
XOR-Satisfiability Set Membership Filters

Sean A. Weaver[0000−0001−9883−4473], Hannah J. Roberts, and Michael J. Smith

Information Assurance Research Group
U.S. National Security Agency

9800 Savage Rd., Suite 6845, Ft. George G. Meade, MD 20755
saweave@tycho.ncsc.mil

Abstract. Set membership filters are used as a primary test for whether
large sets contain given elements. The most common such filter is the
Bloom filter [6]. Most pertinent to this article is the recently intro-
duced Satisfiability (SAT) filter [31]. This article proposes the XOR-
Satisfiability filter, a variant of the SAT filter based on random k-XORSAT.
Experimental results show that this new filter can be more than 99% ef-
ficient (i.e., achieve the information-theoretic limit) while also having a
query speed comparable to the standard Bloom filter, making it practical
for use with very large data sets.

1 Introduction

To support timely computation on large sets, and in cases where being certain is
not necessary, a quick, probabilistic test of a set membership filter is often used.
A set membership filter is constructed from a set and queried with elements from
the corresponding domain. Being probabilistic, the filter will return either Maybe
or No. That is, the filter can return false positives, but never false negatives. The
most well-known set membership filter is the Bloom filter [6]. Though many other
set membership filters have been proposed, the most important to this work is
the SAT filter [31].

A SAT filter is a set membership filter constructed using techniques based
on SAT [5]. In [31], the authors describe the process of building a SAT filter
as follows. First, each element in a set of interest is translated into a CNF
clause (disjunction of literals). Next, every clause is logically conjoined into a
CNF formula. Finally, solutions to the resulting formula are found using a SAT
solver. These solutions constitute a SAT filter. To query a SAT filter, an element
is translated into a clause (using the same method as during filter building) and
if the clause is satisfied by all of the stored solutions, the element may be in
the original set, otherwise it is definitely not in the original set. Parameters for
tailoring certain aspects of the SAT filter such as false positive rate, query speed,
and amount of long term storage are described in [31].

This article describes a new, practical variant of the generic SAT filter where
clauses are considered to be the XORs of Boolean variables, rather than the
traditional inclusive OR (disjunction) of literals. This approach (mentioned as
possible future research in [31]) offers many advantages over a disjunction-based

II

SAT filter such as practically near perfect filter efficiency [30], faster build and
query times, and support for metadata storage and retrieval.

In terms of related work, there are other filter constructions that attempt to
achieve high efficiency (e.g. via compression) (e.x., see [7–9,16,24]). Most similar
to the XORSAT filter construction introduced here are Matrix filters [13,26]. In-
sofar as XORSAT equations are equivalent to linear equations over GF (2), there
are two obvious (and independent) ways to generalize such a linear system: ei-
ther by considering equations over larger fields like GF (2s) (Matrix filters), or
remaining over GF (2) and working with s right-hand sides (XORSAT filters).
In both constructions, the solutions can be used to store probabilistic member-
ship in sets, as well as values corresponding to keys, but the XORSAT filter
construction is motivated by some clear computational advantages.

First, Matrix filters require a hash function that yields elements overGF (2s)n,
whereas hash functions for XORSAT filters yield elements over GF (2)n — an
s-fold improvement in the data required. Also, Matrix filters require arithmetic
over GF (2s), whereas XORSAT filters work entirely over GF (2) and as such are
more naturally suited to highly-optimized implementations; all computations
devolve to simple and fast word operations (like AND and XOR) and bit-parity
computations which are typically supported on modern computers. This article
also proposes some simple and more practical methods for bucketing and han-
dling sparse variants, which likewise correspond to efficiency and performance
improvements.

2 XORSAT Filters

This section briefly describes XORSAT and the XORSAT filter.

2.1 XORSAT

Construction and query of an XORSAT filter rely heavily on properties of ran-
dom k-XORSAT, a variant of SAT where formulas are expressed as conjunctions
of random XOR clauses, i.e. the exclusive OR of Boolean variables.

Definition 1. An XOR clause is an expression of the form

vi1 ⊕ . . .⊕ viki
≡ bi,

where the symbol ⊕ represents XOR, the symbol ≡ represents logical equivalence,
each vi is a Boolean variable and each bi (right-hand side) is a constant, either
0 (for False) or 1 (for True).

Definition 2. A width k XOR clause has exactly k distinct variables.

Definition 3. A random k-XORSAT instance is a set of XOR clauses drawn
uniformly, independently, and with replacement from the set of all width k XOR
clauses [20].

III

As with random k-SAT [1], a random k-XORSAT instance is likely to be
satisfiable if its clauses-to-variables ratio is less than a certain threshold αk,
and likely to be unsatisfiable if greater than αk [25]. Experimental results have
established approximate values of αk for small values of k, though it asymp-
totically approaches 1. Experimental values are given next and are reproduced
from [11,12].

