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Abstract. Minimally unsatisfiable clause-sets (MUs) are the hardest
unsatisfiable clause-sets. There are two important but isolated charac-
terisations for nonsingular MUs (every literal occurs at least twice), both
with ingenious but complicated proofs: Characterising 2-CNF MUs, and
characterising MUs with deficiency 2 (two more clauses than variables).
Via a novel connection to Minimal Strong Digraphs (MSDs), we give
short and intuitive new proofs of these characterisations, revealing an
underlying common structure.

1 Introduction

This paper is about understanding basic classes of minimally unsatisfiable CNFs,
short MUs. The most basic MUs are those with only one more clause than vari-
ables, i.e., with deficiency δ = 1. This whole class is explained by the expansion
rule, which replaces a single clause C by two clauses C ′ ∪ {v}, C ′′ ∪ {v} for
C ′ ∪ C ′′ = C and a new variable v, starting with the empty clause. So in a
sense only trivial reasoning takes place here. Somewhat surprisingly, this covers
all Horn cases in MU ([5]). At the next level, there are two classes, namely two
more clauses than variables (δ = 2), and 2-CNF. Characterisations have been
provided in the seminal paper [12] for the former class, and in the technical
report [15] for the latter. Both proofs are a tour de force. We introduce in this
paper a new unifying reasoning scheme, based on graph theory.

This reasoning scheme considers MUs with two parts. The clauses of the
“core” represent AllEqual, that is, all variables are equal. The two “full monotone
clauses”, a disjunction over all positive literals and a disjunction over all negative
literals, represent the negation of AllEqual. This is the new class FM (“full
monotone”) of MUs, which still, though diluted, is as complex as all of MU. So
we demand that the reasoning for AllEqual is graph theoretical, arriving at the
new class DFM (“D” for digraph).

Establishing AllEqual on the variables happens via SDs, “strong digraphs”,
where between any two vertices there is a path. For minimal reasoning we use
MSDs, minimal SDs, where every arc is necessary. Indeed, just demanding to
have an MU with two full monotone clauses, while the rest are binary clauses, is
enough to establish precisely MSDs. The two most fundamental classes of MSDs
are the (directed) cycles Cn and the dipaths, the directed versions D(Pn) of the
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undirected paths Pn, where every undirected edge is replaced by two directed
arcs, for both directions. The cycles are at the heart of MUs with δ = 2, while
the dipaths are at the heart of MUs in 2-CNF.

To connect MSDs (that is, DFMs) with more general MUs, two transforma-
tions are used. First, singular variables, occurring in one sign only once, are elim-
inated by singular DP-reduction, yielding nonsingular MUs. This main (poly-
time) reduction removes “trivialities”, and indeed deficiency 1 consists purely
of these trivialities (as the above generation process shows). Second we need
to add “missing” literal occurrences, non-deterministically, to clauses, as long
as one stays still in MU. This process is called saturation, yielding saturated
MUs. As it turns out, the nonsingular MUs of deficiency 2 are already saturated
and are already of the form DFM, while the nonsingular 2-CNFs have to be
(partially) saturated to reach the form DFM.

Before continuing with the overview, we introduce a few basic notations. The
class of MUs as clause-sets is formally denoted by MU , while the nonsingular
elements are denoted by MU ′ ⊂ MU (every variable occurs at least twice
positively and twice negatively). The number of clauses of a clause-set F is
c(F ), the number of (occurring) variables is n(F ), and the deficiency is δ(F ) :=
c(F )−n(F ). The basic fact is δ(F ) ≥ 1 for F ∈MU ([1]), and that deficiency is
a good complexity parameter ([6]). We use indices for subclassing in the obvious
way, e.g., MUδ=1 = {F ∈ MU : δ(F ) = 1}. Furthermore, like in the DIMACS
file format for clause-sets, we use natural numbers in N = {1, 2, . . .} for variables,
and the non-zero integers for literals. So the clause {−1, 2} stands for the usual
clause {v1, v2}, where we just got rid off the superfluous variable-symbol “v”. In
propositional calculus, this would mean ¬v1 ∨ v2, or, equivalently, v1 → v2.

The two fundamental examples After this general overview, we now state the
central two families of MUs for this paper, for deficiency 2 and 2-CNF. The
MUsFn := {{1, . . . , n}, {−1, . . . ,−n}, {−1, 2}, . . . , {−(n−1), n}, {−n, 1}} of de-
ficiency 2 have been introduced in [12]. It is known, and we give a proof in Lemma
7, that the Fn are saturated. As shown in [12], the elements of MU ′δ=2 are ex-
actly (up to isomorphism, of course) the formulas Fn. The elimination of singular
variables by singular DP-reduction is not confluent in general for MUs. However
in [18] it is shown, that we have confluence up to isomorphism for deficiency 2.
These two facts reveal that the elements ofMUδ=2 contain a unique “unadorned
reason” for unsatisfiability, namely the presence of a complete cycle over some
variables (of unique length) together with the requirement that these variables do
not have the same value. In the report [15], as in [20] (called “F (2)”), the 2-CNF
MUs Bn := {{−1, 2}, {1,−2}, . . . , {−(n − 1), n}, {n − 1,−n}, {−1,−n}, {1, n}}
have been introduced, which are 2-uniform (all clauses have length 2). In [15] it is
shown that the nonsingular MUs in 2-CNF are exactly the Bn. By [18] it follows
again that we have confluence modulo isomorphism of singular DP-reduction on
2-CNF-MUs. Thus a 2-CNF-MU contains, up to renaming, a complete path of
equivalences of variables, where the length of the path is unique; this path es-
tablishes the equivalence of all these variables, and then there is the equivalence
of the starting point and the negated end point, which yields the contradiction.
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Background We have referred above to the fundamental result about singular
DP-reduction (sDP) in [18], that for F ∈MU and any F ′, F ′′ ∈MU ′ obtained
from F by sDP we have n(F ′) = n(F ′′). So we can define nst(F ) := n(F ′) ∈ N0

(generalising [18, Definition 75]). We have 0 ≤ nst(F ) ≤ n(F ), with nst(F ) = 0
iff δ(F ) = 1, and nst(F ) = n(F ) iff F is nonsingular. The “nonsingularity type”
nst(F ) provides basic information about the isomorphism type of MUs, after
(completed) sDP-reduction, and suffices for deficiency 2 and 2-CNF.

