times of the lower and upper bounding algorithms in F2
vs. the running time of sharpSAT.
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er

ApproxMC2 Time Out

Fig. 2: The sum of the running times of the lower and upper bounding algorithms in F2
vs. the running time of ApproxMC2.
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We use an improved implementation of CryptoMinisat [14] tuned for hashing-based
algorithms by Mate Soos and Kuldeep Meel, which is pending publication. This also
allows to deal with the fact that 10 of the 90 formulas come with a sampling set, i.e.,
a subset of variables V such that the goal is to count the size of the projection of the
set of all models on V . Since sharpSAT does not provide such constrained counting
functionality, we do not run it on these formulas.

To provide a sense of the tradeoff between the length of the parity constraints and
B, we note that when every variable appears in 6 parity constraints, then B < 30 for all
but 3 formulas, while for all but 1 formula all equations have length at most 16. When
every variable appears in 12 parity constraints, then B < 3 for all but 3 formulas, while
for all but 6 formulas all equations have length at most 28.

Our Algorithms 1, 2 terminated within the allotted time for 87 of the 90 formulas,
providing a rigorous lower bound and a rigorous upper bound. By comparison, Sharp-
SAT terminated on 45 formulas (out of 90-10=80), while ApproxMC2 on 25 of 90.

For most formulas the ratio between our two rigorous bounds is between 8 and 16
and for none more than 64. For the 48 formulas for which the model count is known,
either exactly via SharpSAT or approximately via ApproxMC2, the ratio between our
upper bound and the known count was typically less than 2 and never more than 3.
This is in spite of the fact that the time to derive it is often just a handful of seconds for
formulas for which ApproxMC2 and /or sharpSAT time out given 8 hours.

In Figures 1 and 2, we plot the sum of the running time of our two algorithms,
against the running time of SharpSat and ApproxMC2, respectively. (Marks outside the
8hr× 8hr box, indicate a time-out and only one of their two coordinates is meaningful.)

11 Conclusions

We have shown that by using systems off parity constraints corresponding to LDPC
matrices, one can get rigorous lower bounds and rigorous upper bounds. While these
bounds do not come with a priori guarantees about how close they will be to one an-
other, in practice they are typically within a small multiplicative factor, e.g., 2-3. We
believe that for many practical applications such bounds will be quite useful, as they
are both rigorous and fast to derive. In particular, when (log2 |S|)/n is not too small, the
constraint lengths can remain bounded, for arbitrarily large n. As a result, our tool F2
can deliver rigorous results for formulas that appear outside the reach of tools based on
long parity equations, such as ApproxMC2.
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