Table 1. Various αk values for random k-XORSAT

k 2 3 4 5 6 7

αk 0.5 0.917935 0.976770 0.992438 0.997379 0.999063

Polynomial time algorithms exist for reducing random k-XORSAT instances
into reduced row echelon form. For example, Gaussian elimination can solve such
instances in O(n3) steps and the ’Method of Four Russians’ [4, 29] in O(n3

log2 n).
Once in this reduced form, collecting random solutions (kernel vectors) is triv-
ial — assign random values to all of the free variables (those in the identity
submatrix), and backsolve for the dependent ones.

2.2 XORSAT Filter Construction

This section presents the basic XORSAT filter construction. Later sections pro-
vide enhancements which enable such filters to be used in practice. The XORSAT
filter is built and queried in a manner very similar to the SAT filter. Provided
below are updated algorithms for construction and query, analogous to those
in [31], where deeper discussion on how to construct and query SAT filters can
be found.

Building an XORSAT Filter Being a variant of the the SAT filter, the
XORSAT filter has similar properties. Building an XORSAT filter for a data set
Y ⊆ D (where D is a domain) is one-time work. The XORSAT filter is an offline
filter, so, once built, it is not able to be updated. To build an XORSAT filter,
all elements y ∈ Y are transformed into width k XOR clauses that, when con-
joined, constitute a random k-XORSAT instance. If the instance is unsatisfiable,
a filter cannot be constructed for the given data set and parameters. Otherwise,
a solution for that instance and acts as a filter for Y .

Algorithm 1 shows how to transform an element e ∈ D into a width k XOR
clause using a set of hash functions. Algorithm 2 shows how to build an XORSAT
filter from a given set Y ⊆ D.

Querying a SAT Filter Querying an XORSAT filter with an element x ∈ D is
very similar to querying a SAT filter. First, x is transformed into a k width XOR

IV

Algorithm 1 ElementToXorClause(e ∈ D,n, k, h0, . . . , hk−1, hb)
e is the element used to generate an XOR clause
n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: nonce := 0
2: repeat
3: V := {}
4: for i := 0 to k − 1 do
5: v := hi(e, nonce), hash e to generate variable v
6: V := V ∪ {v}, add v to the XOR clause
7: end for
8: nonce := nonce+ 1
9: until all variables of V are distinct

10: b := hb(e), hash e to generate the right-hand side
11: return (V, b)

Algorithm 2 BuildXorSatFilter(Y ⊆ D,n, k, h0, . . . , hk−1, hb)
Y is the set used to build an XORSAT filter
n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: XY := {}, the empty formula
2: for each element y ∈ Y do
3: (Vy, by) := ElementToXorClause(y, n, k, h0, . . . , hk−1, hb)
4: XY := XY ∪ {(Vy, by)}
5: end for
6: if the random k-XORSAT instance XY is unsatisfiable then
7: return failure
8: else
9: Let FY be a single solution to XY

10: return FY

11: end if

V

clause. Then, if the clause is satisfied by the solution generated by Algorithm 2
for a set Y , x is maybe in Y , otherwise x is definitely not in Y . Algorithm 3
shows how to query an XORSAT filter.

Algorithm 3 QueryXorSatFilter(FY , x ∈ D,n, k, h0, . . . , hk−1, hb)
x is the element used to query the XORSAT filter FY

n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: (Vx, bx) := ElementToXorClause(x, n, k, h0, . . . , hk−1, hb)
2: for each variable v ∈ Vx do
3: bx := bx ⊕ FY (v)
4: end for
5: if bx = 0 then
6: return Maybe
7: end if
8: return No

2.3 False Positive Rate, Query Time, and Storing Multiple
Solutions

The false positive rate of an XORSAT filter is the probability that the XOR
clause generated by the query is satisfied by the stored solution. This is equal
to the probability that a random width k XOR clause is satisfied by a random
solution, i.e., 1

2 . As with the SAT filter, the false positive rate can be improved
by either storing multiple solutions to multiple XORSAT instances or storing
multiple uncorrelated solutions to a single XORSAT instance. For SAT filters,
this second method is preferred because querying is much faster (only one clause
needs to be built, so the hash functions are called fewer times), but the challenge
of finding uncorrelated solutions to a single instance has yet to be overcome,
though recent work seems promising [3, 14,17,21].

Fortunately, moving from SAT to XORSAT also moves past this difficulty.
Since the XORSAT solving method used here, reduction to echelon form, is
agnostic to the type of the elements in the matrix being reduced, s XORSAT
instances can be encoded by treating the variables and right-hand side of each
XOR clause as vectors of Booleans1. Then, the transformation to reduced row
echelon form uses bitwise XOR on vectors (during row reduction) rather than
Boolean XOR on single bits. Hence, s XORSAT instances can be solved in par-
1 The intuition for this idea came from Bryan Jacobs’ work on isomorphic k-SAT

filters and work by Heule and van Maaren on parallelizing SAT solvers using bitwise
operators [19].