We understand a class C ⊆ MU “fully” if we have a full grasp on its ele-
ments, which should include a complete understanding of the isomorphism types
involved, that is, an easily accessible catalogue of the essentially different ele-
ments of C. The main conjecture is that the nonsingular cases of fixed deficiency
have polytime isomorphism decision, and this should be extended to “all basic
classes”. Singular DP-reduction is essential here, since already Horn-MU, which
has deficiency one, is GI-complete (graph-isomorphism complete; [14]).

Before giving an overview on the main proof ideas, we survey the relevant
literature on 2-CNF. Irredundant 2-CNF is studied in [21], mostly concentrat-
ing on satisfiable cases, while we are considering only unsatisfiable cases. As
mentioned, the technical report [15] contains the proof of the characterisation
of 2-CNF-MU, while [20] has some bounds, and some technical details are in
[2]. MUSs (MU-sub-clause-sets) of 2-CNF are considered in [3], showing how to
compute shortest MUSs in polytime, while in [4] MUSs with shortest resolution
proofs are determined in polytime. It seems that enumeration of all MUSs of a
2-CNF has not been studied in the literature. However, in the light of the strong
connection to MSDs established in this paper, for the future [11] should become
important, which enumerates all MSDs of an SD in incremental polynomial time.

Two full clauses The basic new class is FM ⊂ MU , which consists of all
F ∈ MU containing the full positive clause (all variables) and the full negative
clause (all complemented variables). Using “monotone clauses” for positive and
negative clauses, “FM” reminds of “full monotone”. Let An be the basic MUs
with n variables and 2n full clauses; so we have An ∈ FM for all n ≥ 0. The
trivial cases of FM are A0 and A1, while a basic insight is that FM′ :=
FM∩MU ′ besides {⊥} contains precisely all the nontrivial elements of FM.
In this sense it can be said that FM studies only nonsingular MUs. We expect
the class FMδ=k at least for δ = 3 to be a stepping stone towards understanding
MUδ=3 (the current main frontier). The most important new class for this paper
isDFM ⊂ FM, which consists of all F ∈ FM such that besides the monotone
clauses all other clauses are binary. Indeed graph isomorphisms for MSDs is still
GI-complete ([23]), and thus so is isomorphism for DFM.

After having now DFM at our disposal, we gain a deeper understanding how
the seminal characterisations of the basic nonsingular F , that is, F ∈ MU ′,
n(F ) > 0, work: [I] From δ(F ) = 2 follows F ∼= Fn(F ) ([12]; see Corollary 1). [II]
From F ∈ 2–CLS follows F ∼= Bn(F ) ([15]; see Corollary 2). The main step is to
make the connection to the class DFM: [I] In case of δ(F ) = 2, up to renaming
it actually already holds that F ∈ DFM. The main step here to show is the
existence of the two full monotone clauses — that the rest then is in 2-CNF
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follows by the minimality of the deficiency. [II] In case of F ∈ 2–CLS there must
exist exactly one positive and one negative clause and these can be saturated
to full positive resp. full negative clauses, and so we obtain F ′ ∈ DFM. Once
the connection to DFM is established, graph-theoretical reasoning does the
remaining job: [I] The MSDs of minimal deficiency 0 are the cycles. [II] The
only MSDs G such that the corresponding DFMs can be obtained as partial
saturations of nonsingular 2-CNF are the dipaths, since we can only have two
linear vertices in G, vertices of in- and out-degree one.

An overview on the main results of this paper is given in Figure 1.

//

00

//
= ��YY

MU ′

FM DFM MU ′
δ=2 : Fn MSD 2–MU ′ : Bn

Fig. 1. Directed cycles at the heart of MUδ=2, and dipaths at the heart of 2–MU .

2 Preliminaries

We use clause-sets F , finite sets of clauses, where a clause is a finite set of literals,
and a literal is either a variable or a negated/complemented variable. The set of
all variables is denoted by VA (we use variables also as vertices in graphs), and we
assume N = {1, 2, . . .} ⊆ VA. This makes creating certain examples easier, since
we can use integers different from zero as literals (as in the DIMACS format). The
set of clause-sets is denoted by CLS, the empty clause-set by > := ∅ ∈ CLS and
the empty clause by ⊥ := ∅. Clause-sets are interpreted as CNFs, conjunctions
of disjunction of literals. A clause-set F is uniform resp. k-uniform, if all clauses
of F have the same length resp. length k. This paper is self-contained, if however
more background is required, then the Handbook chapter [13] can be consulted.

Clauses C do not contain clashes (conflicts), i.e., they are “non-tautological”,
which formally is denoted by C ∩ C = ∅, where for a set L of literals by L
we denoted elementwise complementation. With var(F ) we denote the set of
variables occurring in F , while by lit(F ) := var(F ) ∪ var(F ) we denote the
possible literals of F (one of the two polarities of a literal in lit(F ) must occur
in F ). Since the union