VI

allel, and just as fast as solving a single instance 2. Also, since the XORSAT
instances have random right-hand sides, the s solutions, one for each instance,
will be uncorrelated.

The solutions are stored in the same manner as the SAT filter, that is, all s
solution bits corresponding to a variable are stored together (the transpose of the
array of solutions). If the solutions are stored this way, querying the s-wide filter
is just as efficient as querying a filter created from a single instance. Moreover,
the false positive rate is improved to 1

2s because, during XORSAT filter query,
s different right-hand side bits are generated from each element and each have
to be satisfied by the corresponding solution.

2.4 Dictionaries

A small modification to the XORSAT filter construction can enable it to produce
filters that also store and retrieve metadata d associated with each element y.
To insert the tuple (y, d), a key-value pair, into the filter, append a bitwise
representation of d, say r bits wide, to the right-hand side of the clause for
y. Now every variable is treated as an s + r wide vector of Booleans and the
resulting instance is solved using word-level operations 3. When querying, the
first s bits of the right-hand side act as a check (to determine if the element
passes the filter) and, if so (and not a false positive) the last r bits will take on
the values of the bitwise representation of d.

On a purely practical note, the instances generated during build need not
be entirely random k-XORSAT instances. By removing the check for duplicate
variables, XOR clauses with less than k variables can be generated because dupli-
cate variables in an XOR clause simply cancel out. In practice, this only slightly
decreases efficiency (increases the size of the filter), but moderately decreases
query time.

Algorithm 4 shows how to create a bit-packed sequence of XOR clauses,
including support for dictionaries. Algorithm 5 shows how to query using the
new Algorithm 4. To use these new algorithms to do purely filtering, set r to 0.
For a pure dictionary, set s to 0. If both r > 0 and s > 0, the stored metadata
will only be returned when an element passes the filter. If the element is a false
positive, the returned metadata will be random.

2.5 Blocked XORSAT Filters

XORSAT filters suffer from the same size problem as SAT filters, namely, it is not
practical to build filters for large sets. The reason being that the time it takes a
modern solver to find a solution to an instance (with say millions of variables) is
often too long for common applications. The natural way to overcome this with
SAT filters is to increase the number of variables in the random k-SAT problem,
2 As long as s is not greater than the native register size of the machine on which the

solver is running.
3 Adding an extra r bits of metadata means that the filter now has r more solutions.

VII

Algorithm 4 ElementToXorClauses(e ∈ D, d, k, h0, . . . , hk−1, hb)
e is the element used to generate s XOR clauses
n is the number of variables per XORSAT instance
d is data to be stored, a bit-vector in [0, 2r)
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to bit-vectors in [0, 2s)
1: V := {}
2: for i := 0 to k − 1 do
3: v := hi(e), hash e to generate variable v
4: V := V ∪ {v}, add v to the XOR clause
5: end for
6: b := hb(e), hash e to generate the right-hand side
7: return (V, b||d), append d to the right-hand side

Algorithm 5 QueryXorSatDictionary(FY , x ∈ D,n, k, s, r, h0, ..., hk−1, hb)
x is the element used to query the XORSAT filter FY

n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
s is the number of solutions to be found
r is the number of bits of metadata stored with each element
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to bit-vectors in [0, 2s)
1: (Vx, bx = [b0, . . . , bs+r−1]) := ElementToXorClauses(x, 0, k, h0, . . . , hk−1, hb)
2: for each variable v ∈ Vx do
3: bx := bx ⊕ FY (v)
4: end for
5: if [b0, . . . , bs−1] = 0 then
6: return (Maybe, [bs, . . . , bs+r−1])
7: end if
8: return No

VIII

decreasing efficiency, but also making the SAT problem easier by backing off of
the k-SAT threshold [23]. This technique is not applicable to random k-XORSAT
instances, that is, increasing the number of variables does not make significantly
easier instances.

XORSAT (and SAT) filter build time can be decreased by first hashing el-
ements into blocks (or buckets) and then building one filter for each block of
elements, a process that is trivially parallelizable. This is a tailoring of a Blocked
Bloom filter [22, 28] to SAT filters of any constraint variation. The number of
blocks can be determined by the desired runtime of the build process; the more
blocks the faster the build process. The issue here is that, given a decent ran-
dom hash function, elements are distributed into blocks according to a Poisson
distribution [15], that is, some blocks will likely have a few more elements than
others. Hence, to store the solutions for each block, one also needs to store some
information about the number of variables in each block so that they can be
accessed during query. Depending on the technique used, this is roughly a small
number of extra bits per block. Otherwise, the blocks can be forced to a uniform
size by setting the number variables for each block to be the maximum number
of variables needed to make the largest block satisfiable. Either way, the long-
term storage of the filter has slightly increased, slightly decreasing efficiency at
the benefit of a (potentially much) shorter build-time. So, here is one trade-off
between build time and efficiency that can make SAT filters practical for large
datasets. Also, blocking can increase query speed since, depending on block size,
the k lookups will be relatively near each other in a computer’s memory, giving
the processor an opportunity to optimize the lookups. In fact, this is the original
motivation of Blocked Bloom Filters; it’s simply advantageous that the idea can
also be used to drastically decrease the build time of SAT filters.

The next section provides the mathematics needed to choose appropriate
parameters for the XORSAT filter construction.

3 Filter Efficiency

As introduced in [30], given a filter with false positive rate p, n bits of memory,
and m = |Y |, the efficiency of the filter is

E = − log2 p

n/m
.

Efficiency is a measure of how well a filter uses the memory available to
it. The higher the efficiency, the more information packed into a filter. A filter
with a fixed size can only store so much information. Hence, efficiency has an
upper-bound, i.e., the information-theoretic limit, namely

E = 1 .

Since “m/n = 1 remains a sharp threshold for satisfiability of constrained4

k-XORSAT for every k ≥ 3” [25], the XORSAT filter construction, like the SAT
4 A constrained model is one where every variable appears in at least two equations.

IX

filter construction, theoretically achieves E = 1. In other words, it is possible to
build an XORSAT filter for a given data set and false positive rate that uses as
little long-term storage as possible. XORSAT filter efficiency tends to 1 faster
than that of SAT filters, and the corresponding satisfiability threshold is much
sharper. This means that, since there are diminishing returns as k grows, a small
k (five or six) can give near optimal efficiency (see Figure 1), and, unlike the
SAT filter, these high efficiencies are able to be achieved in practice.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8 9 10

E
ff
c
ie
n
c
y

k

Effciency Limit

XORSAT Filter Effciency

SAT Filter Effciency

Bloom Filter Effciency

Fig. 1. Theoretically achievable XORSAT filter efficiency for various k.

4 XORSAT Filter Parameters

This section discusses the selection of parameters for XORSAT filters (see Ta-
ble 2).

Table 2. XORSAT filter parameters

p the false positive rate of an XORSAT filter
s the number of XORSAT instances
r the number of bits of metadata stored with each element
n the number of variables per XORSAT instance
m the number of XOR clauses per XORSAT instance
k the number of variables per XOR clause

X

As with the SAT filter, a value for k should be selected first. A small k
(five or six) is sufficient to achieve near perfect efficiency (see Figure 1). Larger
k are undesirable as efficiency will not notably increase and query speed will
significantly decrease.

The value of m is the number of elements being stored in the filter. Since the
satisfiability threshold αk = m

n is sharp for random k-XORSAT and tends quickly
to 1, n should be set equal to, or slightly larger than m. For example, if k = 3,
m should be roughly 91% of n (see Table 1 for precise calculations). Setting n
much larger than m will cause a drop in efficiency without any advantage. This
is not true for the SAT filter because random k-SAT problems become harder
the closer they are to the satisfiability threshold [23], so, increasing n decreases
build time. This is not the case with XORSAT filters and is the main reason
they can practically achieve near perfect efficiency. Finally, a value for either s or
p should be selected. These parameters determine the false positive rate p = 1

2s

and the amount of long-term storage (sn) of the filter.
To give an example set of parameters, an XORSAT filter form = 216 elements

with a false positive rate of p ≈ 1
27 needs s = 7 solutions to be stored and

n = 216 + ε. Such an XORSAT filter, with k = 6, can be built and will use
sn ≈ 460000 bits of long-term storage, a 30% reduction over an optimal Bloom
filter’s long-term storage ≈ 660000 bits. See Section 6 for metrics on different
size data sets, efficiencies, and query times.

5 Detailed Example

This section presents a detailed example of how to build and query an XORSAT
filter, including details on how to use the filter to store and retrieve metadata.
For the sole purpose of this example, let the set of interest be Y = [(“cat”, 0),
(“fish”, 1), (“dog”, 2)]. Here, Y is a list of three tuples where each tuple contains
a word and an integer representing the tuple’s index in the list.

5.1 Building the Filter

The first step in building an XORSAT filter for Y is to decide on parameters
(see Section 4). For this example, let k, the number of variables per XOR clause,
be three. Since there are three elements, m will be three. Let the number of
variables per XORSAT instance be a number slightly larger than m to ensure
the instances are satisfiable, say n = 4. Let p, the desired false positive rate,
be 1

23 . This fixes s, the number of XORSAT instances, to three. Since there are
three indices, only two bits of metadata, r, are needed to represent an index.