⋃
F is the set of occurring literals, we have lit(F ) =

(
⋃
F )∪

⋃
F , while var(F ) = lit(F )∩VA. A clause C is positive if C ⊂ VA, while

C is negative if C ⊂ VA, and C is mixed otherwise; a non-mixed clause is called
monotone. A full clause of a clause-set F is some C ∈ F with var(C) = var(F ).
A full clause-set is an F ∈ CLS where all C ∈ F are full. By An we denote the
full clause-set consisting of the 2n full clauses over variables 1, . . . , n for n ∈ N0.
So A0 = {⊥}, A1 = {{−1}, {1}}, and A2 = {{−1,−2}, {1, 2}, {−1, 2}, {1,−2}}.
For F ∈ CLS we use n(F ) := |var(F )| ∈ N0 for the number of (occurring)
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variables, c(F ) := |F | ∈ N0 for the number of clauses, and δ(F ) := c(F ) −
n(F ) ∈ Z for the deficiency. p–CLS is the set of F ∈ CLS such that for all C ∈
F holds |C| ≤ p. The application of partial assignments ϕ to F ∈ CLS, denoted
by ϕ ∗F , yields the clause-set obtained from F by removing clauses satisfied by
ϕ, and removing falsified literals from the remaining clauses. Contractions can
occur, since we are dealing with clause-sets, i.e., previously unequal clauses may
become equal, and so more clauses might disappear than expected. Also more
variables than just those in ϕ might disappear, since we consider only occurring
variables. SAT is the set of satisfiable clause-sets, those F ∈ CLS where there
is a partial assignment ϕ with ϕ ∗F = >. CLS is partitioned into SAT and the
set of unsatisfiable clause-sets. A clause-set F is irredundant iff for every C ∈ F
there exists a total assignment ϕ which satisfies F \{C} (i.e., ϕ∗ (F \{C}) = >)
while falsifying C (i.e., ϕ ∗ {C} = {⊥}). Every full clause-set is irredundant.

Isomorphism of clause-sets F,G ∈ CLS is denoted by F ∼= G, that is, there
exists a complement-preserving bijection from lit(F ) to lit(G) which induces a
bijection from the clauses of F to the clauses of G. For example for an unsatis-
fiable full clause-set F we have F ∼= An(F ). RHO is the set of renamable Horn
clause-sets, i.e., F ∈ CLS with F ∼= G for some Horn clause-set G (where every
clause contains at most one positive literal, i.e., ∀C ∈ G : |C ∩ VA| ≤ 1).

The DP-operation (sometimes also called “variable elimination”) for F ∈
CLS and a variable v results in DPv(F ) ∈ CLS, which replaces all clauses
in F containing variable v (positively or negatively) by their resolvents on v.
Here for clauses C,D with C ∩ D = {x} the resolvent of C,D on var(x) is
(C \ {x}) ∪ (D \ {x}) (note that clauses can only be resolved if they contain
exactly one clashing literal, since clauses are non-tautological).

We conclude by recalling some notions from graph theory: A graph/digraph
G is a pair (V,E), with V (G) := V a finite set of “vertices”, while E(G) := E
is the set of “edges” resp. “arcs”, which are two-element subsets {a, b} ⊆ V
resp. pairs (a, b) ∈ V 2 with a 6= b. An isomorphism between two (di)graphs is a
bijection between the vertex sets, which induces a bijection on the edges/arcs.
Isomorphism of clause-sets can be naturally reduced in polytime to graph isomor-
phism, and GI-completeness of such isomorphism problems means additionally
that also the graph isomorphism problem can be reduced to it.

3 Review on Minimal Unsatisfiability (MU)

MU is the set of unsatisfiable clause-sets such that every strict sub-clause-set is
satisfiable. For F ∈ CLS holds F ∈ MU iff F is unsatisfiable and irredundant.
We note here that “MU” is the class of MUs, while “MU” is used in text in a
substantival role.MU ′ ⊂MU is the set of nonsingular MUs, that is, F ∈MU
such that every literal occurs at least twice. We use 2–MU :=MU∩2–CLS and
2–MU ′ := MU ′ ∩ 2–CLS. Saturated MUs are those unsatisfiable F ∈ CLS,
such that for every C ∈ F and every clause D ⊃ C we have (F \ {C}) ∪ {D} ∈
SAT . For F ∈ MU a saturation is some saturated F ′ ∈ MU where there
exists a bijection α : F → F ′ with ∀C ∈ F : C ⊆ α(C); by definition, every MU
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can be saturated. If we just add a few literal occurrences (possibly zero), staying
with each step withinMU , then we speak of a partial saturation (this includes
saturations); we note that the additions of a partial saturation can be arbitrarily
permuted. Dually there is the notion of marginal MUs, those F ∈ MU where
removing any literal from any clause creates a redundancy, that is, some clause
following from the others. For F ∈ MU a marginalisation is some marginal
F ′ ∈ MU such that there is a bijection α : F ′ → F with ∀C ∈ F ′ : C ⊆ α(C);
again, every MU can be marginalised, and more generally we speak of a partial
marginalisation. As an example all An ∈ MU , n ∈ N0, are saturated and
marginal, while An is nonsingular iff n 6= 1.

For F ∈ MU and a variable v ∈ var(F ), we define local saturation as
the process of adding literals v, v to some clauses in F (not already containing
v, v), until adding any additional v or v yields a satisfiable clause-set. Then the
result is locally saturated on v. For a saturated F ∈ MU , as shown in [17,
Lemma C.1], assigning any (single) variable in F (called “splitting”) yields MUs
(for more information see [19, Subsection 3.4]). The same proof yields in fact,
that for a locally saturated F ∈ MU on a variable v, splitting on v maintains
minimal unsatisfiability:

Lemma 1. Consider F ∈ MU and a variable v ∈ var(F ). If F is locally satu-
rated for variable v, then we have 〈v → ε〉 ∗ F ∈MU for both ε ∈ {0, 1}.

In general, application of the DP-operation to some MU may or may not yield
another MU. A positive example for n ∈ N and v ∈ {1, . . . , n} is DPv(An) ∼=
An−1. A special case of DP-reduction, guaranteed to stay inside MU, is singular
DP-reduction, where v is a singular variable in F . In this case, as shown in
[18, Lemma 9], no tautological resolvents can occur and no contractions can take
place (recall that we are using clause-sets, where as a result of some operations
previously different clause can become equal – a “contraction”). So even each
MUδ=k is stable under singular DP-reduction. We use sDP(F ) ⊂ MU ′δ=δ(F ),
F ∈MU , for the set of all clause-sets obtained from F by singular DP-reduction.
By [18, Corollary 64] for any F ′, F ′′ ∈ sDP(F ) holds n(F ′) = n(F ′′). So we can
define for F ∈ MU the nonsingularity type nst(F ) := n(F ′) ∈ N0 via any
F ′ ∈ sDP(F ). Thus nst(F ) = n(F ) iff F is nonsingular.