The next step is to create a list of hashes corresponding to each of the three
words. This example will make use of the 32-bit xxHash algorithm [10]. Let the
list of hashes be

H = [xxHash(“cat”), xxHash(“fish”), xxHash(“dog”)]
= [0xb85c341a, 0x87024bb7, 0x3fa6d2df] .

XI

Next, the hashes are used to generate XOR clauses, one per hash. For the
purpose of this example a scheme needs to be devised that will transform a hash
into an XOR clause. One simple method is to first treat the hash as a bit-vector,
then split the vector into parts and let each part represent a new variable in the
XOR clause. Here, let the hashes be split into 4-bit parts, as 24 > n and it will
be easy to see the split (represented in hexadecimal). The list of split hashes is

SH = [[0xb, 0x8, 0x5, 0xc, 0x3, 0x4, 0x1, 0xa],
[0x8, 0x7, 0x0, 0x2, 0x4, 0xb, 0xb, 0x7],
[0x3, 0xf, 0xa, 0x6, 0xd, 0x2, 0xd, 0xf]] .

The next step is to use the split hashes to create XOR clauses. This is done
here by treating the groupings of 4 bits (under proper modulus) as variable
indices and right-hand side of each clause. The variable indices and right-hand
side for each clause would be

IY.0 = [[SH00(mod n), SH01(mod n), SH02(mod n), SH03(mod 2s)],
[SH10(mod n), SH11(mod n), SH12(mod n), SH13(mod 2s)],
[SH20(mod n), SH21(mod n), SH22(mod n), SH23(mod 2s)]]

= [[0xb(mod 4), 0x8(mod 4), 0x5(mod 4), 0xc(mod 8)],
[0x8(mod 4), 0x7(mod 4), 0x0(mod 4), 0x2(mod 8)],
[0x3(mod 4), 0xf(mod 4), 0xa(mod 4), 0x6(mod 8)]]

= [[3, 0, 1, 4],
[0, 3, 0, 2],
[3, 3, 2, 6]] .

In practice, these first few steps are the bottleneck in terms of query speed
and need to be heavily optimized. The simple scheme presented here is purely
for demonstration purposes. A more practical but complex scheme is given in
Section 6. As well, this scheme does not guarantee width k XOR clauses are
generated because duplicates may arise. However, duplicate variables in XOR
clauses simply cancel each other out, so, for the purpose of this example, this
simplified scheme is enough to demonstrate the main concepts. Also, for spe-
cific applications, duplicate detection and removal may be too computationally
expensive to outweigh any benefit gained in efficiency.

The three XORSAT instances are encoded as follows:

XY.0 = [x3 ⊕ x0 ⊕ x1 ≡ [1, 0, 0],
x0 ⊕ x3 ⊕ x0 ≡ [0, 1, 0],
x3 ⊕ x3 ⊕ x2 ≡ [1, 1, 0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0],
x3 ≡ [0, 1, 0],
x2 ≡ [1, 1, 0]] .

XII

Next, append each element’s two bits of metadata to the right-hand side of
each corresponding XOR clause, creating s+ r = 5 instances.

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0] || [0, 0],
x3 ≡ [0, 1, 0] || [0, 1],
x2 ≡ [1, 1, 0] || [1, 0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0, 0, 0],
x3 ≡ [0, 1, 0, 0, 1],
x2 ≡ [1, 1, 0, 1, 0]] .

The final steps are to solve and store s+ r = 5 solutions, one for each of the
XORSAT instances encoded by XY . Though there are many different solutions
to these instances, five such solutions are

SY = [[x0 = 1, x1 = 0, x2 = 1, x3 = 0],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]] .

The filter FY is the transpose of the solutions SY , along with those parameters
necessary for proper querying, namely

FY = ([[1, 0, 0, 1, 1],
[0, 1, 0, 1, 0],
[1, 1, 0, 1, 0],
[0, 1, 0, 0, 1]],
n = 3, k = 3, s = 3, r = 2) .

The filter FY is now complete and the next part of the example will demon-
strate how to query it.

5.2 Querying the Filter

The process to query FY with an example element x = “horse” follows many of
the same steps as building the filter. First, the same hash scheme from above is
used to generate an XOR clause for “horse”.

H = xxHash(“horse”)
= 0x3f37a1a7 .

Next, the hash is split into groups of 4 bits.

SH = [0x3, 0xf, 0x3, 0x7, 0xa, 0x1, 0xa, 0x7] .

XIII

Then, three clause indices and a right-hand side are generated from the hash.

I = [SH0(mod n), SH1(mod n), SH2(mod n), SH3(mod 2s)]
= [0x3(mod 4), 0xf(mod 4), 0x3(mod 4), 0x7(mod 8)]
= [3, 3, 3, 7] .

Finally the clause is created from the indices and right-hand side and two bits
(all True) are appended to support metadata retrieval.

C = x3 ⊕ x3 ⊕ x3 ≡ [1, 1, 1] || [1, 1]
= x3 ≡ [1, 1, 1, 1, 1] .

In Algorithm 5, the right-hand side metadata bits are all set to False and the
terminal equivalence (≡) is treated as an XOR (⊕). That choice was made purely
for presentation of the algorithm. This example demonstrates that either way is
acceptable.

Now that the clause C has been built, it can be tested against the filter FY .
To do so, assign the variables in C their values in the stored solutions of FY and
evaluate the resulting equation.

CFY
= FY (3) ≡ [1, 1, 1, 1, 1]
= [0, 1, 0, 0, 1] ≡ [1, 1, 1, 1, 1]
= [0, 1, 0, 0, 1] .

Since the first three bits of CFY
are not all True, the element does not pass the

filter. Hence, the string “horse” is definitively not in Y .
The final part of this example demonstrates a query that passes and returns

stored metadata. Specifically, FY will be queried with x = “cat”. Again, the
same hash scheme from above is used to generate an XOR clause for “cat”. Since
this was already demonstrated in the previous section, the details will not be
repeated. Instead, the clause C is simply stated next, including the two True
bits appended to support metadata retrieval.

C = x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0, 1, 1] .

Evaluating C against FY produces

CFY
= FY (0)⊕ FY (1)⊕ FY (3) ≡ [1, 0, 0, 1, 1]
= [1, 0, 0, 1, 1]⊕ [0, 1, 0, 1, 0]⊕ [0, 1, 0, 0, 1] ≡ [1, 0, 0, 1, 1]
= [1, 0, 0, 0, 0] ≡ [1, 0, 0, 1, 1]
= [1, 1, 1, 0, 0] .

Since the first three bits of CFY
are all True, the element passes the filter. Hence,

“cat” is in Y with a 1
23 chance of being a false positive. The last two bits of CFY

,
[0, 0], represent the stored metadata, namely, the index 0.

XIV

6 Experimental Results

This section serves to demonstrate that it is practical to build efficient XORSAT
filters for very large data sets. To do so, a research-grade XORSAT solver and
XORSAT filter construction were implemented in the C language. The solver
performs the ’Method of the Four Russians’ [29].

As a proof of concept, seventeen dictionaries were built consisting of 210, . . . ,
and 226 random 16-byte strings. To ensure that random k-XORSAT instances
were generated, the strings were transformed into XOR clauses using the 64-bit
xxHash hash algorithm [10]. Each string was fed into a single call of xxHash and
the output was used to seed a linear feedback shift register (LFSR) with 16-bit
elements and primitive polynomial 1 + x2 + x3 + x4 + x8. XOR clauses were
produced by stepping the LFSR k times. Duplicate removal was not consid-
ered as searching for duplicates drastically increases query performance yet only
marginally increases efficiency. All of the following results were collected using
a late 2013 MacBook Pro with a 2.6-GHz Intel Core i7 and 16 GB of RAM. All
times are reported in seconds.

Table 3. Achieved efficiency and seconds taken to build non-blocked XORSAT filters
with p = 1

210 . m is the number of elements in the data set being stored and k is the
number of variables per XOR clause.

m k = 3 k = 4 k = 5 k = 6

210 (88%, < 1) (93%, < 1) (93%, < 1) (93%, < 1)
211 (89%, < 1) (97%, < 1) (97%, < 1) (97%, < 1)
212 (90%, < 1) (97%, < 1) (98%, < 1) (98%, < 1)
213 (91%, 1) (97%, 1) (98%, 1) (99%, 1)
214 (91%, 2) (97%, 3) (99%, 4) (99%, 5)
215 (89%, 17) (97%, 21) (98%, 28) (98%, 36)

Table 3 presents the achieved efficiency and time taken to build non-blocked
XORSAT filters, that is, for each filter, s = 10 XORSAT instances were gener-
ated and one solution was found for each. The instances were solved in parallel
using a single call to the XORSAT solver.

Unlike SAT filters, the number of solutions found does not affect either effi-
ciency or runtime so long as s is less than the word-size of the computer (typically
64 bits, a very reasonable assumption in practice given that s > 64 would mean
building a filter with a false positive rate less than 1

264). Efficiency is not affected
because the s right-hand sides are all uncorrelated. Runtime is not affected be-
cause all s instances are solved in parallel using bit-packing and word-level op-
erations.

The XORSAT filters in Table 3 and Table 4 achieve the desired false positive
rate. This was verified experimentally by querying each XORSAT filter with 223

XV

4-byte elements and using the results to calculate the achieved false positive rate
and, for Table 4, query speed as well.