MU(1) A basic fact is that F ∈ MU \ {{⊥}} contains a variable occurring
positively and negatively each at most δ(F ) times ([17, Lemma C.2]). So the
minimum variable degree (the number of occurrences) is 2δ(F ) (sharper bounds
are given in [19]). This implies that F ∈MUδ=1 has a 1-singular variable (i.e.,
degree 2). It is well-known that for F ∈ RHO there exists an input-resolution
tree T yielding {⊥} ([10]); in the general framework of [9], these are those T with
the Horton-Strahler number hs(T ) at most 1. W.l.o.g. we can assume all these
trees to be regular, that is, along any path no resolution variable is repeated.
This implies that for F ∈ MU ∩ RHO holds δ(F ) = 1, and all variables in F
are singular. By [17] all of MUδ=1 is described by a binary tree T , which just
describes the expansion process as mentioned in the Introduction, and which is
basically the same as a resolution tree refuting F (T is not unique). Since the
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variables in the tree are all unique (the creation process does not reuse variables),
any two clauses clash in at most one variable. For F ∈MUδ=1 with exactly one
1-singular variable holds hs(T ) = 1 (and so F ∈ RHO), since hs(T ) ≥ 2 implies
that there would be two nodes whose both children are leaves, and so F would
have two 1-singular variables. Furthermore if F ∈MU ∩RHO has a full clause
C, then C is on top of T and so the complement of its literals occur only once:

Lemma 2. Consider F ∈ MU . If δ(F ) = 1, and F has only one 1-singular
variable, then F ∈ RHO. If F ∈ RHO, then all variables are singular, and if F
has a full clause C, then for every x ∈ C the literal x occurs only once in F .

The Splitting Ansatz The main method for analysing F ∈ MU is “splitting”:
choose an appropriate variable v in F ∈ MU , apply the partial assignments
〈v → 0〉 and 〈v → 1〉 to F , obtain F0, F1, analyse them, and lift the information
obtained back to F . An essential point here is to have F0, F1 ∈MU . In general
this does not hold. The approach of Kleine Büning and Zhao, as outlined in
[16, Section 3], is to remove clauses appropriately in F0, F1, and study various
conditions. Our method is based on the observation, that if a clause say in F0

became redundant, then v can be added to this clause in F , while still remaining
MU, and so the assignment v → 0 then takes care of the removal. This is the
essence of saturation, with the advantage that we are dealing again with MUs.
A saturated MU is characterised by the property, that for any variable, splitting
yields two MUs. For classes like 2–CLS, which are not stable under saturation,
we introduced local saturation, which only saturates the variable we want to split
on. In our application, the local saturation uses all clauses, and this is equivalent
to a “disjunctive splitting” as surveyed [2, Definition 8]. On the other hand, for
deficiency 2 the method of saturation is more powerful, since we have stability
under saturation, and the existence of a variable occurring twice positively and
twice negatively holds after saturation. Splitting needs to be done on nonsingular
variables, so that the deficiency becomes strictly smaller in F0, F1 — we want
these instances ‘to be ‘easy”, to know them well. In both our cases we obtain
indeed renamable Horn clause-sets. For deficiency 2 we exploit, that the splitting
involves the minimal number of clauses, while for 2-CNF we exploit that the
splitting involves the maximal number of clauses after local saturation. In order
to get say F0 “easy”, while F is “not easy”, the part which gets removed, which
is related to F1, must have special properties.

4 MU with Full Monotone Clauses (FM)

We now introduce formally the main classes of this paper, FM ⊂MU (Defini-
tion 1) and DFM ⊂ FM (Definition 4). Examples for these classes showed up
in the literature, but these natural classes haven’t been studied yet.

Definition 1. Let FM be the set of F ∈MU such that there is a full positive
clause P ∈ F and a full negative clause N ∈ F (that is, var(P ) = var(N) =
var(F ), P ⊂ VA, N ⊂ VA). More generally, let FC be the set of F ∈MU such
that there are full clauses C,D ∈ F with D = C.
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The closure of FM under isomorphism is FC. In the other direction, for any
F ∈ FC and any pair C,D ∈ F of full clauses with D = C (note that in
general such a pair is not unique), flip the signs so that C becomes a positive
clause (and thus D becomes a negative clause), and we obtain an element of
FM. As usual we call the subsets of nonsingular elements FM′ resp. FC′.
The trivial elements of FM and FC are the MUs with at most one variable:
FMn≤1 = FMδ=1 = FCn≤1 = FCδ=1 = {{⊥}} ∪ {{v}, {v} : v ∈ VA}. The
singular cases in FM and FC are just these cases with only one variable:

Lemma 3. FM′ = FMδ≥2 ∪ {{⊥}}, FC′ = FCδ≥2 ∪ {{⊥}}.

Proof. Assume that there is a singular F ∈ FC with n(F ) ≥ 2. Let C,D be
full complementary clauses in F . W.l.o.g. we can assume that there is x ∈ C (so
x ∈ D) such that literal x only occurs in C. Consider now some y ∈ D\{x} (exists
due to n(F ) ≥ 2). There exists a satisfying assignment ϕ for F ′ := F \ {D}, and
it must hold ϕ(x) = 1 and ϕ(y) = 0 (otherwise F would be satisfiable). Obtain
ϕ′ by flipping the value of x. Now ϕ′ still satisfies F ′, since the only occurrence
of literal x is C, and this clause contains y — but now ϕ′ satisfies F . ut

So the study of FM is about special nonsingular MUs. In general we prefer
to study FM over FC, since here we can define the “core” as a sub-clause-set:

Definition 2. For F ∈ FM there is exactly one positive clause P ∈ F , and
exactly one negative clause N ∈ F (otherwise there would be subsumptions in
F ), and we call F \ {P,N} the core of F .

We note that cores consist only of mixed clauses, and in general any mixed
clause-set (consisting only of mixed clauses) has always at least two satisfying
assignments, the all-0 and the all-1 assignments. The decision complexity of
FM is the same as that of MU (which is the same as MU ′), which has been
determined in [22, Theorem 1] as complete for the class DP , whose elements are
differences of NP-classes (for example “MU = Irredundant minus SAT”):

Theorem 1. For F ∈ CLS, the decision whether “F ∈ FM ?” is DP -complete.