In terms of efficiency, the experimental results match the theoretical results
from Table 1. And, if the number of XOR clauses per instance is above 214, filters
can be practically built that are very close to the optimal efficiency possible for
each given k.

The results also hint correctly that it is not practical to build non-blocked
XORSAT filters for very large data sets as runtime will grow and become pro-
hibitive in practice. It is likely that filter build time can be reduced by using a
more powerful solver (such as M4RI [2]), but this has not been explored here.

However, build time can be significantly reduced by building blocked XOR-
SAT filters. As discussed in Section 2.3, first hashing elements into small blocks
and then, in parallel, building one filter for each block can drastically reduce the
build time of a large data set without increasing query time and only marginally
reducing efficiency. Since build time is one-time work, discovering techniques for
reducing build time any further is likely unnecessary.

Results in Table 3 can be used to tune blocked XORSAT filter schemes. For
example, setting the block size between 211 and 212 and k = 5 will enable fast
building of blocked XORSAT filters with E ≈ 98%. Table 4 presents the build
time, achieved efficiency, filter size, and query speed for blocked XORSAT and
SAT filters using these sample parameters. The table also presents query speed
for Bloom filters built and queried using the same data sets, false positive rate,
bucketing, and element hashing scheme. Though, Bloom filters can only achieve
a maximum efficiency of ln 2 = 69%, meaning that they use approximately 44%
more long-term storage than an XORSAT filter for the same data at the same
false positive rate.

Table 4 demonstrates that it is practical to build XORSAT filters very near
the information theoretic limit while maintaining a high query speed. Since each
block can be build in parallel, linear speedup is achieved and demonstrated in
the results. As with SAT filters, XORSAT filter query speed can be increased
by decreasing k which may in turn decrease efficiency.

The query speed of the above filter implementations begin to drop after data
sets grow above 220. This is due to size of the filter overwhelming the caching
mechanisms of the computer running the experiments. It may be possible to
create a cache-aware implementation of XORSAT filters that increases query
speed overall and removes some of the query speed variance seen in Table 4,
though this has not been explored.

Efficiency also slowly drops as filters increase in size. As discussed in Sec-
tion 2.3, since blocks may not all hold the same number of elements, it is nec-
essary to store additional information so that the blocks can be accessed during
query. This additional information must be stored as part of the filter and, hence,
increases the size of the filter, decreasing efficiency.

XVI

Table 4. Achieved efficiency, size (in KB), and seconds taken to build blocked XORSAT
and SAT filters with an expected 3072 elements per block, variables per clause k = 5,
and desired false positive rate p = 1

210 . Desired SAT filter efficiency was set to 75%
and desired XORSAT filter efficiency was set to 98%. The SAT filter hamming weight
metric [31] was set to 48%. Timeout (’-’) was set at one hour. Query speed (in millions
of queries per second) is also given for XORSAT, SAT, and Bloom filters.

XORSAT Filter SAT Filter

Build Time Build Time Query Speed

m 1 Core 8 Cores E Size 1 Core 8 Cores E Size XORSAT SAT Bloom

215 < 1 < 1 98% 41 336 105 43% 56 18 4 23
216 1 < 1 98% 81 883 183 43% 111 18 4 23
217 2 < 1 98% 163 1768 394 43% 222 18 4 23
218 5 1 98% 326 3441 723 44% 444 18 4 23
219 8 1 97% 659 - 1724 44% 887 18 4 23
220 17 2 97% 1321 - - - - 18 - 22
221 33 4 97% 2646 - - - - 17 - 22
222 92 12 97% 5298 - - - - 13 - 20
223 186 26 97% 10601 - - - - 9 - 20
224 372 52 97% 21204 - - - - 11 - 20
225 751 104 96% 42416 - - - - 10 - 17
226 1515 208 96% 84958 - - - - 7 - 12

7 Conclusions and Future Work

The XORSAT filter is the first practical SAT filter construction, overcoming
many of the previous hurdles presented in [31]. It is a simple offline filter con-
struction for very large data sets that can consistently achieve the efficiency
bound in practice while maintaining fast queries. This new filter construction
is also parameterized so that it can be easily tailored to support an application
needing, for example, fast build time, fast queries, a small memory footprint,
and metadata storage and retrieval.

Potential future work includes considering XORSAT filters as part of a secure
search scheme [18]. This would involve tailoring the filter construction to make
it secure or resistant to various attacks such as inversion and intersection, as
well as many others [27,32].

Moving from disjunctive clauses to XOR clauses provides for a SAT filter
with different features (ex. near perfect efficiency, fast build time, metadata
support, hints of security). Hence, it is possible that SAT filters built from other
constraint types could provide other common sought after filter features such as
streaming (online filters), element deletion, or element counting.

XVII

References

1. Achlioptas, D.: Random satisfiability. In: Biere et al. [5], pp. 245–270
2. Albrecht, M., Bard, G.: The m4ri library (2018), https://m4ri.sagemath.org
3. Azinović, M., Herr, D., Heim, B., Brown, E., Troyer, M.: Assessment of quantum

annealing for the construction of satisfiability filters. SciPost Phys. 2, 013 (2017),
https://scipost.org/10.21468/SciPostPhys.2.2.013

4. Bard, G.V.: The Method of Four Russians, pp. 133–158. Springer, Boston, MA
(2009), https://doi.org/10.1007/978-0-387-88757-9_9

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications 185, IOS Press (2009)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

7. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space.
SIAM Journal on Computing 28(5), 1627–1640 (1999)

8. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient data
structure for static support lookup tables. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. pp. 30–39. Society for Industrial
and Applied Mathematics (2004)

9. Cohen, S., Matias, Y.: Spectral Bloom filters. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data. pp. 241–252. ACM
(2003)

10. Collet, Y.: xxHash: Extremely fast hash algorithm (2017)
11. Daudé, H., Ravelomanana, V.: Random 2-XORSAT at the satisfiability threshold.

In: Latin American Symposium on Theoretical Informatics. pp. 12–23. Springer
(2008)

12. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M.D., Montanari, A., Pagh, R.,
Rink, M.: Tight thresholds for cuckoo hashing via XORSAT. In: International
Colloquium on Automata, Languages, and Programming. pp. 213–225. Springer
(2010)

13. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approx-
imate membership. In: International Colloquium on Automata, Languages, and
Programming. pp. 385–396. Springer (2008)

14. Douglass, A., King, A.D., Raymond, J.: Constructing SAT filters with a quantum
annealer. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 104–120. Springer (2015)

15. Erdős, P., Renyi, A.: On a classical problem of probability theory (1961)
16. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Prac-

tically better than Bloom. In: Proceedings of the 10th ACM International Con-
ference on emerging Networking Experiments and Technologies. pp. 75–88. ACM
(2014)

17. Fang, C., Zhu, Z., Katzgraber, H.G.: NAE-SAT-based probabilistic membership
filters. preprint arXiv:1801.06232 (2018)

18. Goh, E.J., et al.: Secure indexes. IACR Cryptology ePrint Archive 2004, 216 (2004)
19. Heule, M.J., van Maaren, H.: Parallel SAT solving using bit-level operations. Jour-

nal on Satisfiability, Boolean Modeling and Computation 4, 99–116 (2008)
20. Ibrahimi, M., Kanoria, Y., Kraning, M., Montanari, A.: The set of solutions of

random XORSAT formulae. In: Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms. pp. 760–779. SIAM (2012)

XVIII

21. Kader, A.A., Dorojevets, M.: Novel integration of Dimetheus and WalkSAT solvers
for k-SAT filter construction. In: Systems, Applications and Technology Conference
(LISAT2017). pp. 1–5. IEEE (2017)

22. Krimer, E., Erez, M.: The power of 1+α for memory-efficient Bloom filters. Internet
Mathematics 7(1), 28–44 (2011)

23. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: AAAI92. pp. 459–465 (1992)

24. Mitzenmacher, M.D.: Compressed Bloom filters. IEEE/ACM Transactions on Net-
working (TON) 10(5), 604–612 (2002)

25. Pittel, B., Sorkin, G.B.: The satisfiability threshold for k-XORSAT. Combinatorics,
Probability and Computing 25(02), 236–268 (2016)

26. Porat, E.: An optimal Bloom filter replacement based on matrix solving. In: Frid,
A.E., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) Computer Science —
Theory and Applications, Fourth International Computer Science Symposium in
Russia, CSR 2009, Proceedings. Lecture Notes in Computer Science, vol. 5675, pp.
263–273. Springer (2009), https://doi.org/10.1007/978-3-642-03351-3_25

27. Pouliot, D., Wright, C.V.: The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1341–1352.
ACM (2016)

28. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient Bloom filters.
Journal of Experimental Algorithmics 14, 4 (2009)

29. V. l., A., Dinits, E., Kronrod, M., I. A., F.: On economical construction of transitive
closure of an oriented graph. Doklady Akademii Nauk SSSR 194(3), 487 (1970)

30. Walker, A.: Filters. Master’s thesis, Haverford College (2007), http://math.
uchicago.edu/˜akwalker/filtersFinal.pdf

31. Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-
based set membership filters. Journal on Satisfiability, Boolean Modeling and Com-
putation 8, 129–148 (2014)

32. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In: USENIX Security Symposium.
pp. 707–720 (2016)