Proof. The decision problem is in DP , since F ∈ FM iff F is irredundant with
full monotone clauses and F /∈ SAT . For the reduction of MU to FM, we
consider F ∈ CLS with n := n(F ) ≥ 2, and first extend F to F ′, forcing a
full positive clause, by taking a new variable v, adding literal v to all clauses
of Fn and adding literal v to all clauses of F . Then we force additionally a full
negative clause, extending F ′ to F ′′ in the same way, now using new variable w,
and adding w to all clauses of F ′ and adding w to all clauses of Fn+1. We have
F ∈MU iff F ′′ ∈MU . ut

We now turn to the semantics of the core:

Definition 3. For V ⊂ VA the AllEqual function on V is the boolean function
which is true for a total assignment of V if all variables are assigned the same
value, and false otherwise. A CNF-realisation of AllEqual on V is a clause-set
F with var(F ) ⊆ V , which is as a boolean function the AllEqual function on V .
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The core of every FM F realises AllEqual on var(F ) irredundantly, and this
characterises FM, yielding the AllEqual Theorem:

Theorem 2. Consider F ∈ CLS with a full positive clause P ∈ F and a full
negative clause N ∈ F , and let F ′ := F \ {P,N}. Then F ∈ FM if and only if
F ′ realises AllEqual on var(F ), and F ′ is irredundant.

5 FM with Binary Clauses (DFM)

Definition 4. DFM is the subset of FM where the core is in 2–CLS, while
DFC is the set of F ∈ FC, such that there are full complementary clauses
C,D ∈ F with F \ {C,D} ∈ 2–CLS.

The core of DFMs consists of clauses of length exactly 2. DFC is the closure of
DFM under isomorphism.

Definition 5. For F ∈ DFM the positive implication digraph pdg(F ) has
vertex set var(F ), i.e., V (pdg(F )) := var(F ), while the arcs are the implications
on the variables as given by the core F ′ of F , i.e., E(pdg(F )) := {(a, b) : {a, b} ∈
F ′, a, b ∈ var(F )}. This can also be applied to any mixed binary clause-set F
(note that the core F ′ is such a mixed binary clause-set).

The essential feature of mixed clause-sets F ∈ 2–CLS is that for a clause
{v, w} ∈ F we only need to consider the “positive interpretation” v → w, not
the “negative interpretation” w → v, since the positive literals and the negative
literals do not interact. So we do not need the (full) implication digraph. Via the
positive implication digraphs we can understand when a mixed clause-set realises
AllEqual. We recall that digraph G is a strong digraph (SD), if G is strongly
connected, i.e., for every two vertices a, b there is a path from a to b. A minimal
strong digraph (MSD) is an SD G, such that for every arc e ∈ E(G) holds that
(V (G), E(G) \ {e}) is not strongly connected. Every digraph G with |V (G)| ≤ 1
is an MSD. We are ready to formulate the Correspondence Lemma:

Lemma 4. A mixed binary clause-set F is a CNF-realisation of AllEqual iff
pdg(F ) is an SD, where F is irredundant iff pdg(F ) is an MSD.

Proof. The main point here is that the resolution operation for mixed binary
clauses {a, b}, {b, c}, resulting in {a, c}, corresponds exactly to the formation of
transitive arcs, i.e., from (a, b), (b, c) we obtain (a, c). So the two statements of the
lemma are just easier variations on the standard treatment of logical reasoning
for 2-CNFs via “path reasoning”. ut

As explained before, F 7→ pdg(F ) converts mixed binary clause-sets with full
monotone clauses to a digraph. Also the reverse direction is easy:

Definition 6. For a finite digraph G with V (G) ⊂ VA, the clause-set mcs(G) ∈
CLS (“m” like “monotone”) is obtained by interpreting the arcs (a, b) ∈ E(G)
as binary clauses {a, b} ∈ mcs(G), and adding the two full monotone clauses
{V (G), V (G)} ⊆ mcs(G).
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For the map G 7→ mcs(G), we use the vertices of G as the variables of mcs(G).
An arc (a, b) naturally becomes a mixed binary clause {a, b}, and we obtain the
set F ′ of mixed binary clauses, where by definition we have pdg(F ′) = G. This
yields a bijection between the set of finite digraphs G with V (G) ⊂ VA and
the set of mixed binary clause-sets. By the Correspondence Lemma 4, minimal
strong connectivity of G is equivalent to F ′ being an irredundant AllEqual-
representation. So there is a bijection between MSDs and the set of mixed binary
clause-sets which are irredundant AllEqual-representation. We “complete” the
AllEqual-representations to MUs, by adding the full monotone clauses, and we
get the DFM mcs(G). We see, that DFMs and MSDs are basically the “same
thing”, only using different languages, which is now formulated as the Corre-
spondence Theorem (with obvious proofs left out):

Theorem 3. The two formations F 7→ pdg(F ) and G 7→ mcs(G) are inverse to
each other, i.e., mcs(pdg(F )) = F and pdg(mcs(G)) = G, and they yield inverse
bijections between DFMs and MSDs: For every F ∈ DFM the digraph pdg(F )
is an MSD, and for every MSD G with V (G) ⊂ VA we have mcs(G) ∈ DFM.

The Correspondence Theorem 3 can be considerably strengthened, by in-
cluding other close relations, but here we formulated only what we need. For
a DFM F 6= {⊥} and an MSD G 6= (∅, ∅) we obtain δ(pdg(F )) = δ(F ) − 2
and δ(mcs(G)) = δ(G) + 2, where we define the deficiency of a digraph G as
δ(G) := |E(G)| − |V (G)|. Concerning isomorphisms there is a small difference
between the two domains, since the notion of clause-set isomorphism includes
flipping of variables, which for DFMs can be done all at once (flipping “positive”
and “negative”) — this corresponds in pdg(F ) to the reversal of the direction of
all arcs. For our two main examples, cycles and dipaths, this yields an isomorphic
digraph, but this is not the case in general.

Marginalisation of DFMs concerns only the full monotone clauses and not
the binary clauses, formulated as the Marginalisation Lemma:

Lemma 5. Consider a clause-set F obtained by partial marginalisation of a
non-trivial DFM F ′. Then F has no unit-clause and its formation did not touch
binary clauses but only shortened its monotone clauses.

Proof. By definition, partial marginalisation can be arbitrarily reordered. If some
binary clause would be shortened, then, put first, this would yield unit-clauses,
subsuming some full monotone clauses. ut

Deciding F ∈ DFM can be done in polynomial time: Check whether we
have the two full monotone clauses, while the rest are binary clauses, if yes,
translate the binary clauses to a digraph and decide whether this digraph is an
MSD (which can be done in quadratic time; recall that deciding the SD property
can be done in linear time) — if yes, then F ∈ DFM, otherwise F /∈ DFM.
We now come to the two simplest example classes, cycles and “di-paths”. Let
Cn := ({1, . . . , n}, {(1, 2), . . . , (n − 1, n), (n, 1)}) for n ≥ 2 be the directed cycle
of length n. The directed cycles Cn have the minimum deficiency zero among
MSDs. We obtain the basic class Fn, as already explained in the Introduction:
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Definition 7. Let Fn := mcs(Cn) ∈ DFM for n ≥ 2 (Definition 6).

Lemma 6. For F ∈ DFMδ=2 holds F ∼= Fn(F ).

Proof. By the Correspondence Theorem 3, pdg(F ) is an MSD with the deficiency
δ(F )− 2 = 0, and thus is a directed cycle of length n(F ). ut

Lemma 7. For every n ≥ 2, Fn is saturated.

Proof. We show that adding a literal x to any C ∈ Fn introduces a satisfying
assignment, i.e, Fn is saturated. The monotone clauses are full, and saturation
can only touch the mixed clauses. Recall var(Fn) = {1, . . . , n}. Due to symmetry
assume C = {−n, 1}, and we add x ∈ {2, . . . , n − 1} to C. Let ϕ be the total
assignment setting all variables 2, . . . , n to true and 1 to false. Then ϕ satisfies
the monotone clauses and the new clause {−n, 1, x}. Recall that every literal
occurs only once in the core of Fn. So literal 1 occurs only in C. Thus ϕ satisfies
also every mixed clause in F \{C} (which has a positive literal other than 1). ut

For a tree G (a finite connected acyclic graph with at least one vertex) we
denote by D(G) := (V (G), {(a, b), (b, a) : {a, b} ∈ E(G)}) the directed version
of G, converting every edge {a, b} into two arcs (a, b), (b, a); in [7] these are called
“directed trees”, and we use ditree here. For every tree G the ditree D(G) is an
MSD. Let Pn := ({1, . . . , n}, {{1, 2}, . . . , {n− 1, n}}, n ∈ N0, be the pathgraph.

Definition 8. Let DBn := mcs(D(Pn)) ∈ DFM (n ∈ N0) (Definition 6).

So DBn = An for n ≤ 2, while in general n(DBn) = n, and for n ≥ 1 holds
c(DBn) = 2 + 2(n − 1) = 2n, and δ(DBn) = n. DBn for n 6= 1 is nonsingular,
and every variable in var(DBn)\{1, n} is of degree 6 for n ≥ 2, while the variables
1, n (the endpoints of the dipath) have degree 4. Among ditrees, only dipaths
can be marginalised to nonsingular 2-uniform MUs, since dipaths are the only
ditrees with exactly two linear vertices (i.e., vertices with indegree and outdegree
equal to 1). The unique marginal MUs obtained from dipaths are as follows:

Definition 9. For n ≥ 1 obtain the uniform Bn ∈ 2–MU from DBn by re-
placing the full positive/negative clause with {1, n} resp. {−1,−n}, i.e., Bn =
{{−1,−n}, {1, n}, {−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n}}; B0 := DB0.

6 Deficiency 2 Revisited

We now come to the first main application of the new class DFM, and we give
a new and relatively short proof, that the Fn are precisely the nonsingular MUs
of deficiency 2. The core combinatorial-logical argument is to show MU ′δ=2 ⊆
FCδ=2, i.e., every F ∈MU ′δ=2 must have two full complementary clauses C,D ∈
F . The connection to the “geometry” then is established by showing FMδ=2 ⊆
DFMδ=2, i.e, if an FM F has deficiency 2, then it must be a DFM, i.e., all clauses
besides the full monotone clauses are binary. The pure geometrical argument is
the characterisation of DFMδ=2, which has already been done in Lemma 6.
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The proof of the existence of full clauses D = C in F is based on the Splitting
Ansatz, as explained in Section 3. Since MUδ=2 is stable under saturation, we
can start with a saturated F , and can split on any variable (though later an
argument is needed to undo saturation). There must be a variable v occurring at
most twice positively as well as negatively (otherwise the basic lemma δ(F ) ≥ 1
for any MU F would be violated), and due to nonsingularity v occurs exactly
twice positively and negatively. The splitting instances F0, F1 have deficiency
1. So they have at least one 1-singular variable. There is very little “space” to
reduce a nonsingular variable in F to a 1-singular variable in F0 resp. F1, and
indeed those two clauses whose vanishing in F0 do this, are included in F1, and
vice versa. Since clauses in MUδ=1 have at most one clash, F0, F1 have exactly
one 1-singular variable. And so by the geometry of the structure trees (resp.
their Horton-Strahler numbers), both F0, F1 are in fact renamable Horn! Thus
every variable in F0, F1 is singular, and F0, F1 must contain a unit-clause. Again
considering both sides, it follows that the (two) positive occurrences of v must
be a binary clause (yielding the unit-clause) and a full clause C (whose vanishing
yields the capping of all variables to singular variables), and the same for the
(two) negative occurrences, yielding D. So F0, F1 ∈ RHO both contain a full
clause and we know that the complements of the literals in the full clause occur
exactly once in F0 resp. F1. Thus in fact C resp. D have the “duty” of removing
each others complement, and we get D = C.

Now consider F ∈ FMδ=2 with monotone full clauses C,D ∈ F . Transform
the core F ′ within F into an equivalent F ′′, by replacing each clause in F ′ by a
contained prime implicate of F ′, which, since the core means that all variables
are equal (semantically), is binary. So we arrive in principle in DFM, but we
could have created redundancy — and this can not happen, since an MSD has
minimum deficiency 0. The details are as follows:

Theorem 4. DFCδ=2 = FCδ=2 =MU ′δ=2.

Proof. By definition and Lemma 3 we have DFCδ=2 ⊆ FCδ=2 ⊆ MU ′δ=2. First
we show MU ′δ=2 ⊆ FCδ=2, i.e., every F ∈ MU ′δ=2 has two full complementary
clauses. Recall that F has a variable v ∈ var(F ) of degree 4, which by nonsin-
gularity is the minimum variable degree. So v has two positive occurrences in
clauses C1, C2 ∈ F and two negative occurrences in clauses D1, D2 ∈ F . We
assume that F is saturated (note that saturation maintains minimal unsatisfi-
ability and deficiency). By the Splitting Ansatz, F0 := 〈v → 0〉 ∗ F ∈ MUδ=1

and F1 := 〈v → 1〉 ∗ F ∈ MUδ=1. So F0 removes D1, D2 and shortens C1, C2,
while F1 removes C1, C2 and shortens D1, D2. Both F0, F1 contain a 1-singular
variable (i.e., of degree 2), called a resp. b. We obtain {a, a} ⊆ D1 ∪ D2, since
F has no singular variable and only by removing D1, D2 the degree of a de-
creased to 2. Similarly {b, b} ⊆ C1 ∪ C2. In MUδ=1 any two clauses have at
most one clash, and thus indeed F0, F1 have each exactly one 1-singular vari-
able. Now F0, F1 ∈ MUδ=1 with exactly one 1-singular variable are renamable
Horn clause-sets (Lemma 2). Since F0, F1 ∈ RHO ∩MU contain unit-clauses,
created by clause-shortening, one of C1, C2 and one of D1, D2 are binary. W.l.o.g.
assume C1, D1 are binary. Furthermore by Lemma 2 all variables in F0, F1 are
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singular, while F has no singular variable. So in F0 all singularity is created by
the removal of D1, D2, and in F1 all singularity is created by the removal of
C1, C2. Thus C2, D2 are full clauses. For a full clause in F0, F1, the complement
of its literals occur only once (recall Lemma 2). Thus C2 and D2 have the duty
of eliminating each others complements, and so we obtain C2 = D2. To finish
the first part, we note that the literals in clauses C,D each occurs exactly twice
by the previous argumentation, and thus, since F was nonsingular to start with,
indeed the initial saturation did nothing.

We turn to the second part of the proof, showing FMδ=2 ⊆ DFMδ=2,
i.e., the core F ′ of every F ∈ FMδ=2 contains only binary clauses. By the
characterisation of FMs, the AllEqual Theorem 2, F ′ realises AllEqual over the
variables of F . The deficiency of F ′ is δ(F ′) = δ(F ) − 2 = 0. Obtain F ′′ by
replacing each C ∈ F ′ by a prime implicate C ′′ ⊆ C of F ′, where every prime
implicate is binary. Now F ′′ is logically equivalent to F ′, and we can apply
the Correspondence Lemma 4 to F ′′, obtaining an MSD G := pdg(F ′′) with
δ(G) = δ(F ′′). Due to the functional characterisation of F ′ we have var(F ′′) =
var(F ′) = var(F ). Using that MSDs have minimal deficiency 0, thus δ(G) = 0,
and so G is the cycle of length n(F ), and thus F ′′ is isomorphic to Fn(F ). Now
Fn(F ) is saturated (Lemma 7), and thus indeed F ′′ = F ′. ut

Corollary 1 ([12]). For F ∈MU ′δ=2 holds F ∼= Fn(F ).

7 MU for 2-CNF

Lemma 8. F ∈ 2–MU with a unit-clause is in RHO, and has at most two
unit-clauses ([2]). In every F ∈ 2–MU each literal occurs at most twice ([15]).

Lemma 9. In F ∈ 2–MU with exactly two unit-clauses, every literal occurs
exactly once. Both unit-clauses can be partially saturated to a full clause (yielding
two saturations), and these two full clauses are complementary.

Proof. By Lemma 8, F ∈ RHO with δ(F ) = 1. Since F is uniform except of
two unit-clauses, the number of literal occurrences is 2c(F ) − 2 = 2n(F ), and
so every literal in F occurs only once (F is marginal). Consider an underlying
tree T according to Section 3, in the form of an input-resolution tree T . The key
is that any of the two unit-clauses can be placed at the top, and thus can be
saturated (alone) to a full clause. Since in an input-resolution tree, at least one
unit-clause is needed at the bottom, to derive the empty clause, we see that the
two possible saturations yield complementary clauses. ut

We now come to the main results of this section, characterising the nonsin-
gular MUs in 2-CNF. First the combinatorial part of the characterisation: the
goal is to show that F ∈ 2–MU ′ can be saturated to a DFM, up to renaming,
i.e., there exist a positive clause and a negative clause which can be partially
saturated to full positive and negative clauses. The proof is based on the Split-
ting Ansatz. UnlikeMU ′δ=2, 2-CNF MUs are not stable under saturation. So we
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use local saturation on a variable v ∈ var(F ), where we get splitting instances
F0, F1 ∈ 2–MU . Then we show F0, F1 are indeed in RHO with exactly 2 unit-
clauses, and we apply that any of these unit-clauses can be saturated to a full
clause. W.l.o.g. we saturate any of the two unit-clauses in F0 to a full positive
clause. Now one of the two unit-clauses in F1 can be saturated to a full negative
clause, and the two full monotone clauses can be lifted to F . This yields a DFM
which is a partial saturation of F . The details are as follows:

Theorem 5. Every 2–MU ′ can be partially saturated to some DFC.

Proof. We show F ∈ 2–MU ′ contains, up to flipping of signs, exactly one positive
and one negative clause, and these can be saturated to full monotone clauses. F
has no unit-clause and is 2-uniform. By Lemma 8 every literal in F has degree 2.
Let F ′ ∈MU be a clause-set obtained from F by locally saturating v ∈ var(F ).
So F0 := 〈v → 0〉 ∗F ′ and F1 := 〈v → 1〉 ∗F ′ are in 2–MU (Lemma 1) and each
has exactly two unit-clauses (obtained precisely from the clauses in F containing
v, v). By Lemma 8 holds F0, F1 ∈ RHO∩MUδ=1. And by Lemma 9 all variables
are 1-singular and in each of F0, F1, both unit-clauses can be partially saturated
to a full clause. These full clauses can be lifted to the original F (by adding v
resp. v) while maintaining minimal unsatisfiability (if both splitting results are
MU, so is the original clause-set; see [19, Lemma 3.15, Part 1]). Now we show
that for a full clause in F0, F1 adding v or v yields a full clause in F , i.e., only
v vanished by splitting. All variables in F0, F1 are 1-singular, while F has no
singular variable. If there would be a variable w in F0 but not in F1, then the
variable degree of w would be 2 in F , a contradiction. Thus var(F0) ⊆ var(F1).
Similarly we obtain var(F1) ⊆ var(F0). So var(F0) = var(F1) = var(F ) \ {v}.

It remains to show that we can lift w.l.o.g. a full positive clause from F0 and
a full negative clause from F1. Let C1, C2 ∈ F be the clauses containing v and
D1, D2 ∈ F be the clauses containing v. Assume the unit-clause C1 \ {v} ∈ F0

can be saturated to a full positive clause. This implies that every C ∈ F \ {C1}
has a negative literal (since F \{C1} is satisfied by setting all variables to false).
Then by Lemma 9 the unit-clause C2 \ {v} can be saturated to a full negative
clause in F0. Similarly we obtain that every clause in F \ {C2, D1, D2} has a
positive literal. So F has exactly one positive clause C1 and all binary clauses in
F0, F1 are mixed. Since c(F1) = n(F1)+1 = (n(F )−1)+1 = n(F ) and there are
n(F ) − 1 occurrences of each literal in F1, w.l.o.g. D1 is a negative clause and
D2 is mixed. Recall that in MUδ=1 every two clauses have at most one clash,
and so D1 \ {v} ∈ F1 can be saturated to a full negative clause (otherwise there
would be a clause with more than one clash with the full clause). So we obtain
a DFM which is a partial saturation of F . ut

By [7, Theorem 4], every MSD with at least two vertices has at least two
linear vertices. We need to characterise a special case of MSDs with exactly two
linear vertices. This could be derived from the general characterisation by [8,
Theorem 7], but proving it directly is useful and not harder than to derive it:

Lemma 10. An MSD G with exactly two linear vertices, where every other
vertex has indegree and outdegree both at least 2, is a dipath.
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Proof. We show that G is a dipath by induction on n := |V (G)|. For n = 2
clearly G is MSD iff G is a dipath. So assume n ≥ 3. Consider a linear vertex
v ∈ V (G) with arcs (w, v) and (v, w′), where w,w′ ∈ V (G). If w 6= w′ would
be the case, then the MSD obtained by removing v and adding the arc (w,w′)
had only one linear vertex (since the indegree/outdegree of other vertices are
unchanged). So we have w = w′. Let G′ be the MSD obtained by removing v.
Now w is a linear vertex in G′ (since every MSD has at least two linear vertices).
By induction hypothesis G′ is a dipath, and the assertion follows. ut

By definition, for a mixed binary clause-set F a 1-singular variable is a linear
vertex in pdg(F ). So by the Correspondence Theorem, a variable v in a DFM F
has degree 4 (i.e., degree 2 in the core) iff v is a linear vertex in pdg(F ).

Theorem 6. F ∈ DFC can be partially marginalised to some nonsingular ele-
ment of 2–CLS if and only if F ∼= DBn(F ).

Proof. Since Bn is a marginalisation of DBn (obviously then the unique nonsin-
gular one), it remains to show that a DMF F , which can be partially marginalised
as in the assertion, is isomorphic to DBn(F ). We show that pdg(F ) has ex-
actly two linear vertices, while all other vertices have indegree and outdegree
at least two, which proves the statement by Lemma 10. Consider a nonsingular
G ∈ 2–MU obtained by marginalisation of F . Recall that by the Marginalisa-
tion Lemma 5 the mixed clauses are untouched. pdg(F ) has at least two linear
vertices, so the mixed clauses in G have at least two 1-singular variables. Indeed
the core of F has exactly two 1-singular variables, since these variables must
occur in the positive and negative clauses of G, which are of length two. The
other vertices have indegree/outdegree at least two due to nonsingularity. ut

By Theorems 5, 6 we obtain a new proof for the characterisation of nonsin-
gular MUs with clauses of length at most two:

Corollary 2 ([15]). For F ∈ 2–MU ′ holds F ∼= Bn(F ).

8 Conclusion

We introduced the novel classes FM and DFM, which offer new conceptual
insights into MUs. Fundamental for FM is the observation, that the easy syn-
tactical criterion of having both full monotone clauses immediately yields the
complete understanding of the semantics of the core. Namely that the satisfying
assignments of the core are precisely the negations of the full monotone clauses,
and so all variables are either all true or all false, i.e., all variables are equivalent.
DFM is the class of FMs where the core is a 2-CNF. This is equivalent to the
clauses of the core, which must be mixed binary clauses {v, w}, constituting an
MSD via the arcs v → w. Due to the strong correspondence between DFMs and
MSDs, once we connect a class of MUs to DFM, we can use the strength of
graph-theoretical reasoning. As a first application of this approach, we provided
the known characterisations of MU ′δ=2 and 2–MU ′ in an accessible manner,
unified by revealing the underlying graph-theoretical reasoning.
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rithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of
Mathematics and Artificial Intelligence, 23(3-4):229–245, 1998. doi:10.1023/A:

1018924526592.

6. Herbert Fleischner, Oliver Kullmann, and Stefan Szeider. Polynomial–time recog-
nition of minimal unsatisfiable formulas with fixed clause–variable difference.
Theoretical Computer Science, 289(1):503–516, November 2002. doi:10.1016/

S0304-3975(01)00337-1.
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